search
Back to results

Prevention of Bone Loss After Pediatric Hematopoietic Cell Transplantation

Primary Purpose

Osteopenia, Osteoporosis

Status
Completed
Phase
Phase 2
Locations
United States
Study Type
Interventional
Intervention
Pamidronate
Calcium and vitamin D
Sponsored by
Masonic Cancer Center, University of Minnesota
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional prevention trial for Osteopenia focused on measuring bone mineral content, bone mineral density, bone formation, bone resorption, pamidronate, children, DXA, bone marrow transplant

Eligibility Criteria

1 Year - 20 Years (Child, Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria:

  • Allogeneic hematopoietic cell transplant for hematologic malignancy (i.e. leukemia, lymphoma including ALL, AML, CML, NHL, HL) in complete remission; myelodysplastic syndrome (active dysplasia and/or blasts are permitted, but must not have active leukemia) or idiopathic severe aplastic anemia (SAA)
  • Non-malignant diseases including idiopathic severe aplastic anemia (SAA) and other bone marrow failure disorders, hemoglobinopathies, adrenoleukodystrophy, immune deficiencies/dysregulation disorders who will be receiving myeloablative or reduced toxicity preparative regimens that meet the following criteria:

    • Regimens include those that are TBI based if the TBI dose is > 500cGy single dose or > 800cGy fractionated, or doses <500 cGy if combined with busulfan or treosulfan. These also include chemotherapy only based regimens that contain myeloablative doses of busulfan (>8mg/kg) or treosulfan without TBI.
    • Patients with severe aplastic anemia are eligible regardless of conditioning regimen
  • Myeloablative preparative regimen (for SAA any conditioning therapy allowed)
  • Male or female ≥1 but ≤ 20 years of age at time of study enrollment
  • Patient or parent(s)/legal guardian(s) is able and willing to provide informed consent. Assent will be obtained per local institutional policy. Subjects who turn 18 during the course of the study will be consented at that time of their next visit by a member of the research staff.

Exclusion Criteria:

  • History of a primary bone malignancy involving the lumbar spine
  • Prior and/or planned concomitant medical therapy during the study period (through Day 360 post-HCT) with other bisphosphonates, Denosumab, or Teriparatide
  • Pregnancy or breastfeeding - menstruating females must have a negative pregnancy test prior to study enrollment and agree to repeat pregnancy testing and contraception use per protocol as pamidronate is Pregnancy Category D - positive evidence of human fetal risk based on adverse reaction data
  • Renal insufficiency, defined as creatinine level greater than the upper limit of normal for age
  • Hereditary metabolic bone disease or skeletal dysplasia (e.g., osteopetrosis or OI) or primary hyperparathyroidism
  • Other indications for HCT, including Fanconi anemia, other form of inherited bone marrow failure diseases, metabolic disorder, hemoglobinopathy, or immune deficiency
  • Clinically significant fractures as defined by ISCD (a long bone fracture of the lower extremities, vertebral compression fracture, or two or more long bone fractures of the upper extremities) (88,89) indicated by a cast or a spine x-ray within the last 2 weeks
  • Known or suspected allergy to pamidronate or related products
  • Planned administration of an investigational study drug or agent that either can interact with pamidronate or have an independent effect on bone mineral density within the 4 weeks prior to randomization (Day 90) or planned use during study participation (Day 90 through Day 360)
  • Impending invasive dental procedure that would be expected to occur during study participation (through Day 360)

Sites / Locations

  • University of Minnesota Amplatz Children's Hospital
  • Seattle Children's Hospital

Arms of the Study

Arm 1

Arm 2

Arm Type

Active Comparator

Experimental

Arm Label

Control group

Pamidronate Group

Arm Description

Subjects will receive a standard recommended dose of calcium and vitamin D.

Subjects randomized to pamidronate treatment will receive infusions approximately 100, 180, and 270 days after HCT along with calcium and vitamin D.

Outcomes

Primary Outcome Measures

Lumbar spine bone mineral content

Secondary Outcome Measures

Total body bone mineral content (TBMC; excluding head; adjusted for height, age, sex, Tanner stage, and race)
Total bone mineral density (BMD), cortical BMD, trabecular BMD, and estimated bone strength measured by pQCT
Cytokine levels (interleukin IL-6, IL-7, and TNF-α)
Receptor activator of the nuclear factor-κB ligand [RANKL], osteoprotegerin [OPG], RANKL/OPG ratio
Markers of bone resorption (carboxy-terminal collagen crosslinks [CTX] and deoxypyridinoline [DPD])
Markers of bone formation (procollagen type 1 N-terminal propeptide [P1NP] and osteocalcin [OCN])

Full Information

First Posted
February 26, 2014
Last Updated
December 8, 2022
Sponsor
Masonic Cancer Center, University of Minnesota
search

1. Study Identification

Unique Protocol Identification Number
NCT02074631
Brief Title
Prevention of Bone Loss After Pediatric Hematopoietic Cell Transplantation
Official Title
Prevention of Bone Loss After Pediatric Hematopoietic Cell Transplantation
Study Type
Interventional

2. Study Status

Record Verification Date
December 2022
Overall Recruitment Status
Completed
Study Start Date
February 2015 (Actual)
Primary Completion Date
October 6, 2022 (Actual)
Study Completion Date
October 6, 2022 (Actual)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Sponsor
Name of the Sponsor
Masonic Cancer Center, University of Minnesota

4. Oversight

Studies a U.S. FDA-regulated Drug Product
Yes
Studies a U.S. FDA-regulated Device Product
No
Data Monitoring Committee
Yes

5. Study Description

Brief Summary
This is a Phase 2, open-label, randomized, controlled clinical study of pediatric subjects treated with pamidronate with calcium and vitamin D versus calcium and vitamin D alone following hematopoietic cell transplantation (HCT). The purpose of this study is to test the hypothesis that subjects receiving pamidronate with calcium and vitamin D will have higher lumbar spine bone mineral content (LBMC) measured by dual-energy X-ray tomography (DXA) at 1 year post-HCT than subjects receiving calcium and vitamin D alone (Control Group).

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Osteopenia, Osteoporosis
Keywords
bone mineral content, bone mineral density, bone formation, bone resorption, pamidronate, children, DXA, bone marrow transplant

7. Study Design

Primary Purpose
Prevention
Study Phase
Phase 2
Interventional Study Model
Parallel Assignment
Masking
None (Open Label)
Allocation
Randomized
Enrollment
80 (Actual)

8. Arms, Groups, and Interventions

Arm Title
Control group
Arm Type
Active Comparator
Arm Description
Subjects will receive a standard recommended dose of calcium and vitamin D.
Arm Title
Pamidronate Group
Arm Type
Experimental
Arm Description
Subjects randomized to pamidronate treatment will receive infusions approximately 100, 180, and 270 days after HCT along with calcium and vitamin D.
Intervention Type
Drug
Intervention Name(s)
Pamidronate
Other Intervention Name(s)
Aredia, Bonapam
Intervention Description
Subjects randomized to pamidronate treatment will receive infusions, 1 mg/kg (to a max dose of 60mg) over 4 hours, every 3 months at approximately 100 days, 180 days, and 270 days after HCT.
Intervention Type
Drug
Intervention Name(s)
Calcium and vitamin D
Other Intervention Name(s)
Cholecalciferol, Ergocalciferol
Intervention Description
All subjects will receive a standard recommended dose of 600 IU/day of vitamin D. Subjects who do not meet the RDA will receive additional calcium supplementation.
Primary Outcome Measure Information:
Title
Lumbar spine bone mineral content
Time Frame
1 year after HCT
Secondary Outcome Measure Information:
Title
Total body bone mineral content (TBMC; excluding head; adjusted for height, age, sex, Tanner stage, and race)
Time Frame
1 year after HCT
Title
Total bone mineral density (BMD), cortical BMD, trabecular BMD, and estimated bone strength measured by pQCT
Time Frame
1 year after HCT
Title
Cytokine levels (interleukin IL-6, IL-7, and TNF-α)
Time Frame
7 days, 14 days, 21 days, 100 days after HCT
Title
Receptor activator of the nuclear factor-κB ligand [RANKL], osteoprotegerin [OPG], RANKL/OPG ratio
Time Frame
7 days, 14 days, 21 days, and 100 days after HCT
Title
Markers of bone resorption (carboxy-terminal collagen crosslinks [CTX] and deoxypyridinoline [DPD])
Time Frame
7, 14, 21, 100, 180, 360 days after HCT
Title
Markers of bone formation (procollagen type 1 N-terminal propeptide [P1NP] and osteocalcin [OCN])
Time Frame
7, 14, 21, 100, 180, 360 days after HCT

10. Eligibility

Sex
All
Minimum Age & Unit of Time
1 Year
Maximum Age & Unit of Time
20 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: Allogeneic hematopoietic cell transplant for hematologic malignancy (i.e. leukemia, lymphoma including ALL, AML, CML, NHL, HL) in complete remission; myelodysplastic syndrome (active dysplasia and/or blasts are permitted, but must not have active leukemia) or idiopathic severe aplastic anemia (SAA) Non-malignant diseases including idiopathic severe aplastic anemia (SAA) and other bone marrow failure disorders, hemoglobinopathies, adrenoleukodystrophy, immune deficiencies/dysregulation disorders who will be receiving myeloablative or reduced toxicity preparative regimens that meet the following criteria: Regimens include those that are TBI based if the TBI dose is > 500cGy single dose or > 800cGy fractionated, or doses <500 cGy if combined with busulfan or treosulfan. These also include chemotherapy only based regimens that contain myeloablative doses of busulfan (>8mg/kg) or treosulfan without TBI. Patients with severe aplastic anemia are eligible regardless of conditioning regimen Myeloablative preparative regimen (for SAA any conditioning therapy allowed) Male or female ≥1 but ≤ 20 years of age at time of study enrollment Patient or parent(s)/legal guardian(s) is able and willing to provide informed consent. Assent will be obtained per local institutional policy. Subjects who turn 18 during the course of the study will be consented at that time of their next visit by a member of the research staff. Exclusion Criteria: History of a primary bone malignancy involving the lumbar spine Prior and/or planned concomitant medical therapy during the study period (through Day 360 post-HCT) with other bisphosphonates, Denosumab, or Teriparatide Pregnancy or breastfeeding - menstruating females must have a negative pregnancy test prior to study enrollment and agree to repeat pregnancy testing and contraception use per protocol as pamidronate is Pregnancy Category D - positive evidence of human fetal risk based on adverse reaction data Renal insufficiency, defined as creatinine level greater than the upper limit of normal for age Hereditary metabolic bone disease or skeletal dysplasia (e.g., osteopetrosis or OI) or primary hyperparathyroidism Other indications for HCT, including Fanconi anemia, other form of inherited bone marrow failure diseases, metabolic disorder, hemoglobinopathy, or immune deficiency Clinically significant fractures as defined by ISCD (a long bone fracture of the lower extremities, vertebral compression fracture, or two or more long bone fractures of the upper extremities) (88,89) indicated by a cast or a spine x-ray within the last 2 weeks Known or suspected allergy to pamidronate or related products Planned administration of an investigational study drug or agent that either can interact with pamidronate or have an independent effect on bone mineral density within the 4 weeks prior to randomization (Day 90) or planned use during study participation (Day 90 through Day 360) Impending invasive dental procedure that would be expected to occur during study participation (through Day 360)
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Kyriakie Sarafoglou, MD
Organizational Affiliation
University of Minnesota
Official's Role
Principal Investigator
Facility Information:
Facility Name
University of Minnesota Amplatz Children's Hospital
City
Minneapolis
State/Province
Minnesota
ZIP/Postal Code
55454
Country
United States
Facility Name
Seattle Children's Hospital
City
Seattle
State/Province
Washington
ZIP/Postal Code
98105
Country
United States

12. IPD Sharing Statement

Citations:
PubMed Identifier
16352681
Citation
Petryk A, Bergemann TL, Polga KM, Ulrich KJ, Raatz SK, Brown DM, Robison LL, Baker KS. Prospective study of changes in bone mineral density and turnover in children after hematopoietic cell transplantation. J Clin Endocrinol Metab. 2006 Mar;91(3):899-905. doi: 10.1210/jc.2005-1927. Epub 2005 Dec 13.
Results Reference
background
PubMed Identifier
9678801
Citation
Bhatia S, Ramsay NK, Weisdorf D, Griffiths H, Robison LL. Bone mineral density in patients undergoing bone marrow transplantation for myeloid malignancies. Bone Marrow Transplant. 1998 Jul;22(1):87-90. doi: 10.1038/sj.bmt.1701275.
Results Reference
background
PubMed Identifier
10673679
Citation
Nysom K, Holm K, Michaelsen KF, Hertz H, Jacobsen N, Muller J, Molgaard C. Bone mass after allogeneic BMT for childhood leukaemia or lymphoma. Bone Marrow Transplant. 2000 Jan;25(2):191-6. doi: 10.1038/sj.bmt.1702131.
Results Reference
background
PubMed Identifier
14716354
Citation
Kaste SC, Shidler TJ, Tong X, Srivastava DK, Rochester R, Hudson MM, Shearer PD, Hale GA. Bone mineral density and osteonecrosis in survivors of childhood allogeneic bone marrow transplantation. Bone Marrow Transplant. 2004 Feb;33(4):435-41. doi: 10.1038/sj.bmt.1704360.
Results Reference
background
PubMed Identifier
17474113
Citation
Perkins JL, Kunin-Batson AS, Youngren NM, Ness KK, Ulrich KJ, Hansen MJ, Petryk A, Steinberger J, Anderson FS, Baker KS. Long-term follow-up of children who underwent hematopoeitic cell transplant (HCT) for AML or ALL at less than 3 years of age. Pediatr Blood Cancer. 2007 Dec;49(7):958-63. doi: 10.1002/pbc.21207.
Results Reference
background
PubMed Identifier
12973107
Citation
Daniels MW, Wilson DM, Paguntalan HG, Hoffman AR, Bachrach LK. Bone mineral density in pediatric transplant recipients. Transplantation. 2003 Aug 27;76(4):673-8. doi: 10.1097/01.TP.0000076627.70050.53.
Results Reference
background
PubMed Identifier
22189761
Citation
Mostoufi-Moab S, Ginsberg JP, Bunin N, Zemel B, Shults J, Leonard MB. Bone density and structure in long-term survivors of pediatric allogeneic hematopoietic stem cell transplantation. J Bone Miner Res. 2012 Apr;27(4):760-9. doi: 10.1002/jbmr.1499.
Results Reference
background
PubMed Identifier
21773991
Citation
Jackowski SA, Kontulainen SA, Cooper DM, Lanovaz JL, Baxter-Jones AD. The timing of BMD and geometric adaptation at the proximal femur from childhood to early adulthood in males and females: a longitudinal study. J Bone Miner Res. 2011 Nov;26(11):2753-61. doi: 10.1002/jbmr.468.
Results Reference
background
PubMed Identifier
16106430
Citation
Kaste SC, Rai SN, Fleming K, McCammon EA, Tylavsky FA, Danish RK, Rose SR, Sitter CD, Pui CH, Hudson MM. Changes in bone mineral density in survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2006 Jan;46(1):77-87. doi: 10.1002/pbc.20553.
Results Reference
background
PubMed Identifier
2024857
Citation
Ross PD, Davis JW, Epstein RS, Wasnich RD. Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med. 1991 Jun 1;114(11):919-23. doi: 10.7326/0003-4819-114-11-919.
Results Reference
background
PubMed Identifier
21520276
Citation
Baxter-Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA. Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res. 2011 Aug;26(8):1729-39. doi: 10.1002/jbmr.412.
Results Reference
background
PubMed Identifier
22905997
Citation
Polgreen LE, Rudser K, Deyo M, Smith A, Baker KS, Petryk A. Changes in biomarkers of bone resorption over the first six months after pediatric hematopoietic cell transplantation. Pediatr Transplant. 2012 Dec;16(8):852-7. doi: 10.1111/j.1399-3046.2012.01780.x. Epub 2012 Aug 20.
Results Reference
background
PubMed Identifier
16835281
Citation
Grigg AP, Shuttleworth P, Reynolds J, Schwarer AP, Szer J, Bradstock K, Hui C, Herrmann R, Ebeling PR. Pamidronate reduces bone loss after allogeneic stem cell transplantation. J Clin Endocrinol Metab. 2006 Oct;91(10):3835-43. doi: 10.1210/jc.2006-0684. Epub 2006 Jul 11.
Results Reference
background
PubMed Identifier
15797959
Citation
Kananen K, Volin L, Laitinen K, Alfthan H, Ruutu T, Valimaki MJ. Prevention of bone loss after allogeneic stem cell transplantation by calcium, vitamin D, and sex hormone replacement with or without pamidronate. J Clin Endocrinol Metab. 2005 Jul;90(7):3877-85. doi: 10.1210/jc.2004-2161. Epub 2005 Mar 29.
Results Reference
background
PubMed Identifier
18174695
Citation
Glorieux FH. Treatment of osteogenesis imperfecta: who, why, what? Horm Res. 2007;68 Suppl 5:8-11. doi: 10.1159/000110463. Epub 2007 Dec 10.
Results Reference
background
PubMed Identifier
17127117
Citation
Land C, Rauch F, Travers R, Glorieux FH. Osteogenesis imperfecta type VI in childhood and adolescence: effects of cyclical intravenous pamidronate treatment. Bone. 2007 Mar;40(3):638-44. doi: 10.1016/j.bone.2006.10.010. Epub 2006 Nov 28.
Results Reference
background
PubMed Identifier
3629280
Citation
Devogelaer JP, Malghem J, Maldague B, Nagant de Deuxchaisnes C. Radiological manifestations of bisphosphonate treatment with APD in a child suffering from osteogenesis imperfecta. Skeletal Radiol. 1987;16(5):360-3. doi: 10.1007/BF00350961.
Results Reference
background
PubMed Identifier
15110498
Citation
Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet. 2004 Apr 24;363(9418):1377-85. doi: 10.1016/S0140-6736(04)16051-0.
Results Reference
background
PubMed Identifier
16361982
Citation
Speiser PW, Clarson CL, Eugster EA, Kemp SF, Radovick S, Rogol AD, Wilson TA; LWPES Pharmacy and Therapeutic Committee. Bisphosphonate treatment of pediatric bone disease. Pediatr Endocrinol Rev. 2005 Dec;3(2):87-96.
Results Reference
background
PubMed Identifier
19087101
Citation
Castillo H, Samson-Fang L; American Academy for Cerebral Palsy and Developmental Medicine Treatment Outcomes Committee Review Panel. Effects of bisphosphonates in children with osteogenesis imperfecta: an AACPDM systematic review. Dev Med Child Neurol. 2009 Jan;51(1):17-29. doi: 10.1111/j.1469-8749.2008.03222.x.
Results Reference
background
PubMed Identifier
15542028
Citation
DiMeglio LA, Ford L, McClintock C, Peacock M. Intravenous pamidronate treatment of children under 36 months of age with osteogenesis imperfecta. Bone. 2004 Nov;35(5):1038-45. doi: 10.1016/j.bone.2004.07.003.
Results Reference
background
PubMed Identifier
9753709
Citation
Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998 Oct 1;339(14):947-52. doi: 10.1056/NEJM199810013391402.
Results Reference
background
PubMed Identifier
12410192
Citation
Henderson RC, Lark RK, Kecskemethy HH, Miller F, Harcke HT, Bachrach SJ. Bisphosphonates to treat osteopenia in children with quadriplegic cerebral palsy: a randomized, placebo-controlled clinical trial. J Pediatr. 2002 Nov;141(5):644-51. doi: 10.1067/mpd.2002.128207.
Results Reference
background
PubMed Identifier
16904014
Citation
Plotkin H, Coughlin S, Kreikemeier R, Heldt K, Bruzoni M, Lerner G. Low doses of pamidronate to treat osteopenia in children with severe cerebral palsy: a pilot study. Dev Med Child Neurol. 2006 Sep;48(9):709-12. doi: 10.1017/S0012162206001526. Erratum In: Dev Med Child Neurol. 2006 Dec;48(12):1024.
Results Reference
background
PubMed Identifier
15655696
Citation
Grissom LE, Kecskemethy HH, Bachrach SJ, McKay C, Harcke HT. Bone densitometry in pediatric patients treated with pamidronate. Pediatr Radiol. 2005 May;35(5):511-7. doi: 10.1007/s00247-004-1393-3. Epub 2005 Jan 18.
Results Reference
background
PubMed Identifier
12948302
Citation
Gandrud LM, Cheung JC, Daniels MW, Bachrach LK. Low-dose intravenous pamidronate reduces fractures in childhood osteoporosis. J Pediatr Endocrinol Metab. 2003 Jul-Aug;16(6):887-92. doi: 10.1515/jpem.2003.16.6.887.
Results Reference
background
PubMed Identifier
9279333
Citation
Brumsen C, Hamdy NA, Papapoulos SE. Long-term effects of bisphosphonates on the growing skeleton. Studies of young patients with severe osteoporosis. Medicine (Baltimore). 1997 Jul;76(4):266-83. doi: 10.1097/00005792-199707000-00005.
Results Reference
background
PubMed Identifier
17561466
Citation
Przkora R, Herndon DN, Sherrard DJ, Chinkes DL, Klein GL. Pamidronate preserves bone mass for at least 2 years following acute administration for pediatric burn injury. Bone. 2007 Aug;41(2):297-302. doi: 10.1016/j.bone.2007.04.195. Epub 2007 May 8.
Results Reference
background
PubMed Identifier
17531778
Citation
Carpenter PA, Hoffmeister P, Chesnut CH 3rd, Storer B, Charuhas PM, Woolfrey AE, Sanders JE. Bisphosphonate therapy for reduced bone mineral density in children with chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2007 Jun;13(6):683-90. doi: 10.1016/j.bbmt.2007.02.001. Epub 2007 Apr 6.
Results Reference
background
PubMed Identifier
12890844
Citation
Whyte MP, Wenkert D, Clements KL, McAlister WH, Mumm S. Bisphosphonate-induced osteopetrosis. N Engl J Med. 2003 Jul 31;349(5):457-63. doi: 10.1056/NEJMoa023110. No abstract available.
Results Reference
background
PubMed Identifier
12629073
Citation
Rauch F, Plotkin H, Travers R, Zeitlin L, Glorieux FH. Osteogenesis imperfecta types I, III, and IV: effect of pamidronate therapy on bone and mineral metabolism. J Clin Endocrinol Metab. 2003 Mar;88(3):986-92. doi: 10.1210/jc.2002-021371.
Results Reference
background
PubMed Identifier
11970931
Citation
Astrom E, Soderhall S. Beneficial effect of long term intravenous bisphosphonate treatment of osteogenesis imperfecta. Arch Dis Child. 2002 May;86(5):356-64. doi: 10.1136/adc.86.5.356.
Results Reference
background
PubMed Identifier
12712060
Citation
Steelman J, Zeitler P. Treatment of symptomatic pediatric osteoporosis with cyclic single-day intravenous pamidronate infusions. J Pediatr. 2003 Apr;142(4):417-23. doi: 10.1067/mpd.2003.137.
Results Reference
background
PubMed Identifier
15827104
Citation
Ward LM, Denker AE, Porras A, Shugarts S, Kline W, Travers R, Mao C, Rauch F, Maes A, Larson P, Deutsch P, Glorieux FH. Single-dose pharmacokinetics and tolerability of alendronate 35- and 70-milligram tablets in children and adolescents with osteogenesis imperfecta type I. J Clin Endocrinol Metab. 2005 Jul;90(7):4051-6. doi: 10.1210/jc.2004-2054. Epub 2005 Apr 12.
Results Reference
background
PubMed Identifier
11874181
Citation
Zacharin M, Bateman J. Pamidronate treatment of osteogenesis imperfecta--lack of correlation between clinical severity, age at onset of treatment, predicted collagen mutation and treatment response. J Pediatr Endocrinol Metab. 2002 Feb;15(2):163-74. doi: 10.1515/jpem.2002.15.2.163.
Results Reference
background
PubMed Identifier
11721169
Citation
Janssen van Doorn K, Neyns B, Van der Niepen P, Verbeelen D. Pamidronate-related nephrotoxicity (tubulointerstitial nephritis) in a patient with osteolytic bone metastases. Nephron. 2001 Dec;89(4):467-8. doi: 10.1159/000046123. No abstract available.
Results Reference
background
PubMed Identifier
8706358
Citation
Machado CE, Flombaum CD. Safety of pamidronate in patients with renal failure and hypercalcemia. Clin Nephrol. 1996 Mar;45(3):175-9.
Results Reference
background
PubMed Identifier
8833200
Citation
Lin JH. Bisphosphonates: a review of their pharmacokinetic properties. Bone. 1996 Feb;18(2):75-85. doi: 10.1016/8756-3282(95)00445-9.
Results Reference
background
PubMed Identifier
17347467
Citation
Papapoulos SE, Cremers SC. Prolonged bisphosphonate release after treatment in children. N Engl J Med. 2007 Mar 8;356(10):1075-6. doi: 10.1056/NEJMc062792. No abstract available.
Results Reference
background
PubMed Identifier
17279467
Citation
Ward KA, Adams JE, Freemont TJ, Mughal MZ. Can bisphosphonate treatment be stopped in a growing child with skeletal fragility? Osteoporos Int. 2007 Aug;18(8):1137-40. doi: 10.1007/s00198-007-0330-3. Epub 2007 Feb 6.
Results Reference
background
PubMed Identifier
17223617
Citation
Rauch F, Cornibert S, Cheung M, Glorieux FH. Long-bone changes after pamidronate discontinuation in children and adolescents with osteogenesis imperfecta. Bone. 2007 Apr;40(4):821-7. doi: 10.1016/j.bone.2006.11.020. Epub 2007 Jan 12.
Results Reference
background
PubMed Identifier
18505375
Citation
Whyte MP, McAlister WH, Novack DV, Clements KL, Schoenecker PL, Wenkert D. Bisphosphonate-induced osteopetrosis: novel bone modeling defects, metaphyseal osteopenia, and osteosclerosis fractures after drug exposure ceases. J Bone Miner Res. 2008 Oct;23(10):1698-707. doi: 10.1359/jbmr.080511.
Results Reference
background
PubMed Identifier
19997029
Citation
Janz KF, Letuchy EM, Eichenberger Gilmore JM, Burns TL, Torner JC, Willing MC, Levy SM. Early physical activity provides sustained bone health benefits later in childhood. Med Sci Sports Exerc. 2010 Jun;42(6):1072-8. doi: 10.1249/MSS.0b013e3181c619b2.
Results Reference
background
PubMed Identifier
21167330
Citation
Meyer U, Romann M, Zahner L, Schindler C, Puder JJ, Kraenzlin M, Rizzoli R, Kriemler S. Effect of a general school-based physical activity intervention on bone mineral content and density: a cluster-randomized controlled trial. Bone. 2011 Apr 1;48(4):792-7. doi: 10.1016/j.bone.2010.11.018. Epub 2010 Dec 15.
Results Reference
background
PubMed Identifier
16199706
Citation
Buison AM, Kawchak DA, Schall JI, Ohene-Frempong K, Stallings VA, Leonard MB, Zemel BS. Bone area and bone mineral content deficits in children with sickle cell disease. Pediatrics. 2005 Oct;116(4):943-9. doi: 10.1542/peds.2004-2582.
Results Reference
background
PubMed Identifier
15537438
Citation
Burnham JM, Shults J, Semeao E, Foster B, Zemel BS, Stallings VA, Leonard MB. Whole body BMC in pediatric Crohn disease: independent effects of altered growth, maturation, and body composition. J Bone Miner Res. 2004 Dec;19(12):1961-8. doi: 10.1359/JBMR.040908. Epub 2004 Sep 20.
Results Reference
background
PubMed Identifier
15342895
Citation
Horlick M, Wang J, Pierson RN Jr, Thornton JC. Prediction models for evaluation of total-body bone mass with dual-energy X-ray absorptiometry among children and adolescents. Pediatrics. 2004 Sep;114(3):e337-45. doi: 10.1542/peds.2004-0301.
Results Reference
background
PubMed Identifier
24121211
Citation
Petryk A, Polgreen LE, Zhang L, Hodges JS, Dengel DR, Hoffmeister PA, Steinberger J, Baker KS. Bone mineral deficits in recipients of hematopoietic cell transplantation: the impact of young age at transplant. Bone Marrow Transplant. 2014 Feb;49(2):258-63. doi: 10.1038/bmt.2013.156. Epub 2013 Oct 14.
Results Reference
background
PubMed Identifier
5785179
Citation
Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969 Jun;44(235):291-303. doi: 10.1136/adc.44.235.291. No abstract available.
Results Reference
background
PubMed Identifier
5440182
Citation
Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child. 1970 Feb;45(239):13-23. doi: 10.1136/adc.45.239.13.
Results Reference
background
PubMed Identifier
21646368
Citation
Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM; Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011 Jul;96(7):1911-30. doi: 10.1210/jc.2011-0385. Epub 2011 Jun 6. Erratum In: J Clin Endocrinol Metab. 2011 Dec;96(12):3908.
Results Reference
background
PubMed Identifier
21118827
Citation
Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, Kovacs CS, Mayne ST, Rosen CJ, Shapses SA. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011 Jan;96(1):53-8. doi: 10.1210/jc.2010-2704. Epub 2010 Nov 29.
Results Reference
background
PubMed Identifier
18676559
Citation
Misra M, Pacaud D, Petryk A, Collett-Solberg PF, Kappy M; Drug and Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine Society. Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics. 2008 Aug;122(2):398-417. doi: 10.1542/peds.2007-1894.
Results Reference
background
PubMed Identifier
18413426
Citation
Gordon CM, Williams AL, Feldman HA, May J, Sinclair L, Vasquez A, Cox JE. Treatment of hypovitaminosis D in infants and toddlers. J Clin Endocrinol Metab. 2008 Jul;93(7):2716-21. doi: 10.1210/jc.2007-2790. Epub 2008 Apr 15.
Results Reference
background
PubMed Identifier
17911175
Citation
Tauchmanova L, Colao A, Lombardi G, Rotoli B, Selleri C. Bone loss and its management in long-term survivors from allogeneic stem cell transplantation. J Clin Endocrinol Metab. 2007 Dec;92(12):4536-45. doi: 10.1210/jc.2006-2870. Epub 2007 Oct 2.
Results Reference
result

Learn more about this trial

Prevention of Bone Loss After Pediatric Hematopoietic Cell Transplantation

We'll reach out to this number within 24 hrs