search
Back to results

Apabetalone for Pulmonary Arterial Hypertension: a Pilot Study (APPRoAcH-p)

Primary Purpose

Pulmonary Arterial Hypertension

Status
Completed
Phase
Early Phase 1
Locations
Canada
Study Type
Interventional
Intervention
Apabetalone
Sponsored by
Steeve Provencher
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional screening trial for Pulmonary Arterial Hypertension focused on measuring Pulmonary Arterial Hypertension, Apabetalone, Bromodomain-Containing Protein 4 (BRD4), BRD4 inhibitor, Feasibility pilot study, Phase 2 clinical trial, Open-label, Two-centre

Eligibility Criteria

18 Years - 75 Years (Adult, Older Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria:

  1. Adults (18-75 yrs) with PAH of idiopathic or hereditary origin, associated with connective tissue diseases, or anorexigen use.
  2. Mean PA pressure ≥25mmHg, with pulmonary artery wedge pressure ≤15mmHg. In addition, subjects will be required meet the following hemodynamic criteria:

    1. PVR >480 dyn.s.cm-5
    2. Negative vasoreactivity test mandatory in idiopathic, heritable, and drug/toxin induced PAH (at baseline or during previous RHC).
  3. World Health Organization functional class (WHO FC) II or III.
  4. Appropriate stable therapy for PAH for ≥4 months before screening, including endothelin receptor antagonists (ERAs) other than bosentan and/or phosphodiesterase type 5 (PDE-5) inhibitors and/or prostanoids.
  5. Two 6-min walk tests of 150-550m inclusive and within ±15% of each other (the latter being used as baseline value).
  6. Patients must be able to understand the study procedures and agree to participate in the study by providing written informed consent.
  7. Patients of childbearing potential must have a negative serum pregnancy test (β-hCG) within 72 hours prior to receiving the first dose of study treatment.
  8. Patients must be postmenopausal, free from menses for >1 year, surgically sterilized, willing to use adequate contraception to prevent pregnancy, or agree to abstain from activities that could result in pregnancy, from enrollment through 3 months after the last dose of study treatment.

Exclusion Criteria:

  1. PAH related to HIV infection, portal hypertension or congenital heart disease.
  2. Pulmonary hypertension due to left heart disease (WHO PH group 2), lung disease and/or hypoxia (WHO PH group 3), chronic thromboembolic pulmonary hypertension (WHO PH group 4), or unclear multifactorial mechanisms (WHO PH group 5).
  3. Known or suspected pulmonary veno-occlusive disease (PVOD).
  4. Severe restrictive lung disease (Total Lung Capacity <60% predicted)
  5. Severe obstructive lung disease (FEV1/FVC < 60% after a bronchodilator)
  6. DLCO <40%
  7. Systolic blood pressure <90 mmHg
  8. Resting heart rate in the awake patient <50 BPM or >110 BPM
  9. Clinically unstable right heart failure within the last 3 months or are WHO FC IV.
  10. Received any investigational drug within 30 days of screening.
  11. Body mass index (BMI) <18 or >40 kg/m2 at screening.
  12. Patients must not be pregnant, breastfeeding, or expecting to conceive children while receiving study treatment and for 3 months after the last dose of study treatment.
  13. Cardiopulmonary rehabilitation program based on exercise (planned or started ≤12 weeks prior to Day 1).
  14. Presence of ≥3 of the following risk factors for heart failure with preserved ejection fraction at screening:

    1. BMI >30 kg/m2.
    2. Diabetes mellitus of any type.
    3. Essential hypertension.
    4. Coronary artery disease, i.e., any of the following:

    i. History of stable angina ii. More than 50% stenosis in a coronary artery (by coronary angiography) iii. History of myocardial infarction iv. History of or planned coronary artery bypass grafting and/or coronary artery stenting.

  15. A ventilation-perfusion lung scan or pulmonary angiography indicative of thromboembolic disease.
  16. Evidence of organ dysfunction other than right heart failure, including:

    1. Creatinine clearance <45 ml/min (using the Cockroft-Gault formula).
    2. Serum AST or ALT >3 x ULN.
    3. Total bilirubin > 1.5 x ULN.
    4. Childs-Pugh class B-C liver cirrhosis.
    5. Hemoglobin <100 g/L.
    6. Absolute neutrophil count < 1,500/μL .
    7. Platelets < 150,000/μL .
  17. Anticipated survival less than 1 year due to concomitant disease.
  18. History of cancer in the past 5 years (except for low grade and fully resolved non-melanoma skin cancer).
  19. Hypersensitivity to the components of apabetalone or any excipient of their formulations.

Forbidden concomitant therapy:

  • Any investigational drug other than the study treatment.
  • Based on in vitro data and clinical exposure data, apabetalone is considered unlikely to cause clinically significant drug interactions through inhibition or induction of cytochrome P450 enzyme activity. Nonetheless, as the contribution of metabolic clearance to total drug clearance in man is unknown, potent inhibitors (ketoconazole, itraconazole, ritonavir, indinavir, saquinavir, telithromycin, clarithromycin and nelfanavir) or inducers (Phenytoin, rifampicin, carbamazepine and phenobarbitone, nevirapine, modafinil and St John's Wort) of CYP3A4 must not be used during this study for any patient receiving apabetalone to ensure patient safety. Moreover, bosentan has been associated with a 5-10% risk or reversible raised in LFTs. Although there is no evidence of increased risk of apabetalone-related increases in LFTs amongst bosentan users, the use of bosentan will be forbidden during this study.

Sites / Locations

  • Peter Lougheed Center
  • IUCPQ-UL

Arms of the Study

Arm 1

Arm Type

Experimental

Arm Label

Apabetalone

Arm Description

100mg BID for 16 weeks.

Outcomes

Primary Outcome Measures

Change in Pulmonary Vascular Resistance (PVR), dyn·s·cm-5
Right heart catheterization: Measuring PVR is performed in a standardized manner in catheterization laboratories of the participating centres, according to recommendations. Printed copies of waveforms will be kept for monitoring visits and documentation of the accuracy of the pressures and calculations.

Secondary Outcome Measures

Full Information

First Posted
August 28, 2018
Last Updated
April 22, 2022
Sponsor
Steeve Provencher
Collaborators
Resverlogix Corp
search

1. Study Identification

Unique Protocol Identification Number
NCT03655704
Brief Title
Apabetalone for Pulmonary Arterial Hypertension: a Pilot Study
Acronym
APPRoAcH-p
Official Title
Apabetalone for Pulmonary Arterial Hypertension: a Pilot Study
Study Type
Interventional

2. Study Status

Record Verification Date
April 2022
Overall Recruitment Status
Completed
Study Start Date
August 22, 2019 (Actual)
Primary Completion Date
October 15, 2021 (Actual)
Study Completion Date
December 13, 2021 (Actual)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Sponsor-Investigator
Name of the Sponsor
Steeve Provencher
Collaborators
Resverlogix Corp

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Data Monitoring Committee
No

5. Study Description

Brief Summary
The main OBJECTIVE of this proposal is to extend the investigator's preclinical findings on the role of epigenetics and DNA damage and Bromodomain-Containing Protein 4 (BRD4) inhibition as a therapy for a devastating disease, pulmonary arterial hypertension (PAH). There is strong evidence that BRD4 plays a key role in the pathological phenotype in PAH accounting for disease progression and that BRD4 inhibition can reverse PAH in several animal models. Intriguingly, coronary artery disease (CAD) and metabolic syndrome are more prevalent in PAH compared with the global population, suggesting a link between these diseases. Interestingly, BRD4 is also a trigger for calcification and remodeling processes and regulates transcription of lipoprotein and inflammatory factors, all of which are important in PAH and CAD. Apabetalone, an orally available BRD4 inhibitor, is now in a clinical development stage with a good safety profile. At this stage, the investigators propose a pilot study to assess the feasibility of a Phase 2 clinical trial assessing apabetalone in the PAH population. The overall HYPOTHESIS is that BRD4 inhibition with apabetalone is a safe and effective therapy for PAH.
Detailed Description
In line with most pilot and safety studies, this is a two-centre (Quebec and Calgary) open-label trial. A 4-week pre-treatment phase will allow ensuring that patients are on stable doses of medication. Patients will be given doses of apabetalone 100mg BID for 16 weeks. Patients will be regularly followed. At baseline and week 16, a cardiac catheterization and MRI will assess changes in pulmonary hemodynamics and RV function.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Pulmonary Arterial Hypertension
Keywords
Pulmonary Arterial Hypertension, Apabetalone, Bromodomain-Containing Protein 4 (BRD4), BRD4 inhibitor, Feasibility pilot study, Phase 2 clinical trial, Open-label, Two-centre

7. Study Design

Primary Purpose
Screening
Study Phase
Early Phase 1
Interventional Study Model
Single Group Assignment
Model Description
Pilot study to assess the feasibility of a Phase 2 clinical trial assessing apabetalone in 10 PAH patients
Masking
None (Open Label)
Allocation
N/A
Enrollment
7 (Actual)

8. Arms, Groups, and Interventions

Arm Title
Apabetalone
Arm Type
Experimental
Arm Description
100mg BID for 16 weeks.
Intervention Type
Drug
Intervention Name(s)
Apabetalone
Other Intervention Name(s)
BRD4 inhibitor
Intervention Description
A 4-week pre-treatment phase will allow ensuring that patients are on stable doses of medication. Patients will be given doses of apabetalone 100mg BID for 16 weeks. Patients will be regularly followed (Fig.1). At baseline and week 16, a cardiac catheterization and MRI will assess changes in pulmonary hemodynamics and RV function.
Primary Outcome Measure Information:
Title
Change in Pulmonary Vascular Resistance (PVR), dyn·s·cm-5
Description
Right heart catheterization: Measuring PVR is performed in a standardized manner in catheterization laboratories of the participating centres, according to recommendations. Printed copies of waveforms will be kept for monitoring visits and documentation of the accuracy of the pressures and calculations.
Time Frame
Baseline,and 16 weeks later
Other Pre-specified Outcome Measures:
Title
Change in mean Pulmonary Artery Pressure (mPAP), mmHg
Description
The hemodynamic definition of pulmonary arterial hypertension (PAH) is a mean pulmonary artery pressure at rest greater than or equal to 25 mmHg in the presence of a pulmonary capillary wedge pressure less than or equal to 15 mmHg. These measurements can only be taken accurately during a right heart catheterization.
Time Frame
At screening and 16 weeks later
Title
Change in cardiac output (L/min)
Description
Catheterization
Time Frame
At screening and 16 weeks later
Title
Change in right atrial pressure (RAP), mmHg
Description
Catheterization
Time Frame
At screening and 16 weeks later
Title
Change in mixed venous oxygen saturation (SvO2), %
Description
Catheterization
Time Frame
At screening and 16 weeks later
Title
Change in the 6-min walk distance (6MWD), meters
Description
The 6-min walk test (6 MWT) is a submaximal exercise test that entails measurement of distance walked over a span of 6 minutes. The 6-minute walk distance (6 MWD) provides a measure for integrated global response of multiple cardiopulmonary and musculoskeletal systems involved in exercise.
Time Frame
Screening, Week 0 (baseline), Week 4, Week 8 and Week 16
Title
Change in WHO functional class
Description
There are four functional classes that are used to rate how ill PH patients are. Class I: No symptoms of pulmonary arterial hypertension with exercise or at rest. Class II: No symptoms at rest but uncomfortable and short of breath with normal activity such as climbing a flight of stairs, grocery shopping, or making the bed. Class III: May not have symptoms at rest but activities greatly limited by shortness of breath, fatigue, or near fainting. Class IV: Symptoms at rest and severe symptoms with any activity.
Time Frame
Screening, Week 0 (baseline), Week 4, Week 8, Week 16 and end of study
Title
Change in plasma N-terminal pro-brain natriuretic peptide (NT-proBNP) concentration
Description
To assess changes in inflammatory/calcification mediators (mRNA & serum proteins) of PAH patients with apabetalone treatment and demonstrate on-target beneficial effects, plasma (EDTA tubes) and whole blood (mRNA; PAXgene tubes) samples will be collected in subjects at visits 0 (baseline), 8 weeks, and 16 weeks. Blood draws at the 8 and 16 week visits should occur 4-6 hours post apabetalone dose to optimize capture of apabetalone's impact on gene expression (mRNA analysis). The plasma samples (EDTA tubes) will be processed and stored at -80°C until shipment on dry ice for future exploratory biomarker analysis relevant to lipid and inflammatory pathways. Whole blood samples (PAXgene tubes) will be stored at -20°C until shipment on dry ice to evaluate gene expression changes.
Time Frame
Week 0 (baseline), Week 8, and Week 16
Title
Change in Quality of life (QoL) using Emphasis-10 questionnaire
Description
The Emphasis-10 questionnaire is a short questionnaire for assessing HRQoL in pulmonary arterial hypertension. It has excellent measurement properties and is sensitive to differences in relevant clinical parameters.
Time Frame
Week 0 (baseline), and Week 16
Title
Change in biomarker samples
Description
circulating levels and transcription (messenger RNA) changes in whole blood of vascular calcification markers (alkaline phosphatase, osteoprotegerin), inflammation (C-reactive protein, fibrinogen, and inflammatory cytokines), complement, acute phase response, fibrogenesis and metabolism (adiponectin, ApoA-I, LDL-C and HDL-C)
Time Frame
Week 0 (baseline), Week 8, and Week 16

10. Eligibility

Sex
All
Minimum Age & Unit of Time
18 Years
Maximum Age & Unit of Time
75 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: Adults (18-75 yrs) with PAH of idiopathic or hereditary origin, associated with connective tissue diseases, or anorexigen use. Mean PA pressure ≥25mmHg, with pulmonary artery wedge pressure ≤15mmHg. In addition, subjects will be required meet the following hemodynamic criteria: PVR >480 dyn.s.cm-5 Negative vasoreactivity test mandatory in idiopathic, heritable, and drug/toxin induced PAH (at baseline or during previous RHC). World Health Organization functional class (WHO FC) II or III. Appropriate stable therapy for PAH for ≥4 months before screening, including endothelin receptor antagonists (ERAs) other than bosentan and/or phosphodiesterase type 5 (PDE-5) inhibitors and/or prostanoids. Two 6-min walk tests of 150-550m inclusive and within ±15% of each other (the latter being used as baseline value). Patients must be able to understand the study procedures and agree to participate in the study by providing written informed consent. Patients of childbearing potential must have a negative serum pregnancy test (β-hCG) within 72 hours prior to receiving the first dose of study treatment. Patients must be postmenopausal, free from menses for >1 year, surgically sterilized, willing to use adequate contraception to prevent pregnancy, or agree to abstain from activities that could result in pregnancy, from enrollment through 3 months after the last dose of study treatment. Exclusion Criteria: PAH related to HIV infection, portal hypertension or congenital heart disease. Pulmonary hypertension due to left heart disease (WHO PH group 2), lung disease and/or hypoxia (WHO PH group 3), chronic thromboembolic pulmonary hypertension (WHO PH group 4), or unclear multifactorial mechanisms (WHO PH group 5). Known or suspected pulmonary veno-occlusive disease (PVOD). Severe restrictive lung disease (Total Lung Capacity <60% predicted) Severe obstructive lung disease (FEV1/FVC < 60% after a bronchodilator) DLCO <40% Systolic blood pressure <90 mmHg Resting heart rate in the awake patient <50 BPM or >110 BPM Clinically unstable right heart failure within the last 3 months or are WHO FC IV. Received any investigational drug within 30 days of screening. Body mass index (BMI) <18 or >40 kg/m2 at screening. Patients must not be pregnant, breastfeeding, or expecting to conceive children while receiving study treatment and for 3 months after the last dose of study treatment. Cardiopulmonary rehabilitation program based on exercise (planned or started ≤12 weeks prior to Day 1). Presence of ≥3 of the following risk factors for heart failure with preserved ejection fraction at screening: BMI >30 kg/m2. Diabetes mellitus of any type. Essential hypertension. Coronary artery disease, i.e., any of the following: i. History of stable angina ii. More than 50% stenosis in a coronary artery (by coronary angiography) iii. History of myocardial infarction iv. History of or planned coronary artery bypass grafting and/or coronary artery stenting. A ventilation-perfusion lung scan or pulmonary angiography indicative of thromboembolic disease. Evidence of organ dysfunction other than right heart failure, including: Creatinine clearance <45 ml/min (using the Cockroft-Gault formula). Serum AST or ALT >3 x ULN. Total bilirubin > 1.5 x ULN. Childs-Pugh class B-C liver cirrhosis. Hemoglobin <100 g/L. Absolute neutrophil count < 1,500/μL . Platelets < 150,000/μL . Anticipated survival less than 1 year due to concomitant disease. History of cancer in the past 5 years (except for low grade and fully resolved non-melanoma skin cancer). Hypersensitivity to the components of apabetalone or any excipient of their formulations. Forbidden concomitant therapy: Any investigational drug other than the study treatment. Based on in vitro data and clinical exposure data, apabetalone is considered unlikely to cause clinically significant drug interactions through inhibition or induction of cytochrome P450 enzyme activity. Nonetheless, as the contribution of metabolic clearance to total drug clearance in man is unknown, potent inhibitors (ketoconazole, itraconazole, ritonavir, indinavir, saquinavir, telithromycin, clarithromycin and nelfanavir) or inducers (Phenytoin, rifampicin, carbamazepine and phenobarbitone, nevirapine, modafinil and St John's Wort) of CYP3A4 must not be used during this study for any patient receiving apabetalone to ensure patient safety. Moreover, bosentan has been associated with a 5-10% risk or reversible raised in LFTs. Although there is no evidence of increased risk of apabetalone-related increases in LFTs amongst bosentan users, the use of bosentan will be forbidden during this study.
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Steeve Provencher, MD, MSc
Organizational Affiliation
IUCPQ-UL
Official's Role
Principal Investigator
First Name & Middle Initial & Last Name & Degree
Sébastien Bonnet, PhD, FAHA
Organizational Affiliation
IUCPQ-UL
Official's Role
Principal Investigator
First Name & Middle Initial & Last Name & Degree
Pascale Blais-Lecours, PhD
Organizational Affiliation
IUCPQ-UL
Official's Role
Study Director
Facility Information:
Facility Name
Peter Lougheed Center
City
Calgary
State/Province
Alberta
ZIP/Postal Code
T1Y 6J4
Country
Canada
Facility Name
IUCPQ-UL
City
Quebec City
State/Province
Quebec
ZIP/Postal Code
G1V 4G5
Country
Canada

12. IPD Sharing Statement

Plan to Share IPD
No
Citations:
PubMed Identifier
26224795
Citation
Meloche J, Potus F, Vaillancourt M, Bourgeois A, Johnson I, Deschamps L, Chabot S, Ruffenach G, Henry S, Breuils-Bonnet S, Tremblay E, Nadeau V, Lambert C, Paradis R, Provencher S, Bonnet S. Bromodomain-Containing Protein 4: The Epigenetic Origin of Pulmonary Arterial Hypertension. Circ Res. 2015 Aug 28;117(6):525-35. doi: 10.1161/CIRCRESAHA.115.307004. Epub 2015 Jul 29.
Results Reference
background
PubMed Identifier
28473439
Citation
Meloche J, Lampron MC, Nadeau V, Maltais M, Potus F, Lambert C, Tremblay E, Vitry G, Breuils-Bonnet S, Boucherat O, Charbonneau E, Provencher S, Paulin R, Bonnet S. Implication of Inflammation and Epigenetic Readers in Coronary Artery Remodeling in Patients With Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol. 2017 Aug;37(8):1513-1523. doi: 10.1161/ATVBAHA.117.309156. Epub 2017 May 4.
Results Reference
background
PubMed Identifier
24951764
Citation
Paulin R, Michelakis ED. The metabolic theory of pulmonary arterial hypertension. Circ Res. 2014 Jun 20;115(1):148-64. doi: 10.1161/CIRCRESAHA.115.301130.
Results Reference
background
PubMed Identifier
19047320
Citation
Zamanian RT, Hansmann G, Snook S, Lilienfeld D, Rappaport KM, Reaven GM, Rabinovitch M, Doyle RL. Insulin resistance in pulmonary arterial hypertension. Eur Respir J. 2009 Feb;33(2):318-24. doi: 10.1183/09031936.00000508. Epub 2008 Dec 1.
Results Reference
background
PubMed Identifier
27149112
Citation
Ruffenach G, Chabot S, Tanguay VF, Courboulin A, Boucherat O, Potus F, Meloche J, Pflieger A, Breuils-Bonnet S, Nadeau V, Paradis R, Tremblay E, Girerd B, Hautefort A, Montani D, Fadel E, Dorfmuller P, Humbert M, Perros F, Paulin R, Provencher S, Bonnet S. Role for Runt-related Transcription Factor 2 in Proliferative and Calcified Vascular Lesions in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med. 2016 Nov 15;194(10):1273-1285. doi: 10.1164/rccm.201512-2380OC.
Results Reference
background
PubMed Identifier
29142010
Citation
Lehmann N, Erbel R, Mahabadi AA, Rauwolf M, Mohlenkamp S, Moebus S, Kalsch H, Budde T, Schmermund A, Stang A, Fuhrer-Sakel D, Weimar C, Roggenbuck U, Dragano N, Jockel KH; Heinz Nixdorf Recall Study Investigators. Value of Progression of Coronary Artery Calcification for Risk Prediction of Coronary and Cardiovascular Events: Result of the HNR Study (Heinz Nixdorf Recall). Circulation. 2018 Feb 13;137(7):665-679. doi: 10.1161/CIRCULATIONAHA.116.027034. Epub 2017 Nov 15.
Results Reference
background
PubMed Identifier
26385396
Citation
Nicholls SJ, Puri R, Wolski K, Ballantyne CM, Barter PJ, Brewer HB, Kastelein JJ, Hu B, Uno K, Kataoka Y, Herrman JP, Merkely B, Borgman M, Nissen SE. Effect of the BET Protein Inhibitor, RVX-208, on Progression of Coronary Atherosclerosis: Results of the Phase 2b, Randomized, Double-Blind, Multicenter, ASSURE Trial. Am J Cardiovasc Drugs. 2016 Feb;16(1):55-65. doi: 10.1007/s40256-015-0146-z.
Results Reference
background
PubMed Identifier
24355638
Citation
Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, Naeije R, Newman J, Oudiz RJ, Provencher S, Torbicki A, Voelkel NF, Hassoun PM. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013 Dec 24;62(25 Suppl):D22-33. doi: 10.1016/j.jacc.2013.10.027.
Results Reference
background
PubMed Identifier
19265089
Citation
Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest. 2009 Mar;135(3):794-804. doi: 10.1378/chest.08-0492.
Results Reference
background
PubMed Identifier
26935844
Citation
Lajoie AC, Lauziere G, Lega JC, Lacasse Y, Martin S, Simard S, Bonnet S, Provencher S. Combination therapy versus monotherapy for pulmonary arterial hypertension: a meta-analysis. Lancet Respir Med. 2016 Apr;4(4):291-305. doi: 10.1016/S2213-2600(16)00027-8. Epub 2016 Feb 27. Erratum In: Lancet Respir Med. 2016 Jun;4(6):e34.
Results Reference
background
PubMed Identifier
25602947
Citation
Humbert M, Lau EM, Montani D, Jais X, Sitbon O, Simonneau G. Advances in therapeutic interventions for patients with pulmonary arterial hypertension. Circulation. 2014 Dec 9;130(24):2189-208. doi: 10.1161/CIRCULATIONAHA.114.006974. No abstract available.
Results Reference
background
PubMed Identifier
20562126
Citation
Humbert M, Sitbon O, Yaici A, Montani D, O'Callaghan DS, Jais X, Parent F, Savale L, Natali D, Gunther S, Chaouat A, Chabot F, Cordier JF, Habib G, Gressin V, Jing ZC, Souza R, Simonneau G; French Pulmonary Arterial Hypertension Network. Survival in incident and prevalent cohorts of patients with pulmonary arterial hypertension. Eur Respir J. 2010 Sep;36(3):549-55. doi: 10.1183/09031936.00057010. Epub 2010 Jun 18.
Results Reference
background
PubMed Identifier
20585011
Citation
Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, Yaici A, Weitzenblum E, Cordier JF, Chabot F, Dromer C, Pison C, Reynaud-Gaubert M, Haloun A, Laurent M, Hachulla E, Cottin V, Degano B, Jais X, Montani D, Souza R, Simonneau G. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation. 2010 Jul 13;122(2):156-63. doi: 10.1161/CIRCULATIONAHA.109.911818. Epub 2010 Jun 28.
Results Reference
background
PubMed Identifier
21680644
Citation
Benza RL, Gomberg-Maitland M, Miller DP, Frost A, Frantz RP, Foreman AJ, Badesch DB, McGoon MD. The REVEAL Registry risk score calculator in patients newly diagnosed with pulmonary arterial hypertension. Chest. 2012 Feb;141(2):354-362. doi: 10.1378/chest.11-0676. Epub 2011 Jun 16.
Results Reference
background
PubMed Identifier
20585012
Citation
Benza RL, Miller DP, Gomberg-Maitland M, Frantz RP, Foreman AJ, Coffey CS, Frost A, Barst RJ, Badesch DB, Elliott CG, Liou TG, McGoon MD. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation. 2010 Jul 13;122(2):164-72. doi: 10.1161/CIRCULATIONAHA.109.898122. Epub 2010 Jun 28.
Results Reference
background
PubMed Identifier
22362843
Citation
Escribano-Subias P, Blanco I, Lopez-Meseguer M, Lopez-Guarch CJ, Roman A, Morales P, Castillo-Palma MJ, Segovia J, Gomez-Sanchez MA, Barbera JA; REHAP investigators. Survival in pulmonary hypertension in Spain: insights from the Spanish registry. Eur Respir J. 2012 Sep;40(3):596-603. doi: 10.1183/09031936.00101211. Epub 2012 Feb 23.
Results Reference
background
PubMed Identifier
16735674
Citation
Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Bonnet S, Haromy A, Harry G, Moudgil R, McMurtry MS, Weir EK, Archer SL. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation. 2006 Jun 6;113(22):2630-41. doi: 10.1161/CIRCULATIONAHA.105.609008. Epub 2006 May 30.
Results Reference
background
PubMed Identifier
21382889
Citation
Paulin R, Courboulin A, Meloche J, Mainguy V, Dumas de la Roque E, Saksouk N, Cote J, Provencher S, Sussman MA, Bonnet S. Signal transducers and activators of transcription-3/pim1 axis plays a critical role in the pathogenesis of human pulmonary arterial hypertension. Circulation. 2011 Mar 22;123(11):1205-15. doi: 10.1161/CIRCULATIONAHA.110.963314. Epub 2011 Mar 7.
Results Reference
background
PubMed Identifier
24293470
Citation
Guignabert C, Tu L, Le Hiress M, Ricard N, Sattler C, Seferian A, Huertas A, Humbert M, Montani D. Pathogenesis of pulmonary arterial hypertension: lessons from cancer. Eur Respir Rev. 2013 Dec;22(130):543-51. doi: 10.1183/09059180.00007513.
Results Reference
background
PubMed Identifier
27213345
Citation
Leopold JA, Maron BA. Molecular Mechanisms of Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Int J Mol Sci. 2016 May 18;17(5):761. doi: 10.3390/ijms17050761.
Results Reference
background
PubMed Identifier
26448276
Citation
Li MX, Jiang DQ, Wang Y, Chen QZ, Ma YJ, Yu SS, Wang Y. Signal Mechanisms of Vascular Remodeling in the Development of Pulmonary Arterial Hypertension. J Cardiovasc Pharmacol. 2016 Feb;67(2):182-90. doi: 10.1097/FJC.0000000000000328.
Results Reference
background
PubMed Identifier
24270264
Citation
Meloche J, Pflieger A, Vaillancourt M, Paulin R, Potus F, Zervopoulos S, Graydon C, Courboulin A, Breuils-Bonnet S, Tremblay E, Couture C, Michelakis ED, Provencher S, Bonnet S. Role for DNA damage signaling in pulmonary arterial hypertension. Circulation. 2014 Feb 18;129(7):786-97. doi: 10.1161/CIRCULATIONAHA.113.006167. Epub 2013 Nov 22.
Results Reference
background
PubMed Identifier
24433082
Citation
Li M, Vattulainen S, Aho J, Orcholski M, Rojas V, Yuan K, Helenius M, Taimen P, Myllykangas S, De Jesus Perez V, Koskenvuo JW, Alastalo TP. Loss of bone morphogenetic protein receptor 2 is associated with abnormal DNA repair in pulmonary arterial hypertension. Am J Respir Cell Mol Biol. 2014 Jun;50(6):1118-28. doi: 10.1165/rcmb.2013-0349OC.
Results Reference
background
PubMed Identifier
25918951
Citation
Federici C, Drake KM, Rigelsky CM, McNelly LN, Meade SL, Comhair SA, Erzurum SC, Aldred MA. Increased Mutagen Sensitivity and DNA Damage in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med. 2015 Jul 15;192(2):219-28. doi: 10.1164/rccm.201411-2128OC.
Results Reference
background
PubMed Identifier
24951765
Citation
Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014 Jun 20;115(1):165-75. doi: 10.1161/CIRCRESAHA.113.301141.
Results Reference
background
PubMed Identifier
26804008
Citation
Happe CM, Szulcek R, Voelkel NF, Bogaard HJ. Reconciling paradigms of abnormal pulmonary blood flow and quasi-malignant cellular alterations in pulmonary arterial hypertension. Vascul Pharmacol. 2016 Aug;83:17-25. doi: 10.1016/j.vph.2016.01.004. Epub 2016 Jan 22.
Results Reference
background
PubMed Identifier
17596340
Citation
Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, Hashimoto K, Bonnet SN, Michelakis ED. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11418-23. doi: 10.1073/pnas.0610467104. Epub 2007 Jun 27.
Results Reference
background
PubMed Identifier
21321078
Citation
Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Cote J, Simard MJ, Bonnet S. Role for miR-204 in human pulmonary arterial hypertension. J Exp Med. 2011 Mar 14;208(3):535-48. doi: 10.1084/jem.20101812. Epub 2011 Feb 14.
Results Reference
background
PubMed Identifier
27649290
Citation
Bonnet S, Provencher S, Guignabert C, Perros F, Boucherat O, Schermuly RT, Hassoun PM, Rabinovitch M, Nicolls MR, Humbert M. Translating Research into Improved Patient Care in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med. 2017 Mar 1;195(5):583-595. doi: 10.1164/rccm.201607-1515PP. No abstract available.
Results Reference
background
PubMed Identifier
24646477
Citation
Lamoureux F, Baud'huin M, Rodriguez Calleja L, Jacques C, Berreur M, Redini F, Lecanda F, Bradner JE, Heymann D, Ory B. Selective inhibition of BET bromodomain epigenetic signalling interferes with the bone-associated tumour vicious cycle. Nat Commun. 2014 Mar 19;5:3511. doi: 10.1038/ncomms4511.
Results Reference
background
PubMed Identifier
24009722
Citation
Wyce A, Ganji G, Smitheman KN, Chung CW, Korenchuk S, Bai Y, Barbash O, Le B, Craggs PD, McCabe MT, Kennedy-Wilson KM, Sanchez LV, Gosmini RL, Parr N, McHugh CF, Dhanak D, Prinjha RK, Auger KR, Tummino PJ. BET inhibition silences expression of MYCN and BCL2 and induces cytotoxicity in neuroblastoma tumor models. PLoS One. 2013 Aug 23;8(8):e72967. doi: 10.1371/journal.pone.0072967. eCollection 2013.
Results Reference
background
PubMed Identifier
25535366
Citation
Baratta MG, Schinzel AC, Zwang Y, Bandopadhayay P, Bowman-Colin C, Kutt J, Curtis J, Piao H, Wong LC, Kung AL, Beroukhim R, Bradner JE, Drapkin R, Hahn WC, Liu JF, Livingston DM. An in-tumor genetic screen reveals that the BET bromodomain protein, BRD4, is a potential therapeutic target in ovarian carcinoma. Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):232-7. doi: 10.1073/pnas.1422165112. Epub 2014 Dec 22.
Results Reference
background
PubMed Identifier
23792448
Citation
Tolani B, Gopalakrishnan R, Punj V, Matta H, Chaudhary PM. Targeting Myc in KSHV-associated primary effusion lymphoma with BET bromodomain inhibitors. Oncogene. 2014 May 29;33(22):2928-37. doi: 10.1038/onc.2013.242. Epub 2013 Jun 24.
Results Reference
background
PubMed Identifier
24906137
Citation
Gallagher SJ, Mijatov B, Gunatilake D, Tiffen JC, Gowrishankar K, Jin L, Pupo GM, Cullinane C, Prinjha RK, Smithers N, McArthur GA, Rizos H, Hersey P. The epigenetic regulator I-BET151 induces BIM-dependent apoptosis and cell cycle arrest of human melanoma cells. J Invest Dermatol. 2014 Nov;134(11):2795-2805. doi: 10.1038/jid.2014.243. Epub 2014 Jun 6.
Results Reference
background
PubMed Identifier
22722403
Citation
Belkina AC, Denis GV. BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer. 2012 Jun 22;12(7):465-77. doi: 10.1038/nrc3256.
Results Reference
background
PubMed Identifier
23950209
Citation
Segura MF, Fontanals-Cirera B, Gaziel-Sovran A, Guijarro MV, Hanniford D, Zhang G, Gonzalez-Gomez P, Morante M, Jubierre L, Zhang W, Darvishian F, Ohlmeyer M, Osman I, Zhou MM, Hernando E. BRD4 sustains melanoma proliferation and represents a new target for epigenetic therapy. Cancer Res. 2013 Oct 15;73(20):6264-76. doi: 10.1158/0008-5472.CAN-13-0122-T. Epub 2013 Aug 15.
Results Reference
background
PubMed Identifier
21555454
Citation
Rahman S, Sowa ME, Ottinger M, Smith JA, Shi Y, Harper JW, Howley PM. The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Mol Cell Biol. 2011 Jul;31(13):2641-52. doi: 10.1128/MCB.01341-10. Epub 2011 May 9.
Results Reference
background
PubMed Identifier
25383670
Citation
Kanno T, Kanno Y, LeRoy G, Campos E, Sun HW, Brooks SR, Vahedi G, Heightman TD, Garcia BA, Reinberg D, Siebenlist U, O'Shea JJ, Ozato K. BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nat Struct Mol Biol. 2014 Dec;21(12):1047-57. doi: 10.1038/nsmb.2912. Epub 2014 Nov 10.
Results Reference
background
PubMed Identifier
22509028
Citation
Devaiah BN, Lewis BA, Cherman N, Hewitt MC, Albrecht BK, Robey PG, Ozato K, Sims RJ 3rd, Singer DS. BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain. Proc Natl Acad Sci U S A. 2012 May 1;109(18):6927-32. doi: 10.1073/pnas.1120422109. Epub 2012 Apr 16.
Results Reference
background
PubMed Identifier
27063977
Citation
Berthon C, Raffoux E, Thomas X, Vey N, Gomez-Roca C, Yee K, Taussig DC, Rezai K, Roumier C, Herait P, Kahatt C, Quesnel B, Michallet M, Recher C, Lokiec F, Preudhomme C, Dombret H. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study. Lancet Haematol. 2016 Apr;3(4):e186-95. doi: 10.1016/S2352-3026(15)00247-1. Epub 2016 Mar 18.
Results Reference
background
PubMed Identifier
27063978
Citation
Amorim S, Stathis A, Gleeson M, Iyengar S, Magarotto V, Leleu X, Morschhauser F, Karlin L, Broussais F, Rezai K, Herait P, Kahatt C, Lokiec F, Salles G, Facon T, Palumbo A, Cunningham D, Zucca E, Thieblemont C. Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma: a dose-escalation, open-label, pharmacokinetic, phase 1 study. Lancet Haematol. 2016 Apr;3(4):e196-204. doi: 10.1016/S2352-3026(16)00021-1. Epub 2016 Mar 18.
Results Reference
background
PubMed Identifier
23420887
Citation
Belkina AC, Nikolajczyk BS, Denis GV. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses. J Immunol. 2013 Apr 1;190(7):3670-8. doi: 10.4049/jimmunol.1202838. Epub 2013 Feb 18.
Results Reference
background
PubMed Identifier
25263595
Citation
Brown JD, Lin CY, Duan Q, Griffin G, Federation A, Paranal RM, Bair S, Newton G, Lichtman A, Kung A, Yang T, Wang H, Luscinskas FW, Croce K, Bradner JE, Plutzky J. NF-kappaB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol Cell. 2014 Oct 23;56(2):219-231. doi: 10.1016/j.molcel.2014.08.024. Epub 2014 Sep 25.
Results Reference
background
PubMed Identifier
24759736
Citation
Khan YM, Kirkham P, Barnes PJ, Adcock IM. Brd4 is essential for IL-1beta-induced inflammation in human airway epithelial cells. PLoS One. 2014 Apr 23;9(4):e95051. doi: 10.1371/journal.pone.0095051. eCollection 2014.
Results Reference
background
PubMed Identifier
20705925
Citation
Mercer JR, Cheng KK, Figg N, Gorenne I, Mahmoudi M, Griffin J, Vidal-Puig A, Logan A, Murphy MP, Bennett M. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ Res. 2010 Oct 15;107(8):1021-31. doi: 10.1161/CIRCRESAHA.110.218966. Epub 2010 Aug 12. Erratum In: Circ Res. 2011 Jan 7;108(1):e2.
Results Reference
background
PubMed Identifier
26673558
Citation
Writing Group Members; Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jimenez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB; American Heart Association Statistics Committee; Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation. 2016 Jan 26;133(4):e38-360. doi: 10.1161/CIR.0000000000000350. Epub 2015 Dec 16. No abstract available. Erratum In: Circulation. 2016 Apr 12;133(15):e599.
Results Reference
background
PubMed Identifier
23759512
Citation
Tang X, Peng R, Phillips JE, Deguzman J, Ren Y, Apparsundaram S, Luo Q, Bauer CM, Fuentes ME, DeMartino JA, Tyagi G, Garrido R, Hogaboam CM, Denton CP, Holmes AM, Kitson C, Stevenson CS, Budd DC. Assessment of Brd4 inhibition in idiopathic pulmonary fibrosis lung fibroblasts and in vivo models of lung fibrosis. Am J Pathol. 2013 Aug;183(2):470-9. doi: 10.1016/j.ajpath.2013.04.020. Epub 2013 Jun 10.
Results Reference
background
PubMed Identifier
23686307
Citation
Zou Z, Huang B, Wu X, Zhang H, Qi J, Bradner J, Nair S, Chen LF. Brd4 maintains constitutively active NF-kappaB in cancer cells by binding to acetylated RelA. Oncogene. 2014 May 1;33(18):2395-404. doi: 10.1038/onc.2013.179. Epub 2013 May 20.
Results Reference
background
PubMed Identifier
24954901
Citation
Stanlie A, Yousif AS, Akiyama H, Honjo T, Begum NA. Chromatin reader Brd4 functions in Ig class switching as a repair complex adaptor of nonhomologous end-joining. Mol Cell. 2014 Jul 3;55(1):97-110. doi: 10.1016/j.molcel.2014.05.018. Epub 2014 Jun 19.
Results Reference
background
PubMed Identifier
25307878
Citation
Lee DH, Qi J, Bradner JE, Said JW, Doan NB, Forscher C, Yang H, Koeffler HP. Synergistic effect of JQ1 and rapamycin for treatment of human osteosarcoma. Int J Cancer. 2015 May 1;136(9):2055-64. doi: 10.1002/ijc.29269. Epub 2014 Oct 30.
Results Reference
background
Citation
Gilham D, Tsujikawa L, Wasiak S, et al. Apabetalone Downregulates Factors That Promote Vascular Calcification and Contribute to Cardiovascular Events. Circulation. 2017;136:A-15906.
Results Reference
background
PubMed Identifier
23092819
Citation
Hill BG, Benavides GA, Lancaster JR Jr, Ballinger S, Dell'Italia L, Jianhua Z, Darley-Usmar VM. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol Chem. 2012 Dec;393(12):1485-1512. doi: 10.1515/hsz-2012-0198.
Results Reference
background
PubMed Identifier
25429518
Citation
Hautefort A, Girerd B, Montani D, Cohen-Kaminsky S, Price L, Lambrecht BN, Humbert M, Perros F. T-helper 17 cell polarization in pulmonary arterial hypertension. Chest. 2015 Jun;147(6):1610-1620. doi: 10.1378/chest.14-1678.
Results Reference
background
PubMed Identifier
24101376
Citation
Mele DA, Salmeron A, Ghosh S, Huang HR, Bryant BM, Lora JM. BET bromodomain inhibition suppresses TH17-mediated pathology. J Exp Med. 2013 Oct 21;210(11):2181-90. doi: 10.1084/jem.20130376. Epub 2013 Oct 7.
Results Reference
background
PubMed Identifier
26318161
Citation
Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J. 2015 Oct;46(4):903-75. doi: 10.1183/13993003.01032-2015. Epub 2015 Aug 29. Erratum In: Eur Respir J. 2015 Dec;46(6):1855-6.
Results Reference
background
PubMed Identifier
19555863
Citation
McLaughlin VV, Badesch DB, Delcroix M, Fleming TR, Gaine SP, Galie N, Gibbs JSR, Kim NH, Oudiz RJ, Peacock A, Provencher S, Sitbon O, Tapson VF, Seeger W. End points and clinical trial design in pulmonary arterial hypertension. J Am Coll Cardiol. 2009 Jun 30;54(1 Suppl):S97-S107. doi: 10.1016/j.jacc.2009.04.007.
Results Reference
background
PubMed Identifier
22110770
Citation
Mainguy V, Provencher S, Maltais F, Malenfant S, Saey D. Assessment of daily life physical activities in pulmonary arterial hypertension. PLoS One. 2011;6(11):e27993. doi: 10.1371/journal.pone.0027993. Epub 2011 Nov 16.
Results Reference
background
PubMed Identifier
18597400
Citation
Johnson SR, Swiston JR, Granton JT. Prognostic factors for survival in scleroderma associated pulmonary arterial hypertension. J Rheumatol. 2008 Aug;35(8):1584-90. Epub 2008 Jul 1. Erratum In: J Rheumatol. 2009 Mar;36(3):661. Swinton, John R [corrected to Swiston, John R].
Results Reference
background
PubMed Identifier
20810261
Citation
Swiston JR, Johnson SR, Granton JT. Factors that prognosticate mortality in idiopathic pulmonary arterial hypertension: a systematic review of the literature. Respir Med. 2010 Nov;104(11):1588-607. doi: 10.1016/j.rmed.2010.08.003.
Results Reference
background
PubMed Identifier
17099052
Citation
Souza R, Jardim C, Carvalho C, Rubenfeld G. The role of NT-proBNP as a prognostic marker in pulmonary hypertension. Chest. 2006 Nov;130(5):1627; author reply 1627-8. doi: 10.1378/chest.130.5.1627. No abstract available.
Results Reference
background
PubMed Identifier
16971413
Citation
Gan CT, McCann GP, Marcus JT, van Wolferen SA, Twisk JW, Boonstra A, Postmus PE, Vonk-Noordegraaf A. NT-proBNP reflects right ventricular structure and function in pulmonary hypertension. Eur Respir J. 2006 Dec;28(6):1190-4. doi: 10.1183/09031936.00016006. Epub 2006 Sep 13.
Results Reference
background
PubMed Identifier
17646224
Citation
Chin KM, Channick RN, Kim NH, Rubin LJ. Central venous blood oxygen saturation monitoring in patients with chronic pulmonary arterial hypertension treated with continuous IV epoprostenol: correlation with measurements of hemodynamics and plasma brain natriuretic peptide levels. Chest. 2007 Sep;132(3):786-92. doi: 10.1378/chest.07-0694. Epub 2007 Jul 23.
Results Reference
background
PubMed Identifier
20211335
Citation
Giannakoulas G, Dimopoulos K, Bolger AP, Tay EL, Inuzuka R, Bedard E, Davos C, Swan L, Gatzoulis MA. Usefulness of natriuretic Peptide levels to predict mortality in adults with congenital heart disease. Am J Cardiol. 2010 Mar 15;105(6):869-73. doi: 10.1016/j.amjcard.2009.11.041.
Results Reference
background
PubMed Identifier
11255693
Citation
Nagaya N, Nishikimi T, Uematsu M, Satoh T, Kyotani S, Sakamaki F, Kakishita M, Fukushima K, Okano Y, Nakanishi N, Miyatake K, Kangawa K. [Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension]. J Cardiol. 2001 Feb;37(2):110-1. Japanese.
Results Reference
background
PubMed Identifier
24626791
Citation
Rival G, Lacasse Y, Martin S, Bonnet S, Provencher S. Effect of pulmonary arterial hypertension-specific therapies on health-related quality of life: a systematic review. Chest. 2014 Sep;146(3):686-708. doi: 10.1378/chest.13-2634.
Results Reference
background
PubMed Identifier
24355641
Citation
Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, Langleben D, Manes A, Satoh T, Torres F, Wilkins MR, Badesch DB. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013 Dec 24;62(25 Suppl):D42-50. doi: 10.1016/j.jacc.2013.10.032.
Results Reference
background
PubMed Identifier
24355639
Citation
Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Krishna Kumar R, Landzberg M, Machado RF, Olschewski H, Robbins IM, Souza R. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013 Dec 24;62(25 Suppl):D34-41. doi: 10.1016/j.jacc.2013.10.029. Erratum In: J Am Coll Cardiol. 2014 Feb 25;63(7):746. J Am Coll Cardiol. 2014 Feb 25;63(7):746.
Results Reference
background
PubMed Identifier
1593046
Citation
Boxt LM, Katz J, Kolb T, Czegledy FP, Barst RJ. Direct quantitation of right and left ventricular volumes with nuclear magnetic resonance imaging in patients with primary pulmonary hypertension. J Am Coll Cardiol. 1992 Jun;19(7):1508-15. doi: 10.1016/0735-1097(92)90611-p.
Results Reference
background
PubMed Identifier
8473659
Citation
Katz J, Whang J, Boxt LM, Barst RJ. Estimation of right ventricular mass in normal subjects and in patients with primary pulmonary hypertension by nuclear magnetic resonance imaging. J Am Coll Cardiol. 1993 May;21(6):1475-81. doi: 10.1016/0735-1097(93)90327-w.
Results Reference
background
PubMed Identifier
11550343
Citation
Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP Jr. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson. 1999;1(1):7-21. doi: 10.3109/10976649909080829.
Results Reference
background
PubMed Identifier
14760316
Citation
Grothues F, Moon JC, Bellenger NG, Smith GS, Klein HU, Pennell DJ. Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J. 2004 Feb;147(2):218-23. doi: 10.1016/j.ahj.2003.10.005.
Results Reference
background
PubMed Identifier
2141222
Citation
Semelka RC, Tomei E, Wagner S, Mayo J, Caputo G, O'Sullivan M, Parmley WW, Chatterjee K, Wolfe C, Higgins CB. Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle. Am Heart J. 1990 Jun;119(6):1367-73. doi: 10.1016/s0002-8703(05)80187-5.
Results Reference
background
PubMed Identifier
2305059
Citation
Semelka RC, Tomei E, Wagner S, Mayo J, Kondo C, Suzuki J, Caputo GR, Higgins CB. Normal left ventricular dimensions and function: interstudy reproducibility of measurements with cine MR imaging. Radiology. 1990 Mar;174(3 Pt 1):763-8. doi: 10.1148/radiology.174.3.2305059.
Results Reference
background
PubMed Identifier
19155250
Citation
Galie N, Manes A, Negro L, Palazzini M, Bacchi-Reggiani ML, Branzi A. A meta-analysis of randomized controlled trials in pulmonary arterial hypertension. Eur Heart J. 2009 Feb;30(4):394-403. doi: 10.1093/eurheartj/ehp022. Epub 2009 Jan 20.
Results Reference
background
PubMed Identifier
12091180
Citation
ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002 Jul 1;166(1):111-7. doi: 10.1164/ajrccm.166.1.at1102. No abstract available. Erratum In: Am J Respir Crit Care Med. 2016 May 15;193(10):1185.
Results Reference
background
PubMed Identifier
16411035
Citation
McKenna SP, Doughty N, Meads DM, Doward LC, Pepke-Zaba J. The Cambridge Pulmonary Hypertension Outcome Review (CAMPHOR): a measure of health-related quality of life and quality of life for patients with pulmonary hypertension. Qual Life Res. 2006 Feb;15(1):103-15. doi: 10.1007/s11136-005-3513-4.
Results Reference
background
PubMed Identifier
16150772
Citation
Taylor GJ, Wainwright P. Open label extension studies: research or marketing? BMJ. 2005 Sep 10;331(7516):572-4. doi: 10.1136/bmj.331.7516.572.
Results Reference
background
PubMed Identifier
8862827
Citation
Micetich KC. The ethical problems of the open label extension study. Camb Q Healthc Ethics. 1996 Summer;5(3):410-4. doi: 10.1017/s0963180100007210. No abstract available.
Results Reference
background
PubMed Identifier
24232702
Citation
Yorke J, Corris P, Gaine S, Gibbs JS, Kiely DG, Harries C, Pollock V, Armstrong I. emPHasis-10: development of a health-related quality of life measure in pulmonary hypertension. Eur Respir J. 2014 Apr;43(4):1106-13. doi: 10.1183/09031936.00127113. Epub 2013 Nov 14.
Results Reference
background
PubMed Identifier
29531745
Citation
Yorke J, Deaton C, Campbell M, McGowen L, Sephton P, Kiely DG, Armstrong I. Symptom severity and its effect on health-related quality of life over time in patients with pulmonary hypertension: a multisite longitudinal cohort study. BMJ Open Respir Res. 2018 Mar 1;5(1):e000263. doi: 10.1136/bmjresp-2017-000263. eCollection 2018.
Results Reference
background
PubMed Identifier
30567456
Citation
Favoccia C, Kempny A, Yorke J, Armstrong I, Price LC, McCabe C, Harries C, Wort SJ, Dimopoulos K. EmPHasis-10 score for the assessment of quality of life in various types of pulmonary hypertension and its relation to outcome. Eur J Prev Cardiol. 2019 Aug;26(12):1338-1340. doi: 10.1177/2047487318819161. Epub 2018 Dec 19. No abstract available.
Results Reference
background
PubMed Identifier
35289736
Citation
Provencher S, Potus F, Blais-Lecours P, Bernard S, Martineau S, Breuils-Bonnet S, Weatherald J, Sweeney M, Kulikowski E, Boucherat O, Bonnet S. BET Protein Inhibition for Pulmonary Arterial Hypertension: A Pilot Clinical Trial. Am J Respir Crit Care Med. 2022 Jun 1;205(11):1357-1360. doi: 10.1164/rccm.202109-2182LE. No abstract available.
Results Reference
derived

Learn more about this trial

Apabetalone for Pulmonary Arterial Hypertension: a Pilot Study

We'll reach out to this number within 24 hrs