search
Back to results

Automatic Oxygen Control for Reducing Extremes of Oxygen Saturation (AreOS): A Randomised Control Trial (AreOS)

Primary Purpose

Prematurity

Status
Completed
Phase
Not Applicable
Locations
United Kingdom
Study Type
Interventional
Intervention
Automatic Oxygen control
Manual Oxygen Control
Sponsored by
South Tees Hospitals NHS Foundation Trust
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional treatment trial for Prematurity focused on measuring Preterm Infants, Automatic oxygen control, Respiratory support

Eligibility Criteria

23 Weeks - 32 Weeks (Child)All SexesDoes not accept healthy volunteers

Inclusion Criteria:

Preterm infants less than 33 weeks (23+0 to 32+6 weeks)

• Receiving invasive or non-invasive mode of respiratory support

Exclusion Criteria:

  • Infants more than or equal to 33 weeks
  • Preterm infants with congenital anomalies
  • Infants on a non-conventional mode of invasive or non-invasive ventilation

Sites / Locations

  • South Tees NHS Trust

Arms of the Study

Arm 1

Arm 2

Arm Type

Experimental

Active Comparator

Arm Label

Automatic Oxygen Control

Manual oxygen control

Arm Description

Infants randomized to this arm will be monitored using automatic oxygen control system on the ventilator. When infants oxygen saturation are out of the target range the ventilator will adjust the oxygen delivery depending on the saturation of the infant to bring the saturation int he target range.

Infants randomized to this arm will be receive oxygen delivery adjustments manually by the nursing and medical team taking care of the infants. When the infants oxygen saturation are out of the target range, the staff will manually adjust the oxygen delivery.

Outcomes

Primary Outcome Measures

proportion of time spent in extreme saturation ( less than or equal to 80%)
The primary outcome of this study is proportion of time spent in extreme saturation (less than or equal to 80%) in preterm infants <33 weeks receiving invasive or non-invasive form of respiratory support.

Secondary Outcome Measures

Proportion of time spent in target saturation
Proportion of the time spent in target saturation of 90-95%
Proportion of time spent in saturation more than or equal to 98%
The proportion of time spent in more than or equal to 98% through the entire period of respiratory support
Number of episodes of prolonged hypoxemia (SpO2 less than 80% for more than 60 sec)
Toatal number of episodes of prolonged hypoxemia through the respiratory support
Brochopulmonary Dysplasia at 36 weeks PMA
Oxygen supplementation or need for respiratory support at 36 weeks PMA
Oxygen need at day 28
Need for oxygen on day 28
Severe Retinopathy of Prematurity
Severe ROP requiring treatment
Periventricular Leuckomalacia
PVL diagnosed by Brain imaging through their stay in the NICU
Total number of days on supplemental oxygen less than 30%
The total number of days the infant has spent in the oxygen less than 30%
Length of hospital day
Total duration of stay in Neonatal Unit

Full Information

First Posted
January 3, 2020
Last Updated
July 14, 2022
Sponsor
South Tees Hospitals NHS Foundation Trust
Collaborators
Vyaire Medical
search

1. Study Identification

Unique Protocol Identification Number
NCT04223258
Brief Title
Automatic Oxygen Control for Reducing Extremes of Oxygen Saturation (AreOS): A Randomised Control Trial
Acronym
AreOS
Official Title
Automatic Oxygen Control for Reducing Extremes of Oxygen Saturation (AreOS): A Randomised Control Trial
Study Type
Interventional

2. Study Status

Record Verification Date
July 2022
Overall Recruitment Status
Completed
Study Start Date
October 1, 2020 (Actual)
Primary Completion Date
January 31, 2022 (Actual)
Study Completion Date
January 31, 2022 (Actual)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Sponsor
Name of the Sponsor
South Tees Hospitals NHS Foundation Trust
Collaborators
Vyaire Medical

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Data Monitoring Committee
Yes

5. Study Description

Brief Summary
Oxygen treatment is common in babies born early (preterm) and requiring intensive care. Having too much or too little oxygen can increase the risk of damage to the eyes and lungs, and contribute to death or disability. Preterm infants because of their immaturity experience episodes of low oxygen levels. The low oxygen episodes are primarily due to pauses in their breathing (Apnoea of prematurity) and immaturity of their lung. These episodes persist for weeks. The lower the gestation at birth the longer the duration of these events. Studies have shown that these episodes of low oxygen saturations especially if frequent and prolonged is associated with poor developmental outcome, severe eye disease and lung disease. Traditionally, the oxygen delivery is manually adjusted when infant has low oxygen saturation. However previous studies have shown despite the best efforts the oxygen level can only be maintained less than half of the time and nearly a one-fifth of the time infant spends in low oxygen levels and nearly one third of the time in high oxygen levels. Now it is possible to maintain oxygen level in target range by using automatic control of oxygen delivery. With the proposed study, we would like to study the efficacy of automatic control of oxygen delivery in reducing the time spent in low oxygen levels.
Detailed Description
Supplemental oxygen remains by far the most commonly used 'drug' in neonatal intensive care units. The goal of oxygen therapy is to maintain normal oxygenation while minimizing hypoxemia and hypoxemia. Preterm infants are particularly vulnerable to oxygen toxicity and oxidative stress leading to retinopathy of prematurity (ROP), bronchopulmonary dysplasia (BPD), and periventricular leukomalacia (PVL)[1]. It's also well known that preterm infants experience hypoxic events which are primarily linked to cardiovascular instability and apnea of prematurity. These events vary as the infant matures. Martin R et al showed in their study that these hypoxic events peaked around 2-4 weeks and decreases by 6-8 weeks in preterm infants (2). Exposure to prolonged and frequent hypoxemic episodes has been associated with increased morbidity and mortality [3-5]. Prolonged hypoxic events (Saturation less than 80% for more than 1 minute) have been associated with severe ROP and impaired neurodevelopmental outcome in survivors (2, 5). Peripheral oxygen saturation monitoring is standard of care in preterm infants. Traditionally oxygen saturation (SpO2) targeting is carried out by manual adjustment of fraction of inspired oxygen (FiO2) by the caregiver based on the monitored oxygen saturation. However, in practice this is only partially achieved during routine care[6]. Hagadorn et al conducted a study in 14 centers and showed that preterm infants under 28 weeks' gestation receiving oxygen spent on average only 48% of the time with SpO2 within the prescribed target range, about 36% of the time above and 16% of the time with SpO2 below the target range [7]. Preterm infants have frequent fluctuations in SpO2 due to their cardio-respiratory instability requiring frequent adjustments of FiO2 [7]. Consequently, these particularly vulnerable infants spend significant time with SpO2 outside intended range and are often exposed to extremes of hypoxemia and hyperoxaemia. It is now possible to have automated control of inspired oxygen using a device (CLiO2™) incorporated in Avea® ventilator. The device continuously monitors the oxygen saturation and adjusts the oxygen delivery to maintain oxygen saturation within the target range. The safety, feasibility and efficacy of this device have already been established [9-14]. There has been further improvement in the algorithm of the pulse oximeter incorporated in Avea® ventilator to achieve a better normative distribution around the median SpO2 value[15]. Automated control of FiO2 significantly improves compliance of oxygen saturation targeting and significantly reduces exposure to hypoxemia as well as hyperoxaemia [9-14, 16,]. Automatic control of oxygen delivery is available in both invasive and non-invasive mode of ventilation (17). The Avea ventilators are equipped with Automatic Oxygen control with invasive as well as non-invasive mode of ventilation. Previous studies looking at the efficacy of automated oxygen control mostly have been a crossover model and the study duration less than 48 hours. As previously mentioned, preterm infants experience hypoxic events for few weeks before cardiopulmonary maturation is established. Hence, it's important to study these events over a longer period of time. The objective of this randomised controlled trial is to evaluate the efficacy of the automatic oxygen control function in reducing the time spent in extremes of oxygen saturations (less than 80%), in preterm infants for the entire period of their respiratory support on invasive or non-invasive mode of ventilation.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Prematurity
Keywords
Preterm Infants, Automatic oxygen control, Respiratory support

7. Study Design

Primary Purpose
Treatment
Study Phase
Not Applicable
Interventional Study Model
Parallel Assignment
Masking
None (Open Label)
Allocation
Randomized
Enrollment
44 (Actual)

8. Arms, Groups, and Interventions

Arm Title
Automatic Oxygen Control
Arm Type
Experimental
Arm Description
Infants randomized to this arm will be monitored using automatic oxygen control system on the ventilator. When infants oxygen saturation are out of the target range the ventilator will adjust the oxygen delivery depending on the saturation of the infant to bring the saturation int he target range.
Arm Title
Manual oxygen control
Arm Type
Active Comparator
Arm Description
Infants randomized to this arm will be receive oxygen delivery adjustments manually by the nursing and medical team taking care of the infants. When the infants oxygen saturation are out of the target range, the staff will manually adjust the oxygen delivery.
Intervention Type
Device
Intervention Name(s)
Automatic Oxygen control
Intervention Description
The CLiO device is integral to the Avea infant ventilator and allows automated OXYGEN adjustment aiming to maintain SpO2 within assigned target range using neonatal pulse oximeter. When first started it adopts the FiO2 previously set by the clinician as the initial 'Baseline FiO2' level. Thereafter, the changes to the FiO2 and their frequency depend on whether SpO2 is below, above or within the target range, the trend in SpO2 and all changes are proportionate to the 'Baseline FiO2' level.
Intervention Type
Other
Intervention Name(s)
Manual Oxygen Control
Intervention Description
In the manual arm the oxygen is adjusted manually by the clinical team.
Primary Outcome Measure Information:
Title
proportion of time spent in extreme saturation ( less than or equal to 80%)
Description
The primary outcome of this study is proportion of time spent in extreme saturation (less than or equal to 80%) in preterm infants <33 weeks receiving invasive or non-invasive form of respiratory support.
Time Frame
Through study completion, an average of 8 weeks
Secondary Outcome Measure Information:
Title
Proportion of time spent in target saturation
Description
Proportion of the time spent in target saturation of 90-95%
Time Frame
Through study completion, an average of 8 weeks
Title
Proportion of time spent in saturation more than or equal to 98%
Description
The proportion of time spent in more than or equal to 98% through the entire period of respiratory support
Time Frame
Through study completion, an average of 8 weeks
Title
Number of episodes of prolonged hypoxemia (SpO2 less than 80% for more than 60 sec)
Description
Toatal number of episodes of prolonged hypoxemia through the respiratory support
Time Frame
Through study completion, an average of 8 weeks
Title
Brochopulmonary Dysplasia at 36 weeks PMA
Description
Oxygen supplementation or need for respiratory support at 36 weeks PMA
Time Frame
Upto 36 weeks post menstrual age
Title
Oxygen need at day 28
Description
Need for oxygen on day 28
Time Frame
4 weeks
Title
Severe Retinopathy of Prematurity
Description
Severe ROP requiring treatment
Time Frame
Upto 36 weeks post menstrual age
Title
Periventricular Leuckomalacia
Description
PVL diagnosed by Brain imaging through their stay in the NICU
Time Frame
Upto 36 weeks post menstrual age
Title
Total number of days on supplemental oxygen less than 30%
Description
The total number of days the infant has spent in the oxygen less than 30%
Time Frame
Upto 36 weeks post menstrual age
Title
Length of hospital day
Description
Total duration of stay in Neonatal Unit
Time Frame
Upto 36 weeks post menstrual age

10. Eligibility

Sex
All
Minimum Age & Unit of Time
23 Weeks
Maximum Age & Unit of Time
32 Weeks
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: Preterm infants less than 33 weeks (23+0 to 32+6 weeks) • Receiving invasive or non-invasive mode of respiratory support Exclusion Criteria: Infants more than or equal to 33 weeks Preterm infants with congenital anomalies Infants on a non-conventional mode of invasive or non-invasive ventilation
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Vrinda Nair, MD,FRCPCH
Organizational Affiliation
South Tees NHS trust
Official's Role
Principal Investigator
Facility Information:
Facility Name
South Tees NHS Trust
City
Middlesbrough
ZIP/Postal Code
TS4 3BW
Country
United Kingdom

12. IPD Sharing Statement

Plan to Share IPD
No
Citations:
PubMed Identifier
20732945
Citation
Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, Hale EC, Newman NS, Schibler K, Carlo WA, Kennedy KA, Poindexter BB, Finer NN, Ehrenkranz RA, Duara S, Sanchez PJ, O'Shea TM, Goldberg RN, Van Meurs KP, Faix RG, Phelps DL, Frantz ID 3rd, Watterberg KL, Saha S, Das A, Higgins RD; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010 Sep;126(3):443-56. doi: 10.1542/peds.2009-2959. Epub 2010 Aug 23.
Results Reference
background
PubMed Identifier
21986336
Citation
Martin RJ, Wang K, Koroglu O, Di Fiore J, Kc P. Intermittent hypoxic episodes in preterm infants: do they matter? Neonatology. 2011;100(3):303-10. doi: 10.1159/000329922. Epub 2011 Oct 3.
Results Reference
background
PubMed Identifier
20472937
Citation
SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network; Carlo WA, Finer NN, Walsh MC, Rich W, Gantz MG, Laptook AR, Yoder BA, Faix RG, Das A, Poole WK, Schibler K, Newman NS, Ambalavanan N, Frantz ID 3rd, Piazza AJ, Sanchez PJ, Morris BH, Laroia N, Phelps DL, Poindexter BB, Cotten CM, Van Meurs KP, Duara S, Narendran V, Sood BG, O'Shea TM, Bell EF, Ehrenkranz RA, Watterberg KL, Higgins RD. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med. 2010 May 27;362(21):1959-69. doi: 10.1056/NEJMoa0911781. Epub 2010 May 16.
Results Reference
background
PubMed Identifier
21524227
Citation
Stenson B, Brocklehurst P, Tarnow-Mordi W; U.K. BOOST II trial; Australian BOOST II trial; New Zealand BOOST II trial. Increased 36-week survival with high oxygen saturation target in extremely preterm infants. N Engl J Med. 2011 Apr 28;364(17):1680-2. doi: 10.1056/NEJMc1101319. No abstract available.
Results Reference
background
PubMed Identifier
26262797
Citation
Poets CF, Roberts RS, Schmidt B, Whyte RK, Asztalos EV, Bader D, Bairam A, Moddemann D, Peliowski A, Rabi Y, Solimano A, Nelson H; Canadian Oxygen Trial Investigators. Association Between Intermittent Hypoxemia or Bradycardia and Late Death or Disability in Extremely Preterm Infants. JAMA. 2015 Aug 11;314(6):595-603. doi: 10.1001/jama.2015.8841.
Results Reference
background
PubMed Identifier
16598294
Citation
Laptook AR, Salhab W, Allen J, Saha S, Walsh M. Pulse oximetry in very low birth weight infants: can oxygen saturation be maintained in the desired range? J Perinatol. 2006 Jun;26(6):337-41. doi: 10.1038/sj.jp.7211500.
Results Reference
background
PubMed Identifier
17015549
Citation
Hagadorn JI, Furey AM, Nghiem TH, Schmid CH, Phelps DL, Pillers DA, Cole CH; AVIOx Study Group. Achieved versus intended pulse oximeter saturation in infants born less than 28 weeks' gestation: the AVIOx study. Pediatrics. 2006 Oct;118(4):1574-82. doi: 10.1542/peds.2005-0413.
Results Reference
background
PubMed Identifier
35999043
Citation
Nair V, Kannan Loganathan P, Lal MK, Pringleton H, Bachman TE, Brodlie M, Dixon P. Automatic oxygen control for reducing extremes of oxygen saturation: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2023 Mar;108(2):136-141. doi: 10.1136/archdischild-2022-324160. Epub 2022 Aug 23.
Results Reference
derived

Learn more about this trial

Automatic Oxygen Control for Reducing Extremes of Oxygen Saturation (AreOS): A Randomised Control Trial

We'll reach out to this number within 24 hrs