Protection Against Potential Brain Injury During Competitive Football
Primary Purpose
Concussion
Status
Completed
Phase
Not Applicable
Locations
United States
Study Type
Interventional
Intervention
Q Collar
Sponsored by
About this trial
This is an interventional prevention trial for Concussion focused on measuring Concussion
Eligibility Criteria
Inclusion Criteria:
- Normal healthy volunteer
- Able to provide written consent
- Must be 14 years or older and a participant on varsity level high school football team
Exclusion Criteria:
- Unable to provide written consent
- History of neurological deficits, previous cerebral infarction, or severe head trauma as indicated through pre-season screening:
- Medical contraindications to restriction of venous outflow via the internal jugular veins (known increased intracerebral pressure, metabolic acidosis or alkalosis)
- Glaucoma (Narrow Angle or Normal Tension)
- Hydrocephalus
- Recent penetrating brain trauma (within 6 months)
- Known carotid hypersensitivity
- Known increased intracranial pressure
- Central vein thrombosis
- Any known airway obstruction
- Any known seizure disorder
Sites / Locations
- Cincinanti Childrens Hospital Medical Center
Arms of the Study
Arm 1
Arm 2
Arm Type
Experimental
No Intervention
Arm Label
Subjects Wearing the Q Collar
Subjects Not Wearing the Q Collar
Arm Description
Subjects wearing the Q collar throughout the football season
Control group of subjects not wearing the q collar
Outcomes
Primary Outcome Measures
Determine Average Number of Hits Between Groups
monitor the differences in average number of hits between the group wearing the collar and the group not wearing the collar
Number of Participants Undergoing EEG Assessment
determine the number of subjects in the collar group and the non collar group that underwent EEG assessment
Change in Fractional Anisotropy (FA)
Change in fractional anisotropy (FA) from Pre to Post season
Secondary Outcome Measures
Full Information
NCT ID
NCT02696200
First Posted
May 28, 2015
Last Updated
November 16, 2020
Sponsor
Children's Hospital Medical Center, Cincinnati
1. Study Identification
Unique Protocol Identification Number
NCT02696200
Brief Title
Protection Against Potential Brain Injury During Competitive Football
Official Title
Novel Protection Against Potential Brain Injury During Competitive Football Head Impacts
Study Type
Interventional
2. Study Status
Record Verification Date
November 2020
Overall Recruitment Status
Completed
Study Start Date
May 2015 (undefined)
Primary Completion Date
December 2016 (Actual)
Study Completion Date
June 2017 (Actual)
3. Sponsor/Collaborators
Responsible Party, by Official Title
Sponsor
Name of the Sponsor
Children's Hospital Medical Center, Cincinnati
4. Oversight
Data Monitoring Committee
Yes
5. Study Description
Brief Summary
Significant morbidity, mortality, and related costs are caused by traumatic brain injury (TBI). An externally-worn medical device that applies mild jugular compression according to the principle of the Queckenstedt Maneuver (the Device). Preliminary research suggests that the Device has the potential to reduce the likelihood of TBI. The currently developed collar has been approved for studies in humans and the results indicate safety for use during high demand and maximal exertion activities, This study will investigate the effectiveness of this device in high school athletes playing a collision sport such as football. The use of helmets during such a high-risk sport will allow for collision measurement devices to be embedded in the helmet and will not affect play or fit of equipment. Athletes participating in this study will be randomly assigned to one of two groups: 1) Device wearing during the season or 2) Non-device wearing during the season. The helmets of all participants will be outfitted with an accelerometer which will measure the magnitude of every impact to the head sustained by the athlete. Effectiveness of the device will be determined via differences in longitudinal brain imaging and functional testing following competitive football participation. A subset of athletes who report a diagnosed concussion will also receive additional brain neuroanatomical and neurophysiological testing within a week following the diagnosed concussive event. The purpose of the study is to monitor longitudinal changes in brain structure and function between the preseason and postseason, in a population of football playing athletes wearing the Device and compared to a similar population not wearing the device. Secondly, the purpose is to determine the protection of the device relative to amount and magnitude of sustained head impacts.
Detailed Description
The Device has the promise of providing a novel mechanism for reducing or preventing the likelihood of TBI, and may be used in conjunction with other protective equipment. TBI is the leading cause of death in individuals under age 45. The cost of TBI in the U.S. is estimated at anywhere from $50 to $150 billion, annually. The January, 2008 New England Journal of Medicine reports, "Head and neck injuries, including severe brain trauma, have been reported in one quarter of service members who have been evacuated from Iraq and Afghanistan". The vast majority of these injuries have resulted from exposure to improvised explosive device (IED) blast waves. Head injuries, concussions and the resulting trauma have been in public discussion recently as the National Football League (NFL) deals with a lawsuit regarding head injuries by about one-third of living former NFL players.
According to NASA, "The oscillation of a fluid caused by an external force, called sloshing, occurs in moving vehicles containing liquid masses, such as trucks, etc." This oscillation occurs when a vessel is only partially filled. It is hypothesized that the brain faces similar slosh energy absorption during external force impartation. Slosh permits external energies to be absorbed by the contents of a partially filled vessel or container by means of inelastic collisions. Tissues of differing densities can decelerate at different rates creating shear and cavitation. If the collisions between objects or molecules are elastic, the transfer of energies to those objects diminishes, minimizing the energies imparted by slosh.
Woodpeckers, head ramming sheep and all mammals (including humans) have small, little known and misunderstood muscles in their necks called the omohyoid muscles. Highly G-tolerant creatures of the forest have utilized these muscles to gently restrict outflow of the internal jugular veins thereby "taking up" the excess compliance of the cranial space and ultimately protecting themselves from TBI like tiny "airbags" in a motor vehicle. Rat studies by have demonstrated that we can easily and safely facilitate this muscle's actions by a well-engineered gentle compression over those muscles.
The medical Queckenstedt Maneuver devised to detect spinal cord compression, gently places pressure over the external jugular veins to increase cerebral spinal volume and pressure. In this maneuver, the veins are compressed while a lumbar puncture monitors the intracranial pressure. "Normally, the pressure rise to the higher 'plateau' level occurs instantly upon jugular compression to fall again equally fast upon release of the compression". This incredibly simple principle can be employed to protect soldiers and athletes from TBI by safely, and reversibly, increasing intracranial volume and pressure. The neck collar device is made of Outer collar - hytrel (thermoplastic elastomer), Inner collar - TPSiV (thermoplastic elastomer), metal insert (stainless steel), and is fitted to the neck to provide a comfortable and precise jugular compression that potentially mitigates cerebral slosh.
Although the skull, blood, and brain are "almost incompressible," the vasculature tree of the cerebrum is quite reactive and compressible. As volume is added to the cranium, eventually the compensatory reserve volume is surpassed and the intracranial pressure increases slightly. Increasing cerebral blood volume by just 1-3% safely and reversibly reduces compliance of the cerebral vascular tree and diminishes absorption of slosh energies. Jugular compression increases cerebral blood volume almost instantaneously. As mentioned, this degree of increase has significantly mitigated slosh and TBI in laboratory animals and mimics the highly concussion resistant wild animals that are able to reflexively increase cerebral blood volume through natural jugular compression.
A landmark article, published in the Journal of Neurosurgery, used a standard acceleration-deceleration impact laboratory model of mild TBI. The study showed a successful and marked reduction of axonal injury following Internal Jugular Vein (IJV) compression as indicated by immunohistochemical staining of Amyloid Precursor Proteins (APP). It is argued that IJV compression reduces slosh-mediated brain injury by increasing intracranial blood volume and reducing the compliance and potential for brain movement within the confines of the skull. The potential for such technique to mitigate both linear and rotational brain injury in humans by "internal protection" represents the most novel approach to mitigating TBI.
The current project will be designed following a prospective longitudinal study design. All MRI scanning will be performed on a 3 Tesla Philips Achieva MRI scanner located in Imaging Research Center (IRC) in the Cincinnati Children's Hospital Research Foundation (CCHRF). Sedation will not be used for any of the test visits. The entire MRI series, including anatomical imaging, DTI, resting state fMRI, SWI, HARDI, ASL and BOLD will be completed in 65 minutes or less (see Table 1 for detailed specifications). All functional and neurocognitive testing will be performed at the Cincinnati Children's Hospital Human Performance Laboratory.
6. Conditions and Keywords
Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Concussion
Keywords
Concussion
7. Study Design
Primary Purpose
Prevention
Study Phase
Not Applicable
Interventional Study Model
Parallel Assignment
Masking
None (Open Label)
Allocation
Randomized
Enrollment
62 (Actual)
8. Arms, Groups, and Interventions
Arm Title
Subjects Wearing the Q Collar
Arm Type
Experimental
Arm Description
Subjects wearing the Q collar throughout the football season
Arm Title
Subjects Not Wearing the Q Collar
Arm Type
No Intervention
Arm Description
Control group of subjects not wearing the q collar
Intervention Type
Device
Intervention Name(s)
Q Collar
Intervention Description
The device is fitted to the neck to provide a comfortable and precise jugular compression that potentially mitigates cerebral slosh. The device will be worn inside the collar of an athletic compression shirt.
Primary Outcome Measure Information:
Title
Determine Average Number of Hits Between Groups
Description
monitor the differences in average number of hits between the group wearing the collar and the group not wearing the collar
Time Frame
5 months
Title
Number of Participants Undergoing EEG Assessment
Description
determine the number of subjects in the collar group and the non collar group that underwent EEG assessment
Time Frame
5 months
Title
Change in Fractional Anisotropy (FA)
Description
Change in fractional anisotropy (FA) from Pre to Post season
Time Frame
6 months
10. Eligibility
Sex
All
Minimum Age & Unit of Time
14 Years
Maximum Age & Unit of Time
19 Years
Accepts Healthy Volunteers
Accepts Healthy Volunteers
Eligibility Criteria
Inclusion Criteria:
Normal healthy volunteer
Able to provide written consent
Must be 14 years or older and a participant on varsity level high school football team
Exclusion Criteria:
Unable to provide written consent
History of neurological deficits, previous cerebral infarction, or severe head trauma as indicated through pre-season screening:
Medical contraindications to restriction of venous outflow via the internal jugular veins (known increased intracerebral pressure, metabolic acidosis or alkalosis)
Glaucoma (Narrow Angle or Normal Tension)
Hydrocephalus
Recent penetrating brain trauma (within 6 months)
Known carotid hypersensitivity
Known increased intracranial pressure
Central vein thrombosis
Any known airway obstruction
Any known seizure disorder
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Gregory D Myer, PhD
Organizational Affiliation
Children's Hospital Medical Center, Cincinnati
Official's Role
Principal Investigator
Facility Information:
Facility Name
Cincinanti Childrens Hospital Medical Center
City
Cincinnati
State/Province
Ohio
ZIP/Postal Code
45229
Country
United States
12. IPD Sharing Statement
Plan to Share IPD
No
IPD Sharing Plan Description
Results will be published however individual participant data will remain secure.
Citations:
PubMed Identifier
28437225
Citation
Yuan W, Leach J, Maloney T, Altaye M, Smith D, Gubanich PJ, Barber Foss KD, Thomas S, DiCesare CA, Kiefer AW, Myer GD. Neck Collar with Mild Jugular Vein Compression Ameliorates Brain Activation Changes during a Working Memory Task after a Season of High School Football. J Neurotrauma. 2017 Aug 15;34(16):2432-2444. doi: 10.1089/neu.2016.4834. Epub 2017 Jun 8.
Results Reference
derived
PubMed Identifier
27307271
Citation
Myer GD, Yuan W, Barber Foss KD, Thomas S, Smith D, Leach J, Kiefer AW, Dicesare C, Adams J, Gubanich PJ, Kitchen K, Schneider DK, Braswell D, Krueger D, Altaye M. Analysis of head impact exposure and brain microstructure response in a season-long application of a jugular vein compression collar: a prospective, neuroimaging investigation in American football. Br J Sports Med. 2016 Oct;50(20):1276-1285. doi: 10.1136/bjsports-2016-096134. Epub 2016 Jun 15.
Results Reference
derived
Learn more about this trial
Protection Against Potential Brain Injury During Competitive Football
We'll reach out to this number within 24 hrs