search
Back to results

Toripalimab for Local-regional Recurrent Nasopharyngeal Carcinoma

Primary Purpose

Recurrent Nasopharyngeal Carcinoma

Status
Recruiting
Phase
Phase 3
Locations
China
Study Type
Interventional
Intervention
Toripalimab
Sponsored by
Cancer Hospital of Guangxi Medical University
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional treatment trial for Recurrent Nasopharyngeal Carcinoma focused on measuring Recurrent Nasopharyngeal Carcinoma, Toripalimab, Concurrent chemoradiotherapy

Eligibility Criteria

18 Years - 65 Years (Adult, Older Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria:

  1. Patients with newly histologically confirmed recurrent nasopharyngeal carcinoma, or Two or more image examinations (MRI, and PET-CT) show the recurrent tumor
  2. staged as rT3-4N0-1M0或rT1-4N2-3M0 (according to the 8th AJCC edition)
  3. Satisfactory performance status: ECOG (Eastern Cooperative OncologyGroup) scale 0-1
  4. Neutrophil ≥ 1.5×109 /L and PLT ≥4×109 /L and HGB ≥90 g/L
  5. With normal liver function test (ALT、AST ≤ 2.5×ULN, TBIL≤ 1.5×ULN)
  6. With normal renal function test ( creatinine clearance ≥60 ml/min)
  7. sign an "informed consent form
  8. Male and no pregnant female

Exclusion Criteria:

  1. Age older than 65, or younger than 18 years old
  2. Hepatitis B surface antigen (HBsAg) positive and HBV-DNA ≥200IU/ml, or 1000cps/ml.
  3. Patients with positive HCV antibody.
  4. Active, known or suspected autoimmune disease; Type I Diabetes, hypothyroidism those only need hormone replacement therapy, and skin disease (leukoderma, psoriasis, alopecia et al) who don't need systemic therapy can recruit.
  5. History of interstitial lung disease
  6. Equivalent dose more than prednisone 10mg/d or other immunosuppressive treatments within 28 days prior to signing the informed consent.
  7. Receive or will receive live vaccine within 30 days prior to signing the informed consent.
  8. Women of child-bearing potential who are pregnant or breastfeeding.
  9. Suffered from malignant tumors, except the carcinoma in situ, papillary thyroid carcinoma, or skin cancer (non- melanoma) within five years.
  10. Hypersensitivity to macromolecular protein, or to any component of triplezumab.
  11. HIV positive.
  12. Severe, uncontrolled medical conditions and infections.
  13. Other diseases which may influence the safety or compliance of the clinical trial, such as heart failure with symptom, unstable angina, myocardial infarction, active infections those need systemic therapy, mental illness, or their family and society factors.

Sites / Locations

  • Guangxi Medical University Cancer HospitalRecruiting

Arms of the Study

Arm 1

Arm 2

Arm Type

Experimental

No Intervention

Arm Label

Toripalimab+CCRT

CCRT alone

Arm Description

Toripalimab 240mg, and Cisplatin 100mg/m2 (every three weeks),D1,D22,D43 of intensity modulated radiotherapy (IMRT), followed by Toripalimab 240mg every 3 weeks with a total of 9 cycles as adjuvant anti-PD-1 immunotherapy. IMRT: total dose 60-66Gy, 1.8-2.0Gy/f

Cisplatin 100mg/m2(every three weeks),D1,D22,D43 of intensity modulated radiotherapy (IMRT). IMRT: total dose 60-66Gy, 1.8-2.0Gy/f

Outcomes

Primary Outcome Measures

Overall survival (OS)
Defined from date of randomization to date of first documentation of death from Defined from date of randomization to date of first documentation of death from any cause or censored at the date of the last follow-up.

Secondary Outcome Measures

Progress-free survival (PFS)
Defined from date of randomization to date of first documentation of progression or death due to any cause.
Objective Response Rate (ORR)
An objective response is defined as either a confirmed CR or a PR, as determined by the investigator using RECIST v1.1Response Evaluation Criteria in Solid Tumors (RECIST) .
Incidence rate of adverse events (AEs)
Analysis of adverse events (AEs) are based on treatment-related AEs (trAEs) and immune-related AEs (irAEs), and all-grade AEs and grade 3-4 AEs. AEs are evaluated by investigators according to the Common Terminology Criteria for Adverse Events, version 5.0
Change of QoL (quality of life)
QoL scores were assessed by using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire C30 (EORTCQLQ-C30) before radiotherapy, at the end of radiotherapy, at 12 months after radiotherapy.

Full Information

First Posted
April 30, 2020
Last Updated
July 18, 2021
Sponsor
Cancer Hospital of Guangxi Medical University
search

1. Study Identification

Unique Protocol Identification Number
NCT04376866
Brief Title
Toripalimab for Local-regional Recurrent Nasopharyngeal Carcinoma
Official Title
Toripalimab in Combination With Concurrent Chemoradiotherapy for Local-regional Recurrent Nasopharyngeal Carcinoma: a Phase 3, Multicentre, Randomised Controlled Trial
Study Type
Interventional

2. Study Status

Record Verification Date
July 2021
Overall Recruitment Status
Recruiting
Study Start Date
June 28, 2020 (Actual)
Primary Completion Date
April 2023 (Anticipated)
Study Completion Date
April 2028 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Principal Investigator
Name of the Sponsor
Cancer Hospital of Guangxi Medical University

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Data Monitoring Committee
Yes

5. Study Description

Brief Summary
This is a phase 3, multicentre, randomised controlled trial to study the effectiveness and toxicity of PD-1 antibody Toripalimab combined with concurrent cisplatin chemoradiotherapy versus cisplatin concurrent chemoradiotherapy alone in treating patients with locoregionally recurrent nasopharyngeal carcinoma.
Detailed Description
Nasopharyngeal carcinoma (NPC) is endemic in southern China, southeast Asia, and northern Africa. According to a survey from the International Agency for Research on Cancer, there were an estimated 129,079 new cases and 72,987 related deaths in 2018. Radiotherapy is the primary treatment option. Due to advances in disease management, diagnostic imaging, radiotherapy technology, and the broader application of systemic therapy, the prognosis of NPC has improved signifificantly.Nevertheless, localregional recurrence will occur in about 10% patients. Because of radiation resistance, the prognosis of re-irradiation is poor for recurrent nasopharyngeal carcinoma. Hence, there is an urgent need for novel therapies to improve survival and reduce treatment-related toxicity in recurrent NPC patients. Emerging evidence shows that PD-1 antibody is effective for treating recurrent/metastastic NPC patients. This is a phase 3, multicentre, randomised controlled trial to study the effectiveness and toxicity of neoadjuvant and adjuvant PD-1 antibody Toripalimab combined with concurrent chemoradiotherapy (CCRT) versus CCRT alone in treating patients with locoregionally recurrent nasopharyngeal carcinoma.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Recurrent Nasopharyngeal Carcinoma
Keywords
Recurrent Nasopharyngeal Carcinoma, Toripalimab, Concurrent chemoradiotherapy

7. Study Design

Primary Purpose
Treatment
Study Phase
Phase 3
Interventional Study Model
Parallel Assignment
Masking
None (Open Label)
Allocation
Randomized
Enrollment
204 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
Toripalimab+CCRT
Arm Type
Experimental
Arm Description
Toripalimab 240mg, and Cisplatin 100mg/m2 (every three weeks),D1,D22,D43 of intensity modulated radiotherapy (IMRT), followed by Toripalimab 240mg every 3 weeks with a total of 9 cycles as adjuvant anti-PD-1 immunotherapy. IMRT: total dose 60-66Gy, 1.8-2.0Gy/f
Arm Title
CCRT alone
Arm Type
No Intervention
Arm Description
Cisplatin 100mg/m2(every three weeks),D1,D22,D43 of intensity modulated radiotherapy (IMRT). IMRT: total dose 60-66Gy, 1.8-2.0Gy/f
Intervention Type
Drug
Intervention Name(s)
Toripalimab
Other Intervention Name(s)
JS001
Intervention Description
anti-PD-1 antibody
Primary Outcome Measure Information:
Title
Overall survival (OS)
Description
Defined from date of randomization to date of first documentation of death from Defined from date of randomization to date of first documentation of death from any cause or censored at the date of the last follow-up.
Time Frame
5 years
Secondary Outcome Measure Information:
Title
Progress-free survival (PFS)
Description
Defined from date of randomization to date of first documentation of progression or death due to any cause.
Time Frame
5 years
Title
Objective Response Rate (ORR)
Description
An objective response is defined as either a confirmed CR or a PR, as determined by the investigator using RECIST v1.1Response Evaluation Criteria in Solid Tumors (RECIST) .
Time Frame
3 months
Title
Incidence rate of adverse events (AEs)
Description
Analysis of adverse events (AEs) are based on treatment-related AEs (trAEs) and immune-related AEs (irAEs), and all-grade AEs and grade 3-4 AEs. AEs are evaluated by investigators according to the Common Terminology Criteria for Adverse Events, version 5.0
Time Frame
5 years
Title
Change of QoL (quality of life)
Description
QoL scores were assessed by using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire C30 (EORTCQLQ-C30) before radiotherapy, at the end of radiotherapy, at 12 months after radiotherapy.
Time Frame
1 year

10. Eligibility

Sex
All
Minimum Age & Unit of Time
18 Years
Maximum Age & Unit of Time
65 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: Patients with newly histologically confirmed recurrent nasopharyngeal carcinoma, or Two or more image examinations (MRI, and PET-CT) show the recurrent tumor staged as rT3-4N0-1M0或rT1-4N2-3M0 (according to the 8th AJCC edition) Satisfactory performance status: ECOG (Eastern Cooperative OncologyGroup) scale 0-1 Neutrophil ≥ 1.5×109 /L and PLT ≥4×109 /L and HGB ≥90 g/L With normal liver function test (ALT、AST ≤ 2.5×ULN, TBIL≤ 1.5×ULN) With normal renal function test ( creatinine clearance ≥60 ml/min) sign an "informed consent form Male and no pregnant female Exclusion Criteria: Age older than 65, or younger than 18 years old Hepatitis B surface antigen (HBsAg) positive and HBV-DNA ≥200IU/ml, or 1000cps/ml. Patients with positive HCV antibody. Active, known or suspected autoimmune disease; Type I Diabetes, hypothyroidism those only need hormone replacement therapy, and skin disease (leukoderma, psoriasis, alopecia et al) who don't need systemic therapy can recruit. History of interstitial lung disease Equivalent dose more than prednisone 10mg/d or other immunosuppressive treatments within 28 days prior to signing the informed consent. Receive or will receive live vaccine within 30 days prior to signing the informed consent. Women of child-bearing potential who are pregnant or breastfeeding. Suffered from malignant tumors, except the carcinoma in situ, papillary thyroid carcinoma, or skin cancer (non- melanoma) within five years. Hypersensitivity to macromolecular protein, or to any component of triplezumab. HIV positive. Severe, uncontrolled medical conditions and infections. Other diseases which may influence the safety or compliance of the clinical trial, such as heart failure with symptom, unstable angina, myocardial infarction, active infections those need systemic therapy, mental illness, or their family and society factors.
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
Song Qu, PhD
Phone
86-13607887386
Email
daisyqs2002@163.com
First Name & Middle Initial & Last Name or Official Title & Degree
Zhong-Guo Liang, Master
Phone
86-15878779785
Email
liangzhongguo@gxmu.edu.cn
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Song Qu, PhD
Organizational Affiliation
Principal Investigator
Official's Role
Principal Investigator
Facility Information:
Facility Name
Guangxi Medical University Cancer Hospital
City
Nanning
State/Province
Guangxi
ZIP/Postal Code
530021
Country
China
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Zhong-Guo liang, PhD
Phone
+8615878779785
Email
liangzhongguo@gxmu.edu.cn

12. IPD Sharing Statement

Plan to Share IPD
No
IPD Sharing Plan Description
We will share the safety and efficacy data of the study
Citations:
PubMed Identifier
30207593
Citation
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12. Erratum In: CA Cancer J Clin. 2020 Jul;70(4):313.
Results Reference
background
PubMed Identifier
26321262
Citation
Chua MLK, Wee JTS, Hui EP, Chan ATC. Nasopharyngeal carcinoma. Lancet. 2016 Mar 5;387(10022):1012-1024. doi: 10.1016/S0140-6736(15)00055-0. Epub 2015 Aug 28.
Results Reference
background
PubMed Identifier
18173375
Citation
Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677-704. doi: 10.1146/annurev.immunol.26.021607.090331.
Results Reference
background
PubMed Identifier
11224527
Citation
Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, Greenfield EA, Bourque K, Boussiotis VA, Carter LL, Carreno BM, Malenkovich N, Nishimura H, Okazaki T, Honjo T, Sharpe AH, Freeman GJ. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001 Mar;2(3):261-8. doi: 10.1038/85330.
Results Reference
background
PubMed Identifier
16382236
Citation
Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006 Feb 9;439(7077):682-7. doi: 10.1038/nature04444. Epub 2005 Dec 28.
Results Reference
background
PubMed Identifier
23674495
Citation
Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MG, Xu ML, Yu H, Fletcher CD, Freeman GJ, Shipp MA, Rodig SJ. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res. 2013 Jul 1;19(13):3462-73. doi: 10.1158/1078-0432.CCR-13-0855. Epub 2013 May 14.
Results Reference
background
PubMed Identifier
25361008
Citation
Fang W, Zhang J, Hong S, Zhan J, Chen N, Qin T, Tang Y, Zhang Y, Kang S, Zhou T, Wu X, Liang W, Hu Z, Ma Y, Zhao Y, Tian Y, Yang Y, Xue C, Yan Y, Hou X, Huang P, Huang Y, Zhao H, Zhang L. EBV-driven LMP1 and IFN-gamma up-regulate PD-L1 in nasopharyngeal carcinoma: Implications for oncotargeted therapy. Oncotarget. 2014 Dec 15;5(23):12189-202. doi: 10.18632/oncotarget.2608.
Results Reference
background
PubMed Identifier
12721664
Citation
Dong H, Chen L. B7-H1 pathway and its role in the evasion of tumor immunity. J Mol Med (Berl). 2003 May;81(5):281-7. doi: 10.1007/s00109-003-0430-2. Epub 2003 Apr 30.
Results Reference
background
PubMed Identifier
22437870
Citation
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012 Mar 22;12(4):252-64. doi: 10.1038/nrc3239.
Results Reference
background
PubMed Identifier
27718784
Citation
Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C, Worden F, Saba NF, Iglesias Docampo LC, Haddad R, Rordorf T, Kiyota N, Tahara M, Monga M, Lynch M, Geese WJ, Kopit J, Shaw JW, Gillison ML. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N Engl J Med. 2016 Nov 10;375(19):1856-1867. doi: 10.1056/NEJMoa1602252. Epub 2016 Oct 8.
Results Reference
background
PubMed Identifier
27852042
Citation
Costa R, Carneiro BA, Agulnik M, Rademaker AW, Pai SG, Villaflor VM, Cristofanilli M, Sosman JA, Giles FJ. Toxicity profile of approved anti-PD-1 monoclonal antibodies in solid tumors: a systematic review and meta-analysis of randomized clinical trials. Oncotarget. 2017 Jan 31;8(5):8910-8920. doi: 10.18632/oncotarget.13315.
Results Reference
background
PubMed Identifier
26028407
Citation
Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Aren Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B, Spigel DR. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N Engl J Med. 2015 Jul 9;373(2):123-35. doi: 10.1056/NEJMoa1504627. Epub 2015 May 31.
Results Reference
background
PubMed Identifier
25702326
Citation
Zhang J, Fang W, Qin T, Yang Y, Hong S, Liang W, Ma Y, Zhao H, Huang Y, Xue C, Huang P, Hu Z, Zhao Y, Zhang L. Co-expression of PD-1 and PD-L1 predicts poor outcome in nasopharyngeal carcinoma. Med Oncol. 2015 Mar;32(3):86. doi: 10.1007/s12032-015-0501-6. Epub 2015 Feb 22.
Results Reference
background
PubMed Identifier
27341634
Citation
Lee VH, Lo AW, Leung CY, Shek WH, Kwong DL, Lam KO, Tong CC, Sze CK, Leung TW. Correlation of PD-L1 Expression of Tumor Cells with Survival Outcomes after Radical Intensity-Modulated Radiation Therapy for Non-Metastatic Nasopharyngeal Carcinoma. PLoS One. 2016 Jun 24;11(6):e0157969. doi: 10.1371/journal.pone.0157969. eCollection 2016.
Results Reference
background
PubMed Identifier
28837405
Citation
Hsu C, Lee SH, Ejadi S, Even C, Cohen RB, Le Tourneau C, Mehnert JM, Algazi A, van Brummelen EMJ, Saraf S, Thanigaimani P, Cheng JD, Hansen AR. Safety and Antitumor Activity of Pembrolizumab in Patients With Programmed Death-Ligand 1-Positive Nasopharyngeal Carcinoma: Results of the KEYNOTE-028 Study. J Clin Oncol. 2017 Dec 20;35(36):4050-4056. doi: 10.1200/JCO.2017.73.3675. Epub 2017 Aug 24.
Results Reference
background
PubMed Identifier
29584545
Citation
Ma BBY, Lim WT, Goh BC, Hui EP, Lo KW, Pettinger A, Foster NR, Riess JW, Agulnik M, Chang AYC, Chopra A, Kish JA, Chung CH, Adkins DR, Cullen KJ, Gitlitz BJ, Lim DW, To KF, Chan KCA, Lo YMD, King AD, Erlichman C, Yin J, Costello BA, Chan ATC. Antitumor Activity of Nivolumab in Recurrent and Metastatic Nasopharyngeal Carcinoma: An International, Multicenter Study of the Mayo Clinic Phase 2 Consortium (NCI-9742). J Clin Oncol. 2018 May 10;36(14):1412-1418. doi: 10.1200/JCO.2017.77.0388. Epub 2018 Mar 27. Erratum In: J Clin Oncol. 2018 Aug 1;36(22):2360.
Results Reference
background
PubMed Identifier
21509764
Citation
Xiao WW, Huang SM, Han F, Wu SX, Lu LX, Lin CG, Deng XW, Lu TX, Cui NJ, Zhao C. Local control, survival, and late toxicities of locally advanced nasopharyngeal carcinoma treated by simultaneous modulated accelerated radiotherapy combined with cisplatin concurrent chemotherapy: long-term results of a phase 2 study. Cancer. 2011 May 1;117(9):1874-83. doi: 10.1002/cncr.25754. Epub 2010 Nov 16.
Results Reference
background
PubMed Identifier
20643517
Citation
Lai SZ, Li WF, Chen L, Luo W, Chen YY, Liu LZ, Sun Y, Lin AH, Liu MZ, Ma J. How does intensity-modulated radiotherapy versus conventional two-dimensional radiotherapy influence the treatment results in nasopharyngeal carcinoma patients? Int J Radiat Oncol Biol Phys. 2011 Jul 1;80(3):661-8. doi: 10.1016/j.ijrobp.2010.03.024. Epub 2010 Jul 17.
Results Reference
background
PubMed Identifier
29153464
Citation
Lee AW, Ng WT, Pan JJ, Poh SS, Ahn YC, AlHussain H, Corry J, Grau C, Gregoire V, Harrington KJ, Hu CS, Kwong DL, Langendijk JA, Le QT, Lee NY, Lin JC, Lu TX, Mendenhall WM, O'Sullivan B, Ozyar E, Peters LJ, Rosenthal DI, Soong YL, Tao Y, Yom SS, Wee JT. International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma. Radiother Oncol. 2018 Jan;126(1):25-36. doi: 10.1016/j.radonc.2017.10.032. Epub 2017 Nov 15.
Results Reference
background
PubMed Identifier
22178121
Citation
Lee NY, Zhang Q, Pfister DG, Kim J, Garden AS, Mechalakos J, Hu K, Le QT, Colevas AD, Glisson BS, Chan AT, Ang KK. Addition of bevacizumab to standard chemoradiation for locoregionally advanced nasopharyngeal carcinoma (RTOG 0615): a phase 2 multi-institutional trial. Lancet Oncol. 2012 Feb;13(2):172-80. doi: 10.1016/S1470-2045(11)70303-5. Epub 2011 Dec 15.
Results Reference
background
PubMed Identifier
19564532
Citation
Lee N, Harris J, Garden AS, Straube W, Glisson B, Xia P, Bosch W, Morrison WH, Quivey J, Thorstad W, Jones C, Ang KK. Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: radiation therapy oncology group phase II trial 0225. J Clin Oncol. 2009 Aug 1;27(22):3684-90. doi: 10.1200/JCO.2008.19.9109. Epub 2009 Jun 29.
Results Reference
background

Learn more about this trial

Toripalimab for Local-regional Recurrent Nasopharyngeal Carcinoma

We'll reach out to this number within 24 hrs