search
Back to results

Efficacy of Adjunctive Antimicrobial Photodynamic Therapy for Residual Pockets in Previously Surgically Treated Teeth

Primary Purpose

Periodontitis

Status
Unknown status
Phase
Not Applicable
Locations
Canada
Study Type
Interventional
Intervention
Antimicrobial photodynamic therapy
Placebo of photodynamic therapy
Sponsored by
University of Manitoba
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional treatment trial for Periodontitis

Eligibility Criteria

18 Years - undefined (Adult, Older Adult)All SexesAccepts Healthy Volunteers

Inclusion Criteria:

  • Systemically healthy
  • Enrolled in a supportive periodontal therapy program and a patient at the University of Manitoba Graduate Periodontics Clinic
  • At least one surgically treated periodontal site with a residual pocket probing depth of ≥ 5mm and bleeding upon probing
  • Completed informed consent

Exclusion Criteria:

  • Patients with uncontrolled diabetes mellitus
  • Patients with cancer
  • Patients with HIV
  • Patients with bone metabolic diseases
  • Patients with disorders that compromise wound healing
  • Patients undergoing radiation or immunosuppressive therapy
  • Pregnancy or lactation
  • Have had antibiotics therapy within the last three months
  • Confirmed or suspected intolerance to methylene blue
  • Any physical limitations or restrictions that might preclude normal oral hygiene procedures

Sites / Locations

  • University of Manitoba

Arms of the Study

Arm 1

Arm 2

Arm Type

Experimental

Placebo Comparator

Arm Label

Treatment Group

Placebo Group

Arm Description

Antimicrobial photodynamic therapy with methylene blue applied to test site after mechanical debridement.

Photodynamic therapy laser is not activated with saline water in the test site after mechanical debridement.

Outcomes

Primary Outcome Measures

Change in bleeding on probing (BOP)
Change in the presence of bleeding upon probing on individual tooth surfaces at 3 months, 6 months, and 12 months compared to the initial measure.

Secondary Outcome Measures

Change in pocket probing depth (PPD)
Change of the distance from the gingival margin to the tip of the periodontal probe at the bottom of the gingival pocket at 3 months, 6 months, and 12 months compared to the initial measure.
Change of clinical attachment level (CAL)
Change of the distance from the cemento-enamel junction to the tip of the periodontal probe at the bottom of the gingival pocket at 3 months, 6 months, and 12 months compared to the initial measure.
Change of plaque index (PI)
Change in the presence of plaque on individual tooth surfaces at 3 months, 6 months, and 12 months compared to the initial measure.

Full Information

First Posted
November 23, 2018
Last Updated
September 29, 2019
Sponsor
University of Manitoba
search

1. Study Identification

Unique Protocol Identification Number
NCT03757260
Brief Title
Efficacy of Adjunctive Antimicrobial Photodynamic Therapy for Residual Pockets in Previously Surgically Treated Teeth
Official Title
The Efficacy of Adjunctive Antimicrobial Photodynamic Therapy for Residual Pockets in Previously Surgically Treated Teeth: a Randomized Clinical Trial.
Study Type
Interventional

2. Study Status

Record Verification Date
September 2019
Overall Recruitment Status
Unknown status
Study Start Date
January 8, 2019 (Actual)
Primary Completion Date
August 2020 (Anticipated)
Study Completion Date
August 2020 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Principal Investigator
Name of the Sponsor
University of Manitoba

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Data Monitoring Committee
No

5. Study Description

Brief Summary
Traditionally, periodontal gum surgery has been used as a method to gain access to inflamed periodontal pockets around teeth. The outcome of these surgeries, however, is not always successful as there can be recurrence of inflammation and disease. The objective of this study is to assess the effectiveness of antimicrobial photodynamic therapy as an adjunct to mechanical debridement of residual periodontal pockets in patients having undergone periodontal surgery. Pocket probing depth (PPD), clinical attachment level (CAL), bleeding on probing (BOP), and plaque index (PI) will be evaluated at all sites as measures of inflammation and disease resolution.
Detailed Description
A single-center, randomized, double-blind, longitudinal study will take place over 12 months. Twenty-eight systemically healthy patients (i.e. absence of uncontrolled diabetes mellitus, cancer, HIV, bone metabolic diseases, or disorders that compromise wound healing) enrolled in a supportive periodontal therapy program and patients at the University of Manitoba Graduate Periodontics Clinic, with at least one surgically treated site with a residual pocket probing depth of ≥ 5mm and bleeding upon probing and having signed the informed consent will be accepted into the study. PPD, CAL, BOP, and PI will be evaluated at these sites. A selected participant will have a full mouth periodontal charting completed prior to baseline measurements as part of their maintenance program. Once selected the patient will see two clinicians: the examiner (hygienist) and operator (resident). The examiner records the data (PPD, CAL, BOP, PI) of the entire dentition including the selected tooth or teeth, and provides preliminary hygiene treatment; the operator delivers the test treatments. The treatment assignments are concealed to the patient and the examiner. The operator is unaware of previously recorded data except for pocket depth measurements and is not involved in the post-treatment evaluations (3,6,12 months). At 12 months, a full mouth re-evaluation will be completed by the examiner as part of the patient's maintenance program. In the first visit, the examiner records the pocket probing depth, clinical attachment level, presence of bleeding on probing, and plaque index at six sites on involved teeth. Thorough scaling and root planing is performed under local anesthesia using periodontal curettes (Gracey, Hu-Friedy, USA) and an ultrasonic device (Piezo, Ultradent, USA). Once complete, the operator takes over. The patients are then randomly assigned to test or control groups by a computer-generated table. The protocol may be: A, the laser is activated during treatments with methylene blue; B, the laser is never activated during treatments with saline solution. Antimicrobial photodynamic therapy is carried out in the residual pockets using the Periowave system (Ondine Biomedical Inc, Vancouver, Canada). The photosensitizing agent is methylene blue. Approximately 0.2 mL of the solution is applied over 60 seconds to each pocket with a blunt-ended side-port irrigator. The site is illuminated for 60 seconds to activate the agent using a disposable, light-diffusing tip that is introduced into the pocket via a diode laser (wavelength = 675 nm, 160 mW of output power). The control treatment consists of the same procedure, except that the photosensitizer is replaced with saline solution and the light-diffusing tip is kept in the pocket for 60 seconds without activating the laser. The patient is sent home with a home care package and oral hygiene instructions. The second session is scheduled after 1 week. The operator applies the photosensitizer and activates the laser according to protocol A or B. The examiner maintains the patients on a 3-month hygiene schedule and reassesses the participants 3, 6, and 12 months after the treatment as well as reinforces oral hygiene instruction. Medical history, concomitant medication, and all adverse events are recorded. Clinical parameters are measured the same way as at baseline. All measurements will be calibrated.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Periodontitis

7. Study Design

Primary Purpose
Treatment
Study Phase
Not Applicable
Interventional Study Model
Parallel Assignment
Masking
ParticipantCare ProviderInvestigator
Masking Description
Once selected the patient will see two clinicians: the examiner (hygienist) and operator (resident). The examiner records the data (PPD, CAL, BOP, PI) of the teeth, and provides preliminary hygiene treatment; the operator delivers the test treatments. The treatment assignments are concealed to the patient and the examiner. The operator is unaware of previously recorded data except for pocket depth measurements and is not involved in the post-treatment evaluations (3,6,12 months)
Allocation
Randomized
Enrollment
24 (Actual)

8. Arms, Groups, and Interventions

Arm Title
Treatment Group
Arm Type
Experimental
Arm Description
Antimicrobial photodynamic therapy with methylene blue applied to test site after mechanical debridement.
Arm Title
Placebo Group
Arm Type
Placebo Comparator
Arm Description
Photodynamic therapy laser is not activated with saline water in the test site after mechanical debridement.
Intervention Type
Device
Intervention Name(s)
Antimicrobial photodynamic therapy
Other Intervention Name(s)
"Periowave" trade name
Intervention Description
Antimicrobial photodynamic therapy is carried out in the residual pockets using the Periowave system. The photosensitizing agent is methylene blue. Approximately 0.2 mL of the solution is applied over 60 seconds to each pocket with a blunt-ended side-port irrigator. The site is illuminated for 60 seconds to activate the agent using a disposable, light-diffusing tip that is introduced into the pocket via a diode laser (wavelength = 675 nm, 160 mW of output power).
Intervention Type
Device
Intervention Name(s)
Placebo of photodynamic therapy
Other Intervention Name(s)
Placebo of "Periowave" trade name
Intervention Description
The placebo of the antimicrobial photodynamic therapy is carried out in the residual pockets using the Periowave system. The photosensitizing agent is saline solution. Approximately 0.2 mL of the solution is applied over 60 seconds to each pocket with a blunt-ended side-port irrigator. The site is not illuminated (falsely activated) for 60 seconds using a disposable, light-diffusing tip that is introduced into the pocket via a diode laser (wavelength = 675 nm, 160 mW of output power).
Primary Outcome Measure Information:
Title
Change in bleeding on probing (BOP)
Description
Change in the presence of bleeding upon probing on individual tooth surfaces at 3 months, 6 months, and 12 months compared to the initial measure.
Time Frame
Initial, 3 months, 6 months, 12 months.
Secondary Outcome Measure Information:
Title
Change in pocket probing depth (PPD)
Description
Change of the distance from the gingival margin to the tip of the periodontal probe at the bottom of the gingival pocket at 3 months, 6 months, and 12 months compared to the initial measure.
Time Frame
Initial, 3 months, 6 months, 12 months.
Title
Change of clinical attachment level (CAL)
Description
Change of the distance from the cemento-enamel junction to the tip of the periodontal probe at the bottom of the gingival pocket at 3 months, 6 months, and 12 months compared to the initial measure.
Time Frame
Initial, 3 months, 6 months, 12 months.
Title
Change of plaque index (PI)
Description
Change in the presence of plaque on individual tooth surfaces at 3 months, 6 months, and 12 months compared to the initial measure.
Time Frame
Initial, 3 months, 6 months, 12 months.

10. Eligibility

Sex
All
Minimum Age & Unit of Time
18 Years
Accepts Healthy Volunteers
Accepts Healthy Volunteers
Eligibility Criteria
Inclusion Criteria: Systemically healthy Enrolled in a supportive periodontal therapy program and a patient at the University of Manitoba Graduate Periodontics Clinic At least one surgically treated periodontal site with a residual pocket probing depth of ≥ 5mm and bleeding upon probing Completed informed consent Exclusion Criteria: Patients with uncontrolled diabetes mellitus Patients with cancer Patients with HIV Patients with bone metabolic diseases Patients with disorders that compromise wound healing Patients undergoing radiation or immunosuppressive therapy Pregnancy or lactation Have had antibiotics therapy within the last three months Confirmed or suspected intolerance to methylene blue Any physical limitations or restrictions that might preclude normal oral hygiene procedures
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Anastasia Cholakis, M Dent
Organizational Affiliation
University of Manitoba
Official's Role
Study Director
Facility Information:
Facility Name
University of Manitoba
City
Winnipeg
State/Province
Manitoba
ZIP/Postal Code
R3E 0W3
Country
Canada

12. IPD Sharing Statement

Plan to Share IPD
Yes
IPD Sharing Plan Description
All IPD will be made available in an anonymized (de-identified) form.
IPD Sharing Time Frame
After conclusion of the study up until 5 years after completion of the study.
Citations:
PubMed Identifier
12787207
Citation
Van der Weijden GA, Timmerman MF. A systematic review on the clinical efficacy of subgingival debridement in the treatment of chronic periodontitis. J Clin Periodontol. 2002;29 Suppl 3:55-71; discussion 90-1. doi: 10.1034/j.1600-051x.29.s3.3.x.
Results Reference
background
PubMed Identifier
1552465
Citation
Greenstein G. Periodontal response to mechanical non-surgical therapy: a review. J Periodontol. 1992 Feb;63(2):118-30. doi: 10.1902/jop.1992.63.2.118.
Results Reference
background
PubMed Identifier
3517073
Citation
Caffesse RG, Sweeney PL, Smith BA. Scaling and root planing with and without periodontal flap surgery. J Clin Periodontol. 1986 Mar;13(3):205-10. doi: 10.1111/j.1600-051x.1986.tb01461.x.
Results Reference
background
PubMed Identifier
11686808
Citation
Serino G, Rosling B, Ramberg P, Socransky SS, Lindhe J. Initial outcome and long-term effect of surgical and non-surgical treatment of advanced periodontal disease. J Clin Periodontol. 2001 Oct;28(10):910-6. doi: 10.1034/j.1600-051x.2001.028010910.x.
Results Reference
background
PubMed Identifier
10695934
Citation
Mombelli A, Schmid B, Rutar A, Lang NP. Persistence patterns of Porphyromonas gingivalis, Prevotella intermedia/nigrescens, and Actinobacillus actinomyetemcomitans after mechanical therapy of periodontal disease. J Periodontol. 2000 Jan;71(1):14-21. doi: 10.1902/jop.2000.71.1.14.
Results Reference
background
PubMed Identifier
6368611
Citation
Magnusson I, Lindhe J, Yoneyama T, Liljenberg B. Recolonization of a subgingival microbiota following scaling in deep pockets. J Clin Periodontol. 1984 Mar;11(3):193-207. doi: 10.1111/j.1600-051x.1984.tb01323.x.
Results Reference
background
PubMed Identifier
7560400
Citation
Quirynen M, Bollen CM, Vandekerckhove BN, Dekeyser C, Papaioannou W, Eyssen H. Full- vs. partial-mouth disinfection in the treatment of periodontal infections: short-term clinical and microbiological observations. J Dent Res. 1995 Aug;74(8):1459-67. doi: 10.1177/00220345950740080501.
Results Reference
background
PubMed Identifier
2213468
Citation
Sbordone L, Ramaglia L, Gulletta E, Iacono V. Recolonization of the subgingival microflora after scaling and root planing in human periodontitis. J Periodontol. 1990 Sep;61(9):579-84. doi: 10.1902/jop.1990.61.9.579.
Results Reference
background
PubMed Identifier
3171862
Citation
Adriaens PA, Edwards CA, De Boever JA, Loesche WJ. Ultrastructural observations on bacterial invasion in cementum and radicular dentin of periodontally diseased human teeth. J Periodontol. 1988 Aug;59(8):493-503. doi: 10.1902/jop.1988.59.8.493.
Results Reference
background
PubMed Identifier
11142673
Citation
Kocher T, Fanghanel J, Sawaf H, Litz R. Substance loss caused by scaling with different sonic scaler inserts--an in vitro study. J Clin Periodontol. 2001 Jan;28(1):9-15. doi: 10.1034/j.1600-051x.2001.280102.x.
Results Reference
background
PubMed Identifier
9495615
Citation
Flemmig TF, Petersilka GJ, Mehl A, Hickel R, Klaiber B. The effect of working parameters on root substance removal using a piezoelectric ultrasonic scaler in vitro. J Clin Periodontol. 1998 Feb;25(2):158-63. doi: 10.1111/j.1600-051x.1998.tb02422.x.
Results Reference
background
PubMed Identifier
1960232
Citation
Ritz L, Hefti AF, Rateitschak KH. An in vitro investigation on the loss of root substance in scaling with various instruments. J Clin Periodontol. 1991 Oct;18(9):643-7. doi: 10.1111/j.1600-051x.1991.tb00104.x.
Results Reference
background
PubMed Identifier
1765938
Citation
Zappa U, Smith B, Simona C, Graf H, Case D, Kim W. Root substance removal by scaling and root planing. J Periodontol. 1991 Dec;62(12):750-4. doi: 10.1902/jop.1991.62.12.750.
Results Reference
background
PubMed Identifier
6972954
Citation
Badersten A, Nilveus R, Egelberg J. Effect of nonsurgical periodontal therapy. I. Moderately advanced periodontitis. J Clin Periodontol. 1981 Feb;8(1):57-72. doi: 10.1111/j.1600-051x.1981.tb02024.x.
Results Reference
background
PubMed Identifier
6363463
Citation
Badersten A, Nilveus R, Egelberg J. Effect of nonsurgical periodontal therapy. II. Severely advanced periodontitis. J Clin Periodontol. 1984 Jan;11(1):63-76. doi: 10.1111/j.1600-051x.1984.tb01309.x.
Results Reference
background
PubMed Identifier
12787217
Citation
von Troil B, Needleman I, Sanz M. A systematic review of the prevalence of root sensitivity following periodontal therapy. J Clin Periodontol. 2002;29 Suppl 3:173-7; discussion 195-6. doi: 10.1034/j.1600-051x.29.s3.10.x.
Results Reference
background
PubMed Identifier
25494600
Citation
Feres M, Figueiredo LC, Soares GM, Faveri M. Systemic antibiotics in the treatment of periodontitis. Periodontol 2000. 2015 Feb;67(1):131-86. doi: 10.1111/prd.12075.
Results Reference
background
PubMed Identifier
27888165
Citation
Xue D, Zhao Y. Clinical effectiveness of adjunctive antimicrobial photodynamic therapy for residual pockets during supportive periodontal therapy: A systematic review and meta-analysis. Photodiagnosis Photodyn Ther. 2017 Mar;17:127-133. doi: 10.1016/j.pdpdt.2016.11.011. Epub 2016 Nov 22.
Results Reference
background
PubMed Identifier
8063441
Citation
Wilson M. Bactericidal effect of laser light and its potential use in the treatment of plaque-related diseases. Int Dent J. 1994 Apr;44(2):181-9.
Results Reference
background
PubMed Identifier
12949945
Citation
Soukos NS, Mulholland SE, Socransky SS, Doukas AG. Photodestruction of human dental plaque bacteria: enhancement of the photodynamic effect by photomechanical waves in an oral biofilm model. Lasers Surg Med. 2003;33(3):161-8. doi: 10.1002/lsm.10208.
Results Reference
background
PubMed Identifier
9747591
Citation
Bhatti M, MacRobert A, Meghji S, Henderson B, Wilson M. A study of the uptake of toluidine blue O by Porphyromonas gingivalis and the mechanism of lethal photosensitization. Photochem Photobiol. 1998 Sep;68(3):370-6.
Results Reference
background
PubMed Identifier
11391471
Citation
Bhatti M, Nair SP, Macrobert AJ, Henderson B, Shepherd P, Cridland J, Wilson M. Identification of photolabile outer membrane proteins of Porphyromonas gingivalis. Curr Microbiol. 2001 Aug;43(2):96-9. doi: 10.1007/s002840010268.
Results Reference
background
PubMed Identifier
16026282
Citation
Harris F, Chatfield LK, Phoenix DA. Phenothiazinium based photosensitisers--photodynamic agents with a multiplicity of cellular targets and clinical applications. Curr Drug Targets. 2005 Aug;6(5):615-27. doi: 10.2174/1389450054545962.
Results Reference
background
PubMed Identifier
15562911
Citation
Pfitzner A, Sigusch BW, Albrecht V, Glockmann E. Killing of periodontopathogenic bacteria by photodynamic therapy. J Periodontol. 2004 Oct;75(10):1343-9. doi: 10.1902/jop.2004.75.10.1343.
Results Reference
background
PubMed Identifier
12627274
Citation
Chan Y, Lai CH. Bactericidal effects of different laser wavelengths on periodontopathic germs in photodynamic therapy. Lasers Med Sci. 2003;18(1):51-5. doi: 10.1007/s10103-002-0243-5.
Results Reference
background
PubMed Identifier
18302617
Citation
Qin YL, Luan XL, Bi LJ, Sheng YQ, Zhou CN, Zhang ZG. Comparison of toluidine blue-mediated photodynamic therapy and conventional scaling treatment for periodontitis in rats. J Periodontal Res. 2008 Apr;43(2):162-7. doi: 10.1111/j.1600-0765.2007.01007.x.
Results Reference
background
PubMed Identifier
12604524
Citation
Komerik N, Nakanishi H, MacRobert AJ, Henderson B, Speight P, Wilson M. In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model. Antimicrob Agents Chemother. 2003 Mar;47(3):932-40. doi: 10.1128/AAC.47.3.932-940.2003.
Results Reference
background
PubMed Identifier
17335382
Citation
de Almeida JM, Theodoro LH, Bosco AF, Nagata MJ, Oshiiwa M, Garcia VG. Influence of photodynamic therapy on the development of ligature-induced periodontitis in rats. J Periodontol. 2007 Mar;78(3):566-75. doi: 10.1902/jop.2007.060214.
Results Reference
background
PubMed Identifier
18713259
Citation
Braun A, Dehn C, Krause F, Jepsen S. Short-term clinical effects of adjunctive antimicrobial photodynamic therapy in periodontal treatment: a randomized clinical trial. J Clin Periodontol. 2008 Oct;35(10):877-84. doi: 10.1111/j.1600-051X.2008.01303.x. Epub 2008 Aug 17.
Results Reference
background
PubMed Identifier
18771363
Citation
Christodoulides N, Nikolidakis D, Chondros P, Becker J, Schwarz F, Rossler R, Sculean A. Photodynamic therapy as an adjunct to non-surgical periodontal treatment: a randomized, controlled clinical trial. J Periodontol. 2008 Sep;79(9):1638-44. doi: 10.1902/jop.2008.070652.
Results Reference
background
PubMed Identifier
17508621
Citation
Andersen R, Loebel N, Hammond D, Wilson M. Treatment of periodontal disease by photodisinfection compared to scaling and root planing. J Clin Dent. 2007;18(2):34-8.
Results Reference
background
PubMed Identifier
18465191
Citation
Chondros P, Nikolidakis D, Christodoulides N, Rossler R, Gutknecht N, Sculean A. Photodynamic therapy as adjunct to non-surgical periodontal treatment in patients on periodontal maintenance: a randomized controlled clinical trial. Lasers Med Sci. 2009 Sep;24(5):681-8. doi: 10.1007/s10103-008-0565-z. Epub 2008 May 9.
Results Reference
background
PubMed Identifier
23660738
Citation
Muller Campanile VS, Giannopoulou C, Campanile G, Cancela JA, Mombelli A. Single or repeated antimicrobial photodynamic therapy as adjunct to ultrasonic debridement in residual periodontal pockets: clinical, microbiological, and local biological effects. Lasers Med Sci. 2015 Jan;30(1):27-34. doi: 10.1007/s10103-013-1337-y. Epub 2013 May 10.
Results Reference
background
PubMed Identifier
22814896
Citation
Campos GN, Pimentel SP, Ribeiro FV, Casarin RC, Cirano FR, Saraceni CH, Casati MZ. The adjunctive effect of photodynamic therapy for residual pockets in single-rooted teeth: a randomized controlled clinical trial. Lasers Med Sci. 2013 Jan;28(1):317-24. doi: 10.1007/s10103-012-1159-3. Epub 2012 Jul 20.
Results Reference
background
PubMed Identifier
22105837
Citation
Cappuyns I, Cionca N, Wick P, Giannopoulou C, Mombelli A. Treatment of residual pockets with photodynamic therapy, diode laser, or deep scaling. A randomized, split-mouth controlled clinical trial. Lasers Med Sci. 2012 Sep;27(5):979-86. doi: 10.1007/s10103-011-1027-6. Epub 2011 Nov 22.
Results Reference
background
PubMed Identifier
20640471
Citation
de Paula Eduardo C, de Freitas PM, Esteves-Oliveira M, Aranha AC, Ramalho KM, Simoes A, Bello-Silva MS, Tuner J. Laser phototherapy in the treatment of periodontal disease. A review. Lasers Med Sci. 2010 Nov;25(6):781-92. doi: 10.1007/s10103-010-0812-y. Epub 2010 Jul 17.
Results Reference
background
PubMed Identifier
16788934
Citation
Jori G, Fabris C, Soncin M, Ferro S, Coppellotti O, Dei D, Fantetti L, Chiti G, Roncucci G. Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg Med. 2006 Jun;38(5):468-81. doi: 10.1002/lsm.20361.
Results Reference
background

Learn more about this trial

Efficacy of Adjunctive Antimicrobial Photodynamic Therapy for Residual Pockets in Previously Surgically Treated Teeth

We'll reach out to this number within 24 hrs