search
Back to results

A Potential Wearable for Post-stroke Rehabilitation

Primary Purpose

Chronic Stroke

Status
Recruiting
Phase
Not Applicable
Locations
Hong Kong
Study Type
Interventional
Intervention
A functional electrical stimulation device for post-stroke rehabilitation
Sponsored by
Chinese University of Hong Kong
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional treatment trial for Chronic Stroke

Eligibility Criteria

40 Years - 85 Years (Adult, Older Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria:

  1. Right-handed elderly chronic stroke survivors; age ≥40; ≥6 months post-stroke
  2. Unilateral ischemic brain lesions
  3. Participants should be able to walk continuously for ≥15 min. with or without assistive aid

Exclusion Criteria:

  1. Cannot comprehend and follow instructions, or with a score <21 on the mini-mental state exam;
  2. Have cardiac pacemaker;
  3. Have skin lesions at the locations where FES or EMG electrodes may be attached;
  4. Have major depression;
  5. Present with severe neglect

Sites / Locations

  • The Hong Kong Polytechnic UniversityRecruiting

Arms of the Study

Arm 1

Arm 2

Arm Type

Experimental

Experimental

Arm Label

Delivering FES to stroke survivors

Delivery no current FES to stroke survivors (Sham group)

Arm Description

In stroke survivors, normal and abnormal muscle synergies will also be determined from their walk EMGs. Our proposed FES intervention involves delivering stimulations to muscles with waveforms generated from the activations of all the normal synergies not observed in each stroke survivor. We are going to employ the wearable to deliver personalized muscle-synergy-based FES stimulations to multiple groups of leg muscles on the stroke-affected side of elderly chronic stroke survivors as they walk on a treadmill/overground for gait rehabilitation. We hypothesized that the subject will essentially be walking with his/her abnormal muscle pattern superimposed with the artificially introduced "normal" muscle pattern coming from FES.

In stroke survivors, normal and abnormal muscle synergies will also be determined from their walk EMGs. Our proposed FES intervention involves delivering stimulations to muscles with waveforms generated from the activations of all the normal synergies not observed in each stroke survivor. Additionally, we are going to introduce a sham group. We are going to employ the wearable to multiple groups of leg muscles on the stroke-affected side of elderly chronic stroke survivors without any stimulation as they walk on a treadmill or overground for gait rehabilitation. The purpose of the sham group is to empirically validate the effectiveness of the FES wearable.

Outcomes

Primary Outcome Measures

Surface electromyographic signals from up to 14 muscles on the paretic and non-paretic side during gait.
To assess the muscle synergies, surface EMGs will be recorded from 14 muscles (tibialis anterior (TA), medical gastrocnemius (MG), soleus (SOL), vastus medialis (VM), rectus femoris (RF), hamstrings (HAM), adductor longus (AL), gluteus maximus (GM) lateral gastrocnemius (LG), vastus lateralis (VL), tensor fasciae latae (TFL), erector spinae (ES), external oblique (EO), and latissimus dorsi (LatDor)), using a wireless EMG system (Delsys; 2000 Hz). All electrodes will be securely attached to skin surface using double-sided and medical tapes.
Surface electromyographic signals from up to 14 muscles on the paretic and non-paretic side during gait.
To assess the muscle synergies, surface EMGs will be recorded from 14 muscles (tibialis anterior (TA), medical gastrocnemius (MG), soleus (SOL), vastus medialis (VM), rectus femoris (RF), hamstrings (HAM), adductor longus (AL), gluteus maximus (GM) lateral gastrocnemius (LG), vastus lateralis (VL), tensor fasciae latae (TFL), erector spinae (ES), external oblique (EO), and latissimus dorsi (LatDor)), using a wireless EMG system (Delsys; 2000 Hz). All electrodes will be securely attached to skin surface using double-sided and medical tapes.
Surface electromyographic signals from up to 14 muscles on the paretic and non-paretic side during gait.
To assess the muscle synergies, surface EMGs will be recorded from 14 muscles (tibialis anterior (TA), medical gastrocnemius (MG), soleus (SOL), vastus medialis (VM), rectus femoris (RF), hamstrings (HAM), adductor longus (AL), gluteus maximus (GM) lateral gastrocnemius (LG), vastus lateralis (VL), tensor fasciae latae (TFL), erector spinae (ES), external oblique (EO), and latissimus dorsi (LatDor)), using a wireless EMG system (Delsys; 2000 Hz). All electrodes will be securely attached to skin surface using double-sided and medical tapes.

Secondary Outcome Measures

Gait kinemetics
During FES sessions, kinematic measurements will be provided by the wearable's IMUs. During sessions of motor-impairment assessments, we will capture more precise kinematics using a 10-camera motion capture system (VICON; 200 Hz). This system tracks the 3D positions of 40 markers placed on the legs and torso, and is equipped with suitable models for reconstructing bilateral angles of the hip, knee and ankle.
Gait kinemetics
During FES sessions, kinematic measurements will be provided by the wearable's IMUs. During sessions of motor-impairment assessments, we will capture more precise kinematics using a 10-camera motion capture system (VICON; 200 Hz). This system tracks the 3D positions of 40 markers placed on the legs and torso, and is equipped with suitable models for reconstructing bilateral angles of the hip, knee and ankle.
Gait kinemetics
During FES sessions, kinematic measurements will be provided by the wearable's IMUs. During sessions of motor-impairment assessments, we will capture more precise kinematics using a 10-camera motion capture system (VICON; 200 Hz). This system tracks the 3D positions of 40 markers placed on the legs and torso, and is equipped with suitable models for reconstructing bilateral angles of the hip, knee and ankle.
Gait kinemetics
During FES sessions, kinematic measurements will be provided by the wearable's IMUs. During sessions of motor-impairment assessments, we will capture more precise kinematics using a 10-camera motion capture system (VICON; 200 Hz). This system tracks the 3D positions of 40 markers placed on the legs and torso, and is equipped with suitable models for reconstructing bilateral angles of the hip, knee and ankle.
Fugl-Meyer assessment score (lower-limb)
Lower-limb motor function assessment
Fugl-Meyer assessment score (lower-limb)
Lower-limb motor function assessment
Fugl-Meyer assessment score (lower-limb)
Lower-limb motor function assessment
Fugl-Meyer assessment score (lower-limb)
Lower-limb motor function assessment
Mini-BEStest
Balance test
Mini-BEStest
Balance test
Mini-BEStest
Balance test
Mini-BEStest
Balance test

Full Information

First Posted
October 10, 2019
Last Updated
May 21, 2023
Sponsor
Chinese University of Hong Kong
Collaborators
The Hong Kong Polytechnic University, City University of Hong Kong, Shanghai Jiao Tong University School of Medicine
search

1. Study Identification

Unique Protocol Identification Number
NCT04154514
Brief Title
A Potential Wearable for Post-stroke Rehabilitation
Official Title
A Wearable for Post-stroke Rehabilitative Multi-muscle Stimulation Inspired by the Natural Organization of Neuromuscular Control
Study Type
Interventional

2. Study Status

Record Verification Date
May 2023
Overall Recruitment Status
Recruiting
Study Start Date
February 1, 2019 (Actual)
Primary Completion Date
March 23, 2024 (Anticipated)
Study Completion Date
June 23, 2024 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Principal Investigator
Name of the Sponsor
Chinese University of Hong Kong
Collaborators
The Hong Kong Polytechnic University, City University of Hong Kong, Shanghai Jiao Tong University School of Medicine

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Data Monitoring Committee
No

5. Study Description

Brief Summary
Participants are seeking to unleash the full therapeutic potential of a newly developed, customizable and potentially commericializable 10-channel Functional Electrical Stimulation (FES) to rehabilitate the gait of chronic stroke survivors. Each subject will undergo 18-sessions (~1 month) FES training. Participants will utilize the theory of muscle synergies from motor neurosciences, which are defined as neural modules of motor control that coordinate the spatiotemporal activation patterns of multiple muscles, to guide our personal selections of muscles for FES. It is hypothesized that chronic stroke survivors will learn from FES stimulations, over several daily sessions, both by suppressing the original abnormal muscle synergies and by employing the normal muscle synergies as specified in the FES. It is also expected that the walk synergies of the paretic side of chronic stroke survivors should be more similar to healthy muscle synergies at the two post-training time points than before training.
Detailed Description
Stroke is one of the leading causes of long-term adult disability worldwide. The impaired ability to walk post-stroke severely limits mobility and quality of life. Many recently-developed assistive technologies for gait rehabilitation are at present only marginally better at best than traditional therapies in their efficacies. There is an urgent need of novel, clinically viable, and effective gait rehabilitative strategies that can provide even better functional outcome for stroke survivors with diverse presentations. Among the many new post-stroke interventions, functional electrical stimulation (FES) of muscles remains attractive. FES is a neural-rehabilitative technology that communicates control signals from an external device to the neuromuscular system. There is increasing recognition that rehabilitation paradigms should promote restitution of the patient's muscle coordination towards the normal pattern during training, and FES can achieve this goal when stimulations are applied to the set of muscles whose natural coordination is impaired. For this reason, FES is a very promising interventional strategy. Existing FES paradigms, however, have yielded ambiguous results in previous clinical trials, especially those for chronic survivors, likely because either stimulations were applied only to single or a few muscles, or the stimulation pattern did not mimic the natural muscle coordination pattern during gait. A multi-muscle FES, when applied to a larger functional set of muscles and driven by their natural coordination pattern, can guide muscle activations towards the normal pattern through neuroplasticity, thus restore impairment at the level of muscle-activation deficit. The first aim of our project is to utilize a 8-channel FES wearable for delivering multi-muscle FES to muscles in the lower-limb muscles. Participants will attempt to rehabilitate the gait of chronic stroke survivors over 12 training sessions by delivering stimulations to multiple muscles, in their natural coordination pattern, using our wearable. As such, participants will utilize the theory of muscle synergy from motor neuroscience to guide our personalizable selections of muscles for FES. Muscle synergies are hypothesized neural modules of motor control that coordinate the spatiotemporal activation patterns of multiple muscles. Our customizable FES pattern for each stroke survivor will be constructed based on the normal muscle synergies that are absent in the stroke survivor's muscle pattern during walking. Since muscle synergies represent the natural motor-control units used by the nervous system, reinforcement of their activations through FES should lead to restoration of normal neuromuscular coordination, thus more natural post-training gait. Our second aim is to evaluate the effectiveness of our FES paradigm by assessing the walk-muscle synergies in the paretic and non-paretic legs of the trained stroke survivors, before, after, and 1 month following our intervention. In doing so, participants hope to explore whether lower-limb muscle synergy can be a physiologically-based marker of motor impairment for stroke survivors. If our muscle-synergy-based multi-muscle FES is indeed efficacious, our strategy will help many disabled chronic stroke survivors to regain mobility, thus living with a much higher quality of life in the decades to come. The clinical and societal impact of our research will be huge.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Chronic Stroke

7. Study Design

Primary Purpose
Treatment
Study Phase
Not Applicable
Interventional Study Model
Single Group Assignment
Masking
None (Open Label)
Allocation
Non-Randomized
Enrollment
45 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
Delivering FES to stroke survivors
Arm Type
Experimental
Arm Description
In stroke survivors, normal and abnormal muscle synergies will also be determined from their walk EMGs. Our proposed FES intervention involves delivering stimulations to muscles with waveforms generated from the activations of all the normal synergies not observed in each stroke survivor. We are going to employ the wearable to deliver personalized muscle-synergy-based FES stimulations to multiple groups of leg muscles on the stroke-affected side of elderly chronic stroke survivors as they walk on a treadmill/overground for gait rehabilitation. We hypothesized that the subject will essentially be walking with his/her abnormal muscle pattern superimposed with the artificially introduced "normal" muscle pattern coming from FES.
Arm Title
Delivery no current FES to stroke survivors (Sham group)
Arm Type
Experimental
Arm Description
In stroke survivors, normal and abnormal muscle synergies will also be determined from their walk EMGs. Our proposed FES intervention involves delivering stimulations to muscles with waveforms generated from the activations of all the normal synergies not observed in each stroke survivor. Additionally, we are going to introduce a sham group. We are going to employ the wearable to multiple groups of leg muscles on the stroke-affected side of elderly chronic stroke survivors without any stimulation as they walk on a treadmill or overground for gait rehabilitation. The purpose of the sham group is to empirically validate the effectiveness of the FES wearable.
Intervention Type
Device
Intervention Name(s)
A functional electrical stimulation device for post-stroke rehabilitation
Intervention Description
Most of the FDA-approved commercial FES devices deliver therapy that targets specific kinematic impairment in the step cycle (e.g., foot drop). Our device will be unique in that it can stimulate many muscles around multiple joints for a more comprehensive and naturalistic restoration of lower-limb motor functions.
Primary Outcome Measure Information:
Title
Surface electromyographic signals from up to 14 muscles on the paretic and non-paretic side during gait.
Description
To assess the muscle synergies, surface EMGs will be recorded from 14 muscles (tibialis anterior (TA), medical gastrocnemius (MG), soleus (SOL), vastus medialis (VM), rectus femoris (RF), hamstrings (HAM), adductor longus (AL), gluteus maximus (GM) lateral gastrocnemius (LG), vastus lateralis (VL), tensor fasciae latae (TFL), erector spinae (ES), external oblique (EO), and latissimus dorsi (LatDor)), using a wireless EMG system (Delsys; 2000 Hz). All electrodes will be securely attached to skin surface using double-sided and medical tapes.
Time Frame
The assessment will be performed at baseline
Title
Surface electromyographic signals from up to 14 muscles on the paretic and non-paretic side during gait.
Description
To assess the muscle synergies, surface EMGs will be recorded from 14 muscles (tibialis anterior (TA), medical gastrocnemius (MG), soleus (SOL), vastus medialis (VM), rectus femoris (RF), hamstrings (HAM), adductor longus (AL), gluteus maximus (GM) lateral gastrocnemius (LG), vastus lateralis (VL), tensor fasciae latae (TFL), erector spinae (ES), external oblique (EO), and latissimus dorsi (LatDor)), using a wireless EMG system (Delsys; 2000 Hz). All electrodes will be securely attached to skin surface using double-sided and medical tapes.
Time Frame
The assessment will be performed at 5.5 weeks
Title
Surface electromyographic signals from up to 14 muscles on the paretic and non-paretic side during gait.
Description
To assess the muscle synergies, surface EMGs will be recorded from 14 muscles (tibialis anterior (TA), medical gastrocnemius (MG), soleus (SOL), vastus medialis (VM), rectus femoris (RF), hamstrings (HAM), adductor longus (AL), gluteus maximus (GM) lateral gastrocnemius (LG), vastus lateralis (VL), tensor fasciae latae (TFL), erector spinae (ES), external oblique (EO), and latissimus dorsi (LatDor)), using a wireless EMG system (Delsys; 2000 Hz). All electrodes will be securely attached to skin surface using double-sided and medical tapes.
Time Frame
The assessment will be performed at 2.5 weeks
Secondary Outcome Measure Information:
Title
Gait kinemetics
Description
During FES sessions, kinematic measurements will be provided by the wearable's IMUs. During sessions of motor-impairment assessments, we will capture more precise kinematics using a 10-camera motion capture system (VICON; 200 Hz). This system tracks the 3D positions of 40 markers placed on the legs and torso, and is equipped with suitable models for reconstructing bilateral angles of the hip, knee and ankle.
Time Frame
The assessment will be performed at baseline
Title
Gait kinemetics
Description
During FES sessions, kinematic measurements will be provided by the wearable's IMUs. During sessions of motor-impairment assessments, we will capture more precise kinematics using a 10-camera motion capture system (VICON; 200 Hz). This system tracks the 3D positions of 40 markers placed on the legs and torso, and is equipped with suitable models for reconstructing bilateral angles of the hip, knee and ankle.
Time Frame
The assessment will be performed at 5.5 weeks
Title
Gait kinemetics
Description
During FES sessions, kinematic measurements will be provided by the wearable's IMUs. During sessions of motor-impairment assessments, we will capture more precise kinematics using a 10-camera motion capture system (VICON; 200 Hz). This system tracks the 3D positions of 40 markers placed on the legs and torso, and is equipped with suitable models for reconstructing bilateral angles of the hip, knee and ankle.
Time Frame
The assessment will be performed at 2.5 weeks
Title
Gait kinemetics
Description
During FES sessions, kinematic measurements will be provided by the wearable's IMUs. During sessions of motor-impairment assessments, we will capture more precise kinematics using a 10-camera motion capture system (VICON; 200 Hz). This system tracks the 3D positions of 40 markers placed on the legs and torso, and is equipped with suitable models for reconstructing bilateral angles of the hip, knee and ankle.
Time Frame
The assessment will be performed at 4 weeks
Title
Fugl-Meyer assessment score (lower-limb)
Description
Lower-limb motor function assessment
Time Frame
The assessment will be performed at baseline
Title
Fugl-Meyer assessment score (lower-limb)
Description
Lower-limb motor function assessment
Time Frame
The assessment will be performed at 5.5 weeks
Title
Fugl-Meyer assessment score (lower-limb)
Description
Lower-limb motor function assessment
Time Frame
The assessment will be performed at 2.5 weeks
Title
Fugl-Meyer assessment score (lower-limb)
Description
Lower-limb motor function assessment
Time Frame
The assessment will be performed at 4 weeks
Title
Mini-BEStest
Description
Balance test
Time Frame
The assessment will be performed at baseline
Title
Mini-BEStest
Description
Balance test
Time Frame
The assessment will be performed at 5.5 weeks
Title
Mini-BEStest
Description
Balance test
Time Frame
The assessment will be performed at 2.5 weeks
Title
Mini-BEStest
Description
Balance test
Time Frame
The assessment will be performed at 4 weeks

10. Eligibility

Sex
All
Minimum Age & Unit of Time
40 Years
Maximum Age & Unit of Time
85 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: Right-handed elderly chronic stroke survivors; age ≥40; ≥6 months post-stroke Unilateral ischemic brain lesions Participants should be able to walk continuously for ≥15 min. with or without assistive aid Exclusion Criteria: Cannot comprehend and follow instructions, or with a score <21 on the mini-mental state exam; Have cardiac pacemaker; Have skin lesions at the locations where FES or EMG electrodes may be attached; Have major depression; Present with severe neglect Patients with type i and ii diabetes
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
Vincent Chi Kwan Cheung, PhD
Phone
+852 3943 9389
Email
vckc@cuhk.edu.hk
First Name & Middle Initial & Last Name or Official Title & Degree
Roy Tsz Hei Cheung, PhD
Phone
+852 2766 6739
Email
roy.cheung@polyu.edu.hk
Facility Information:
Facility Name
The Hong Kong Polytechnic University
City
Hong Kong
ZIP/Postal Code
852
Country
Hong Kong
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
kelvin lau, MSc
Phone
39439387
Email
yatsingkelvinlau@cuhk.edu.hk

12. IPD Sharing Statement

Plan to Share IPD
Undecided
Citations:
PubMed Identifier
7762050
Citation
Perry J, Garrett M, Gronley JK, Mulroy SJ. Classification of walking handicap in the stroke population. Stroke. 1995 Jun;26(6):982-9. doi: 10.1161/01.str.26.6.982.
Results Reference
background
PubMed Identifier
19822722
Citation
Krasovsky T, Levin MF. Review: toward a better understanding of coordination in healthy and poststroke gait. Neurorehabil Neural Repair. 2010 Mar-Apr;24(3):213-24. doi: 10.1177/1545968309348509. Epub 2009 Oct 12.
Results Reference
background
PubMed Identifier
19182079
Citation
Kollen BJ, Lennon S, Lyons B, Wheatley-Smith L, Scheper M, Buurke JH, Halfens J, Geurts AC, Kwakkel G. The effectiveness of the Bobath concept in stroke rehabilitation: what is the evidence? Stroke. 2009 Apr;40(4):e89-97. doi: 10.1161/STROKEAHA.108.533828. Epub 2009 Jan 29.
Results Reference
background
PubMed Identifier
29546057
Citation
Cho JE, Yoo JS, Kim KE, Cho ST, Jang WS, Cho KH, Lee WH. Systematic Review of Appropriate Robotic Intervention for Gait Function in Subacute Stroke Patients. Biomed Res Int. 2018 Feb 6;2018:4085298. doi: 10.1155/2018/4085298. eCollection 2018.
Results Reference
background
PubMed Identifier
16004574
Citation
Peckham PH, Knutson JS. Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng. 2005;7:327-60. doi: 10.1146/annurev.bioeng.6.040803.140103.
Results Reference
background
PubMed Identifier
17299744
Citation
Sheffler LR, Chae J. Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve. 2007 May;35(5):562-90. doi: 10.1002/mus.20758.
Results Reference
background
PubMed Identifier
13761879
Citation
LIBERSON WT, HOLMQUEST HJ, SCOT D, DOW M. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 1961 Feb;42:101-5. No abstract available.
Results Reference
background
PubMed Identifier
22559959
Citation
Heller BW, Clarke AJ, Good TR, Healey TJ, Nair S, Pratt EJ, Reeves ML, van der Meulen JM, Barker AT. Automated setup of functional electrical stimulation for drop foot using a novel 64 channel prototype stimulator and electrode array: results from a gait-lab based study. Med Eng Phys. 2013 Jan;35(1):74-81. doi: 10.1016/j.medengphy.2012.03.012. Epub 2012 May 4.
Results Reference
background
PubMed Identifier
23231828
Citation
Springer S, Vatine JJ, Wolf A, Laufer Y. The effects of dual-channel functional electrical stimulation on stance phase sagittal kinematics in patients with hemiparesis. J Electromyogr Kinesiol. 2013 Apr;23(2):476-82. doi: 10.1016/j.jelekin.2012.10.017. Epub 2012 Dec 8.
Results Reference
background
PubMed Identifier
25227538
Citation
You G, Liang H, Yan T. Functional electrical stimulation early after stroke improves lower limb motor function and ability in activities of daily living. NeuroRehabilitation. 2014;35(3):381-9. doi: 10.3233/NRE-141129.
Results Reference
background
PubMed Identifier
16322492
Citation
Daly JJ, Roenigk K, Holcomb J, Rogers JM, Butler K, Gansen J, McCabe J, Fredrickson E, Marsolais EB, Ruff RL. A randomized controlled trial of functional neuromuscular stimulation in chronic stroke subjects. Stroke. 2006 Jan;37(1):172-8. doi: 10.1161/01.STR.0000195129.95220.77. Epub 2005 Dec 1.
Results Reference
background
PubMed Identifier
15077655
Citation
Alon G. Use of neuromuscular electrical stimulation in neureorehabilitation: a challenge to all. J Rehabil Res Dev. 2003 Nov-Dec;40(6):ix-xii. doi: 10.1682/jrrd.2003.11.0009. No abstract available.
Results Reference
background
PubMed Identifier
17369518
Citation
Alon G, Levitt AF, McCarthy PA. Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study. Neurorehabil Neural Repair. 2007 May-Jun;21(3):207-15. doi: 10.1177/1545968306297871. Epub 2007 Mar 16.
Results Reference
background
PubMed Identifier
14568122
Citation
Cauraugh JH, Kim SB. Chronic stroke motor recovery: duration of active neuromuscular stimulation. J Neurol Sci. 2003 Nov 15;215(1-2):13-9. doi: 10.1016/s0022-510x(03)00169-2.
Results Reference
background
PubMed Identifier
11160497
Citation
Saltiel P, Wyler-Duda K, D'Avella A, Tresch MC, Bizzi E. Muscle synergies encoded within the spinal cord: evidence from focal intraspinal NMDA iontophoresis in the frog. J Neurophysiol. 2001 Feb;85(2):605-19. doi: 10.1152/jn.2001.85.2.605.
Results Reference
background
PubMed Identifier
14724214
Citation
Ivanenko YP, Poppele RE, Lacquaniti F. Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol. 2004 Apr 1;556(Pt 1):267-82. doi: 10.1113/jphysiol.2003.057174. Epub 2004 Jan 14.
Results Reference
background
PubMed Identifier
12563264
Citation
d'Avella A, Saltiel P, Bizzi E. Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci. 2003 Mar;6(3):300-8. doi: 10.1038/nn1010.
Results Reference
background
Citation
Bernstein N (1967) The co-ordination and regulation of movements. Oxf. PergamoPress.
Results Reference
background
PubMed Identifier
25856485
Citation
Ting LH, Chiel HJ, Trumbower RD, Allen JL, McKay JL, Hackney ME, Kesar TM. Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron. 2015 Apr 8;86(1):38-54. doi: 10.1016/j.neuron.2015.02.042.
Results Reference
background
PubMed Identifier
25762917
Citation
McMorland AJ, Runnalls KD, Byblow WD. A neuroanatomical framework for upper limb synergies after stroke. Front Hum Neurosci. 2015 Feb 16;9:82. doi: 10.3389/fnhum.2015.00082. eCollection 2015.
Results Reference
background
PubMed Identifier
16394079
Citation
Tresch MC, Cheung VC, d'Avella A. Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J Neurophysiol. 2006 Apr;95(4):2199-212. doi: 10.1152/jn.00222.2005. Epub 2006 Jan 4.
Results Reference
background
Citation
Brunnström S (1970) Movement therapy in hemiplegia: a neurophysiological approach. Medical Dept., Harper & Row.
Results Reference
background
PubMed Identifier
15928065
Citation
Saltiel P, Wyler-Duda K, d'Avella A, Ajemian RJ, Bizzi E. Localization and connectivity in spinal interneuronal networks: the adduction-caudal extension-flexion rhythm in the frog. J Neurophysiol. 2005 Sep;94(3):2120-38. doi: 10.1152/jn.00117.2005. Epub 2005 May 31.
Results Reference
background
PubMed Identifier
26501407
Citation
Saltiel P, d'Avella A, Wyler-Duda K, Bizzi E. Synergy temporal sequences and topography in the spinal cord: evidence for a traveling wave in frog locomotion. Brain Struct Funct. 2016 Nov;221(8):3869-3890. doi: 10.1007/s00429-015-1133-5. Epub 2015 Oct 26.
Results Reference
background
PubMed Identifier
24609464
Citation
Levine AJ, Hinckley CA, Hilde KL, Driscoll SP, Poon TH, Montgomery JM, Pfaff SL. Identification of a cellular node for motor control pathways. Nat Neurosci. 2014 Apr;17(4):586-93. doi: 10.1038/nn.3675. Epub 2014 Mar 9.
Results Reference
background
PubMed Identifier
19091930
Citation
Cheung VC, d'Avella A, Bizzi E. Adjustments of motor pattern for load compensation via modulated activations of muscle synergies during natural behaviors. J Neurophysiol. 2009 Mar;101(3):1235-57. doi: 10.1152/jn.01387.2007. Epub 2008 Dec 17.
Results Reference
background
PubMed Identifier
16000633
Citation
Cheung VC, d'Avella A, Tresch MC, Bizzi E. Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. J Neurosci. 2005 Jul 6;25(27):6419-34. doi: 10.1523/JNEUROSCI.4904-04.2005.
Results Reference
background
PubMed Identifier
27734925
Citation
Caggiano V, Cheung VC, Bizzi E. An Optogenetic Demonstration of Motor Modularity in the Mammalian Spinal Cord. Sci Rep. 2016 Oct 13;6:35185. doi: 10.1038/srep35185.
Results Reference
background
PubMed Identifier
1857964
Citation
Bizzi E, Mussa-Ivaldi FA, Giszter S. Computations underlying the execution of movement: a biological perspective. Science. 1991 Jul 19;253(5017):287-91. doi: 10.1126/science.1857964.
Results Reference
background
PubMed Identifier
28739958
Citation
Takei T, Confais J, Tomatsu S, Oya T, Seki K. Neural basis for hand muscle synergies in the primate spinal cord. Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):8643-8648. doi: 10.1073/pnas.1704328114. Epub 2017 Jul 24.
Results Reference
background
Citation
Zhuang C, Marquez J, Qu H, He X, Lan N (2015) A neuromuscular electrical stimulation strategy based on muscle synergy for stroke rehabilitation. 2015:816-819.
Results Reference
background
PubMed Identifier
23268385
Citation
He X, Du YF, Lan N. Evaluation of feedforward and feedback contributions to hand stiffness and variability in multijoint arm control. IEEE Trans Neural Syst Rehabil Eng. 2013 Jul;21(4):634-47. doi: 10.1109/TNSRE.2012.2234479. Epub 2012 Dec 20.
Results Reference
background
Citation
Niu C, Zhuang C, Bao Y, Li S, Lan N, Xie Q (2017)
Results Reference
background
Citation
Niu C (2018) Effectiveness of Short-Term Training with a Synergy-Based FES Paradigm on Motor Function Recovery Post Stroke, in 12th International Society of Physical and Rehabilitation Medicine World Congress (Paris, France).
Results Reference
background
PubMed Identifier
27695397
Citation
Ferrante S, Chia Bejarano N, Ambrosini E, Nardone A, Turcato AM, Monticone M, Ferrigno G, Pedrocchi A. A Personalized Multi-Channel FES Controller Based on Muscle Synergies to Support Gait Rehabilitation after Stroke. Front Neurosci. 2016 Sep 16;10:425. doi: 10.3389/fnins.2016.00425. eCollection 2016.
Results Reference
background
PubMed Identifier
14677218
Citation
Barreca S, Wolf SL, Fasoli S, Bohannon R. Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair. 2003 Dec;17(4):220-6. doi: 10.1177/0888439003259415.
Results Reference
background
PubMed Identifier
28803534
Citation
Bernhardt J, Borschmann K, Boyd L, Carmichael ST, Corbett D, Cramer SC, Hoffmann T, Kwakkel G, Savitz S, Saposnik G, Walker M, Ward N. Moving Rehabilitation Research Forward: Developing Consensus Statements for Rehabilitation and Recovery Research. Neurorehabil Neural Repair. 2017 Aug;31(8):694-698. doi: 10.1177/1545968317724290.
Results Reference
background
PubMed Identifier
1135616
Citation
Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13-31.
Results Reference
background
PubMed Identifier
17553941
Citation
Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Stein J, Bever C, Hogan N. Changing motor synergies in chronic stroke. J Neurophysiol. 2007 Aug;98(2):757-68. doi: 10.1152/jn.01295.2006. Epub 2007 Jun 6.
Results Reference
background
PubMed Identifier
19794132
Citation
Bowden MG, Clark DJ, Kautz SA. Evaluation of abnormal synergy patterns poststroke: relationship of the Fugl-Meyer Assessment to hemiparetic locomotion. Neurorehabil Neural Repair. 2010 May;24(4):328-37. doi: 10.1177/1545968309343215. Epub 2009 Sep 30.
Results Reference
background
PubMed Identifier
12234086
Citation
Gladstone DJ, Danells CJ, Black SE. The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 2002 Sep;16(3):232-40. doi: 10.1177/154596802401105171.
Results Reference
background
PubMed Identifier
19118128
Citation
Levin MF, Kleim JA, Wolf SL. What do motor "recovery" and "compensation" mean in patients following stroke? Neurorehabil Neural Repair. 2009 May;23(4):313-9. doi: 10.1177/1545968308328727. Epub 2008 Dec 31.
Results Reference
background
PubMed Identifier
21796239
Citation
Safavynia SA, Torres-Oviedo G, Ting LH. Muscle Synergies: Implications for Clinical Evaluation and Rehabilitation of Movement. Top Spinal Cord Inj Rehabil. 2011 Summer;17(1):16-24. doi: 10.1310/sci1701-16.
Results Reference
background
PubMed Identifier
17148468
Citation
Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain. 2007 Jan;130(Pt 1):170-80. doi: 10.1093/brain/awl333.
Results Reference
background
PubMed Identifier
27503908
Citation
Kim B, Winstein C. Can Neurological Biomarkers of Brain Impairment Be Used to Predict Poststroke Motor Recovery? A Systematic Review. Neurorehabil Neural Repair. 2017 Jan;31(1):3-24. doi: 10.1177/1545968316662708. Epub 2016 Aug 8.
Results Reference
background
PubMed Identifier
19880747
Citation
Cheung VC, Piron L, Agostini M, Silvoni S, Turolla A, Bizzi E. Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19563-8. doi: 10.1073/pnas.0910114106. Epub 2009 Oct 30.
Results Reference
background
PubMed Identifier
23155178
Citation
Roh J, Rymer WZ, Perreault EJ, Yoo SB, Beer RF. Alterations in upper limb muscle synergy structure in chronic stroke survivors. J Neurophysiol. 2013 Feb;109(3):768-81. doi: 10.1152/jn.00670.2012. Epub 2012 Nov 14.
Results Reference
background
PubMed Identifier
28785238
Citation
Li S, Zhuang C, Niu CM, Bao Y, Xie Q, Lan N. Evaluation of Functional Correlation of Task-Specific Muscle Synergies with Motor Performance in Patients Poststroke. Front Neurol. 2017 Jul 19;8:337. doi: 10.3389/fneur.2017.00337. eCollection 2017.
Results Reference
background
PubMed Identifier
20007501
Citation
Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol. 2010 Feb;103(2):844-57. doi: 10.1152/jn.00825.2009. Epub 2009 Dec 9.
Results Reference
background
PubMed Identifier
28882330
Citation
Barroso FO, Torricelli D, Molina-Rueda F, Alguacil-Diego IM, Cano-de-la-Cuerda R, Santos C, Moreno JC, Miangolarra-Page JC, Pons JL. Combining muscle synergies and biomechanical analysis to assess gait in stroke patients. J Biomech. 2017 Oct 3;63:98-103. doi: 10.1016/j.jbiomech.2017.08.006. Epub 2017 Aug 20.
Results Reference
background
PubMed Identifier
23489952
Citation
Routson RL, Clark DJ, Bowden MG, Kautz SA, Neptune RR. The influence of locomotor rehabilitation on module quality and post-stroke hemiparetic walking performance. Gait Posture. 2013 Jul;38(3):511-7. doi: 10.1016/j.gaitpost.2013.01.020. Epub 2013 Mar 13.
Results Reference
background
PubMed Identifier
28090358
Citation
Hashiguchi Y, Ohata K, Kitatani R, Yamakami N, Sakuma K, Osako S, Aga Y, Watanabe A, Yamada S. Merging and Fractionation of Muscle Synergy Indicate the Recovery Process in Patients with Hemiplegia: The First Study of Patients after Subacute Stroke. Neural Plast. 2016;2016:5282957. doi: 10.1155/2016/5282957. Epub 2016 Dec 19.
Results Reference
background
PubMed Identifier
10548103
Citation
Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature. 1999 Oct 21;401(6755):788-91. doi: 10.1038/44565.
Results Reference
background
Citation
Cerina L, Cancian P, Franco G, Santambrogio M (2017) A hardware acceleration for surface EMG non-negative matrix factorization. IEEE Int Parallel & Distributed Processing Symposium Workshops 2017: 168-74.
Results Reference
background
PubMed Identifier
27873551
Citation
Santuz A, Ekizos A, Janshen L, Baltzopoulos V, Arampatzis A. On the Methodological Implications of Extracting Muscle Synergies from Human Locomotion. Int J Neural Syst. 2017 Aug;27(5):1750007. doi: 10.1142/S0129065717500071. Epub 2016 Sep 23.
Results Reference
background
PubMed Identifier
24684448
Citation
Devarajan K, Cheung VC. On nonnegative matrix factorization algorithms for signal-dependent noise with application to electromyography data. Neural Comput. 2014 Jun;26(6):1128-68. doi: 10.1162/NECO_a_00576. Epub 2014 Mar 31.
Results Reference
background
PubMed Identifier
16282202
Citation
Ivanenko YP, Poppele RE, Lacquaniti F. Spinal cord maps of spatiotemporal alpha-motoneuron activation in humans walking at different speeds. J Neurophysiol. 2006 Feb;95(2):602-18. doi: 10.1152/jn.00767.2005. Epub 2005 Nov 9.
Results Reference
background
PubMed Identifier
9143432
Citation
Bohannon RW. Comfortable and maximum walking speed of adults aged 20-79 years: reference values and determinants. Age Ageing. 1997 Jan;26(1):15-9. doi: 10.1093/ageing/26.1.15.
Results Reference
background
PubMed Identifier
22908288
Citation
Cheung VC, Turolla A, Agostini M, Silvoni S, Bennis C, Kasi P, Paganoni S, Bonato P, Bizzi E. Muscle synergy patterns as physiological markers of motor cortical damage. Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14652-6. doi: 10.1073/pnas.1212056109. Epub 2012 Aug 20.
Results Reference
background
PubMed Identifier
22096202
Citation
Dominici N, Ivanenko YP, Cappellini G, d'Avella A, Mondi V, Cicchese M, Fabiano A, Silei T, Di Paolo A, Giannini C, Poppele RE, Lacquaniti F. Locomotor primitives in newborn babies and their development. Science. 2011 Nov 18;334(6058):997-9. doi: 10.1126/science.1210617.
Results Reference
background
PubMed Identifier
23641212
Citation
Bizzi E, Cheung VC. The neural origin of muscle synergies. Front Comput Neurosci. 2013 Apr 29;7:51. doi: 10.3389/fncom.2013.00051. eCollection 2013.
Results Reference
background

Learn more about this trial

A Potential Wearable for Post-stroke Rehabilitation

We'll reach out to this number within 24 hrs