search
Back to results

Glucagon Response to Prandial Insulin Administration in Persons With Type 1 Diabetes

Primary Purpose

Type 1 Diabetes, Hyperglycemia, Postprandial

Status
Terminated
Phase
Phase 1
Locations
United States
Study Type
Interventional
Intervention
Insulin
Sponsored by
Washington University School of Medicine
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional basic science trial for Type 1 Diabetes focused on measuring glucagon, post-prandial glucose, type 1 diabetes

Eligibility Criteria

18 Years - 90 Years (Adult, Older Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria:

  • 10 persons with T1D for >5 years age >18.
  • HbA1c <9.5%
  • Patients using either MDI or insulin pumps will be included.
  • Patients using CGM will continue the use during the study, however glucoses will be measured by laboratory methods.
  • Persons of all races, ethnicity and genders will be included
  • Participants should have normal hemoglobin, hematocrit and eGFR >60 ml/min/1.73m2.

Exclusion Criteria:

  • Persons with type 2 diabetes, monogenic diabetes, pancreatic diseases.
  • Pregnancy, prisoners, other vulnerable populations or persons unable to understand the protocol and provide written informed consent.
  • Persons who take daily steroids, any route, for any purpose

Sites / Locations

  • Washington University in St Louis

Arms of the Study

Arm 1

Arm 2

Arm Type

Experimental

Experimental

Arm Label

A (Pre-prandial insulin administration) : B (post-prandial insulin administration)

B (post-prandial insulin administration) : A (Pre-prandial insulin administration) :b

Arm Description

VISIT 1: Pre-prandial insulin: will give short acting insulin (Humalog, Lispro, etc) with the same regimen patient was using at home 20 min prior the meal. Then VISIT 2: Post-prandial insulin: will give short acting insulin (Humalog, Lispro, etc) with the same regimen patient was using at home 20 min post the meal.

VISIT 1: Post-prandial insulin: will give short acting insulin (Humalog, Lispro, etc) with the same regimen patient was using at home 20 min post the meal. Then VISIT 2: Pre-prandial insulin: will give short acting insulin (Humalog, Lispro, etc) with the same regimen patient was using at home 20 min prior the meal.

Outcomes

Primary Outcome Measures

AUC Postprandial Glucagon
Glucagon levels done fasting, 30, 60, 120, and 180 minutes

Secondary Outcome Measures

AUC Postprandial Glucose
Glucose done fasting, 30, 60, 120, and 180 minutes Glucagon levels done fasting, 30, 60, 120, and 180 minutes Usual insulin dose will be administered 20 minutes before or after the mixed meal challenge with Ensure Plus*

Full Information

First Posted
August 29, 2019
Last Updated
September 13, 2022
Sponsor
Washington University School of Medicine
search

1. Study Identification

Unique Protocol Identification Number
NCT04079881
Brief Title
Glucagon Response to Prandial Insulin Administration in Persons With Type 1 Diabetes
Official Title
Glucagon Response to Prandial Insulin Administration in Persons With Type 1 Diabetes
Study Type
Interventional

2. Study Status

Record Verification Date
September 2022
Overall Recruitment Status
Terminated
Why Stopped
Loss of funding
Study Start Date
February 13, 2020 (Actual)
Primary Completion Date
July 1, 2020 (Actual)
Study Completion Date
July 1, 2020 (Actual)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Sponsor
Name of the Sponsor
Washington University School of Medicine

4. Oversight

Studies a U.S. FDA-regulated Drug Product
Yes
Studies a U.S. FDA-regulated Device Product
No
Product Manufactured in and Exported from the U.S.
No
Data Monitoring Committee
Yes

5. Study Description

Brief Summary
Glucagon regulation and response in persons with T1D at the basal state and in response to various stimuli remains unclear. Dr. Philip Cryer has previously reported that, in T1D young adults with a course of the disease of 16+9 years, the absence of endogenous insulin secretion results in increased glucagon secretion after a mixed meal, concluding that endogenous insulin reciprocally regulates the alpha-cell glucagon secretion and also suggesting that glucagon dysregulation may play an important role in post-prandial hyperglycemia in T1D. Interestingly, recent research on human islets have shown that insulin inhibits counter-regulatory glucagon secretion by a paracrine effect mediated by SGLT2-dependent stimulation of somatostatin release. An important gap in our knowledge is whether the timing of prandial insulin doses affects the glucagon response to a hyperglycemic stimulus in patients with T1D who have undetectable C-peptide. Whether appropriately timed exogenous insulin can modify the glucagon response to glucose fluctuations has not been studied. As such, this pilot study aims to characterize the glucagon response to meal-time hyperglycemia and to compare the difference in glucagon secretion when mealtime bolus insulin is given before the meal versus after the meal with the objective of understanding factors that contribute to the peak post-prandial blood glucose and AUC of blood glucose after a mixed meal in this target population.
Detailed Description
Glucagon regulation and response in persons with T1D at the basal state and in response to various stimuli remains unclear. Dr. Philip Cryer has previously reported that, in T1D young adults with a course of the disease of 16+9 years, the absence of endogenous insulin secretion results in increased glucagon secretion after a mixed meal , concluding that endogenous insulin reciprocally regulates the alpha-cell glucagon secretion and also suggesting that glucagon dysregulation may play an important role in post-prandial hyperglycemia in T1D. Interestingly, recent research on human islets have shown that insulin inhibits counter-regulatory glucagon secretion by a paracrine effect mediated by SGLT2-dependent stimulation of somatostatin release. An important gap in our knowledge is whether the timing of prandial insulin doses affects the glucagon response to a hyperglycemic stimulus in patients with T1D who have undetectable C-peptide. T1D course. In general, loss of 80% of beta cell function is needed to develop severe hyperglycemia. Endogenous insulin secretion is almost entirely lost within 3 to 5 years after the diagnosis . In children with new diagnosis of T1D, glucagon levels were highly associated with post prandial blood glucose, but not with HbA1c level. It has also been reported that postprandial hyperglucagonemia worsens significantly while C-peptide secretion declines during the first year of the disease. Also, in children with greater than five years of T1D, postprandial glucagon levels increased 160% from one to sixty months after diagnosis (8) and in those with disease duration of 6.9 + 4 years, glucagon levels were strongly correlated with post-prandial glucose and mildly correlated with HbA1C levels. A study in T1D adults performed in China showed that post-prandial glucagon levels were higher in T1D patients in the first year of the disease compared to those with longer course of the disease, and that hypoglycemic events were lower in newly diagnosed patients, suggesting that glucagon secretory function may become impaired with longer duration of the disease. These studies suggest that glucagon dysregulation could impact glucose control with exogenous insulin, and that this dysregulation may change with disease duration. Post-prandial hyperglycemia adds to glucose variability, difficulty with insulin dosing and overall instability of glucose control. A recent analysis from the T1D Exchange study, that included 4768 participants younger than 26 years with a clinical diagnosis of T1D for at least 1 year showed that 21% of the participants reported administering insulin several minutes before, 44% immediately before, 10% during, and 24% after meal. Interestingly, participants who reported administering insulin during or after a meal were more likely to report missing ≥1 mealtime insulin dose per week compared with those who administered insulin before meals. In addition, a sub-analysis showed that participants who dose mealtime insulin in the postprandial period have poorer glycemic control and greater frequency of severe hypoglycemia. However, despite of these recent results, patients are often advised to give insulin after eating because caloric intake is uncertain. Understanding the mechanisms behind the higher post-prandial peak in glucose with delayed insulin administration may help clinicians guide appropriate timing of insulin administration for T1D patients with long course of the disease. Glucagon Regulation: Different models have been used to study glucagon regulation. Since both hyperglycemia and hypoglycemia stimulate alpha cells to produce glucagon, both the lack of intra-islet insulin and this U-shaped glucagon response contribute to glucose dysregulation in T1D . It has been reported that in T1D patients with a duration of the disease of 26.4+7.5 years, glucagon levels increased in response to the OGTT under euglycemic and hyperglycemic conditions, however the relative contribution of hyperglucagonemia to post-prandial glucose rise in the presence or absence of preprandial insulin has not been clearly elucidated. Whether appropriately timed exogenous insulin can modify the glucagon response to glucose fluctuations has not been studied. As such, this pilot study aims to characterize the glucagon response to meal-time hyperglycemia and to compare the difference in glucagon secretion when mealtime bolus insulin is given before the meal versus after the meal with the objective of understanding factors that contribute to the peak post-prandial blood glucose and AUC of blood glucose after a mixed meal in this target population. Hypothesis Patients with higher glucagon responses to a mixed meal stimulus will have higher peak post-prandial glucoses and greater AUC of post-prandial glucose. Bolus dose insulin given pre-meal (20 min before meal) will result in lower peak post-prandial glucose, lower AUC and lower post-prandial glucagon levels Bolus dose insulin given post-meal (20 min after meal) will result in higher peak post-prandial glucoses, higher AUC of post-meal glucose and higher glucagon levels There will be a correlation between peak post-prandial glucagon response and post-meal glucose AUC, 0 to 180 minutes. Research Plans The study will be conducted in the (Intensive Research Unit, part of the CTSA) Diabetes Center at Barnes Jewish Hospital/Washington University in St Louis. Study Visits Screening will be done over the phone and with review of medical records if the required labs have been done in the past 6 months Visits A and B will be performed in random order Demographics, review of diabetes history, medications and allergies will be recorded at the first study visit. Insulin doses and effectiveness of current carbohydrate ratio will be evaluated and recorded. Mealtime insulin doses will be established at the first study visit. Mealtime insulin will be given via injection by a study nurse to standardize the administration procedure. Vital signs, height and weight will be done at each visit C-peptide will be checked with the fasting labs at the first study visit Baseline glucose should be 80 to 140 mg/dl. In case baseline glucose is not in the target range, the study visit will be rescheduled. Whole blood will be collected in vacutainers via an indwelling peripheral venous catheter with nursing supervision. Samples will be deidentified before sending to the laboratory. No genetic testing will be performed. Visit A Glucose levels done fasting, 30, 60, 120, and 180 minutes Glucagon levels done fasting, 30, 60, 120, and 180 minutes Usual insulin dose will be administered 20 minutes prior to a mixed meal challenge with Ensure Plus* Visit B Glucose done fasting, 30, 60, 120, and 180 minutes Glucagon levels done fasting, 30, 60, 120, and 180 minutes Usual insulin dose will be administered 20 minutes after the mixed meal challenge with Ensure Plus* *Ensure Plus (Abbott Nutrition) at 6cc/kg (max 360 cc), content per 100 ml: carbohydrate 21.5 grams, protein 5.5 grams, with nursing supervision. Laboratory Measures: Core Laboratory for Clinical Studies at Washington University (https://research.wustl.edu/core-facilities/core-laboratory-clinical-studies, CLCS) will measure glucose on the Roche cobas c510 platform using Roche's coupled enzymatic assay (hexokinase, glucose-6-phosphoate dehydrogenase). The rate of NADPH formation is directly proportional to glucose concentration and measured photometrically. The interday imprecision is typically <2.0% CV. CLCS will also measure C-peptide on the Roche cobas e601platform using Roche's sandwich electrochemiluminescence immunoassay. In this assay a biotinylated monoclonal C-peptide-specific antibody and a monoclonal C-peptide-specific antibody labeled with a ruthenium complex bind to C-peptide to form the sandwich. Then, using streptavidin-coated microparticles, the complex is drawn into the measuring cell and remains while unbound material is washed away. Application of a voltage to the electrode induces chemiluminescent emission that is measured by the instrument. Between run precision typically ranges from 1.9 - 2.7% CV. Glucagon is measured using a radioimmunoassay kit from Millipore. This is a competitive immunoassay which uses I-125 labeled glucagon and a glucagon-specific antibody. Its stated inter-assay precision is 12% CV. Typical within-run precision is 2.0 - 3.0 % CV in our hands. Methods of Data Analysis Data analysis will be performed using STATA 15.1 for Windows (StataCorp LP, College Station, Texas, United States). The sample size calculation assumes that the peak postprandial glucose will increase by 80 +/-20 mg/dl in the pre-meal insulin group and 140 +/-20 mg/dl in the post-meal group. So, the expected mean peak of postprandial glucose will be up to 220 mg/dL for Visit A and mean peak postprandial glucose will be up to 280 mg/dL for Visit B. The sample size will have 80% power to detect a difference between groups at p<0.05. We have assumed correlation between visits A and B of 0.5. The sample size was corrected by an anticipated loss of follow up of 10% of the participants. The calculated sample size is 10 participants with full data sets available for 8 participants. The study randomization is designed as follows: 5 participants will first attend Visit A, and then Visit B. The 5 remaining participants will first attend Visit B and then Visit A. AUC of post-prandial glucose and glucagon and maximum postprandial peak of glucose and glucagon will be analyzed by using paired T student. Relationships between variables were assessed by a Spearman's correlation test.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Type 1 Diabetes, Hyperglycemia, Postprandial
Keywords
glucagon, post-prandial glucose, type 1 diabetes

7. Study Design

Primary Purpose
Basic Science
Study Phase
Phase 1, Phase 2
Interventional Study Model
Crossover Assignment
Model Description
Participants are randomly assigned receive intervention A then intervention B or to receive intervention B than intervention A
Masking
None (Open Label)
Allocation
Randomized
Enrollment
1 (Actual)

8. Arms, Groups, and Interventions

Arm Title
A (Pre-prandial insulin administration) : B (post-prandial insulin administration)
Arm Type
Experimental
Arm Description
VISIT 1: Pre-prandial insulin: will give short acting insulin (Humalog, Lispro, etc) with the same regimen patient was using at home 20 min prior the meal. Then VISIT 2: Post-prandial insulin: will give short acting insulin (Humalog, Lispro, etc) with the same regimen patient was using at home 20 min post the meal.
Arm Title
B (post-prandial insulin administration) : A (Pre-prandial insulin administration) :b
Arm Type
Experimental
Arm Description
VISIT 1: Post-prandial insulin: will give short acting insulin (Humalog, Lispro, etc) with the same regimen patient was using at home 20 min post the meal. Then VISIT 2: Pre-prandial insulin: will give short acting insulin (Humalog, Lispro, etc) with the same regimen patient was using at home 20 min prior the meal.
Intervention Type
Drug
Intervention Name(s)
Insulin
Other Intervention Name(s)
Pre-prandial insulin, postprandial insulin
Intervention Description
to give pre-prandial and post-prandial insulin (will use patient insulin dose patient use at home) to patients with T1D and evaluate the response of post-prandial glucagon and post-prandial hyperglycemia.
Primary Outcome Measure Information:
Title
AUC Postprandial Glucagon
Description
Glucagon levels done fasting, 30, 60, 120, and 180 minutes
Time Frame
4 hours
Secondary Outcome Measure Information:
Title
AUC Postprandial Glucose
Description
Glucose done fasting, 30, 60, 120, and 180 minutes Glucagon levels done fasting, 30, 60, 120, and 180 minutes Usual insulin dose will be administered 20 minutes before or after the mixed meal challenge with Ensure Plus*
Time Frame
4 hours

10. Eligibility

Sex
All
Minimum Age & Unit of Time
18 Years
Maximum Age & Unit of Time
90 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: 10 persons with T1D for >5 years age >18. HbA1c <9.5% Patients using either MDI or insulin pumps will be included. Patients using CGM will continue the use during the study, however glucoses will be measured by laboratory methods. Persons of all races, ethnicity and genders will be included Participants should have normal hemoglobin, hematocrit and eGFR >60 ml/min/1.73m2. Exclusion Criteria: Persons with type 2 diabetes, monogenic diabetes, pancreatic diseases. Pregnancy, prisoners, other vulnerable populations or persons unable to understand the protocol and provide written informed consent. Persons who take daily steroids, any route, for any purpose
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Janet McGill, MD
Organizational Affiliation
Wash. Univ. School of Medicine
Official's Role
Principal Investigator
Facility Information:
Facility Name
Washington University in St Louis
City
Saint Louis
State/Province
Missouri
ZIP/Postal Code
63110
Country
United States

12. IPD Sharing Statement

Plan to Share IPD
No
Citations:
PubMed Identifier
22166985
Citation
Cryer PE. Minireview: Glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes. Endocrinology. 2012 Mar;153(3):1039-48. doi: 10.1210/en.2011-1499. Epub 2011 Dec 13.
Results Reference
background
PubMed Identifier
20811038
Citation
Cooperberg BA, Cryer PE. Insulin reciprocally regulates glucagon secretion in humans. Diabetes. 2010 Nov;59(11):2936-40. doi: 10.2337/db10-0728. Epub 2010 Aug 23.
Results Reference
background
PubMed Identifier
30635569
Citation
Vergari E, Knudsen JG, Ramracheya R, Salehi A, Zhang Q, Adam J, Asterholm IW, Benrick A, Briant LJB, Chibalina MV, Gribble FM, Hamilton A, Hastoy B, Reimann F, Rorsman NJG, Spiliotis II, Tarasov A, Wu Y, Ashcroft FM, Rorsman P. Insulin inhibits glucagon release by SGLT2-induced stimulation of somatostatin secretion. Nat Commun. 2019 Jan 11;10(1):139. doi: 10.1038/s41467-018-08193-8.
Results Reference
background
PubMed Identifier
1505333
Citation
Schiffrin A, Suissa S, Weitzner G, Poussier P, Lalla D. Factors predicting course of beta-cell function in IDDM. Diabetes Care. 1992 Aug;15(8):997-1001. doi: 10.2337/diacare.15.8.997.
Results Reference
background
PubMed Identifier
29412832
Citation
Yosten GLC. Alpha cell dysfunction in type 1 diabetes. Peptides. 2018 Feb;100:54-60. doi: 10.1016/j.peptides.2017.12.001.
Results Reference
background
PubMed Identifier
17519307
Citation
Porksen S, Nielsen LB, Kaas A, Kocova M, Chiarelli F, Orskov C, Holst JJ, Ploug KB, Hougaard P, Hansen L, Mortensen HB; Hvidore Study Group on Childhood Diabetes. Meal-stimulated glucagon release is associated with postprandial blood glucose level and does not interfere with glycemic control in children and adolescents with new-onset type 1 diabetes. J Clin Endocrinol Metab. 2007 Aug;92(8):2910-6. doi: 10.1210/jc.2007-0244. Epub 2007 May 22.
Results Reference
background
PubMed Identifier
18594062
Citation
Brown RJ, Sinaii N, Rother KI. Too much glucagon, too little insulin: time course of pancreatic islet dysfunction in new-onset type 1 diabetes. Diabetes Care. 2008 Jul;31(7):1403-4. doi: 10.2337/dc08-0575.
Results Reference
background

Learn more about this trial

Glucagon Response to Prandial Insulin Administration in Persons With Type 1 Diabetes

We'll reach out to this number within 24 hrs