FEnofibRate as a Metabolic INtervention for COVID-19 (FERMIN)
Primary Purpose
Covid19
Status
Completed
Phase
Phase 2
Locations
United States
Study Type
Interventional
Intervention
Fenofibrate/fenofibric acid
Placebo
Usual care
Sponsored by
About this trial
This is an interventional treatment trial for Covid19
Eligibility Criteria
Inclusion Criteria:
- A diagnosis of COVID-19, based on: (a) A compatible clinical presentation with a positive laboratory test for SARS-CoV-2, or (b) Considered by the primary team to be a Person Under Investigation undergoing testing for COVID-19 with a high clinical probability, in addition to compatible pulmonary infiltrates on chest x-ray (bilateral, intersticial or ground glass opacities) or chest CT.
- Able to provide informed consent.
- Fewer than 14 days since symptom onset.
Exclusion Criteria:
- Known pregnancy or breastfeeding
- Estimated glomerular filtration rate (eGFR) <30 mL/min/1.73m2 or undergoing dialysis (CKD stages 4-5).
- History of active liver disease, cholelithiasis, uncontrolled hypothyroidism, or rhabdomyolysis (suspected or confirmed). Patients with a history of hypothyroidism receiving a stable dose of thyroid replacement therapy for at least 6 weeks, with a documented normal TSH (primary hypothyroidism) or free thyroxine (secondary or tertiary hypothyroidism) level at least 6 weeks after the last dose change will be considered eligible for enrollment.
- Known hypersensitivity to fenofibrate or fenofibric acid.
- Ongoing treatment with fenofibrate, clofibrate, warfarin and other coumarin anticoagulants, glimepiride, cyclosporine, tacrolimus
- Use of statins other than simvastatin, pravastatin or atorvastatin ≤40 mg/d or rosuvastatin ≤20 mg/d
- Prisoners/incarcerated individuals
- Inability to read, write or no access to a smart phone, computer or tablet device
- Intubated patients.
Sites / Locations
- University of Pennsylvania Health System
Arms of the Study
Arm 1
Arm 2
Arm Type
Experimental
Placebo Comparator
Arm Label
Fenofibrate + Usual Care
Placebo + Usual Care
Arm Description
The randomized intervention will be Fenofibrate, in combination with usual care. Dosing: 145 mg of Tricor or a dose-equivalent preparation
The randomized intervention will a matching placebo, in combination with usual care.
Outcomes
Primary Outcome Measures
Primary Hierarchical Composite Endpoint
The primary endpoint of the trial is a global rank score that ranks patient outcomes according to 5 factors. The global rank score, or global severity score, is a nonparametric, hierarchically ranked outcome. The global rank score was generated by ranking all 701 participants on a scale of 1 to 701, from worst to best clinical outcomes. Participants were ranked by (1) time to death; (2) the number of days supported by invasive mechanical ventilation or extracorporeal membrane oxygenation (ECMO); (3) The inspired concentration of oxygen/percent oxygen saturation (FiO2/SpO2) ratio area under the curve; (4) For participants enrolled as outpatients who are subsequently hospitalized, the number of days out of the hospital during the 30 day-period following randomization; (5) For participants enrolled as outpatients who don't get hospitalized during the 30-day observation period, the modified Borg dyspnea scale
Secondary Outcome Measures
Number of Days Alive, Out of the Intensive Care Unit, Free of Mechanical Ventilation/Extracorporeal Membrane Oxygenation, or Maximal Available Respiratory Support in the 30 Days Following Randomization
Number of days participants were alive, out of the intensive care unit, free of mechanical ventilation/extracorporeal membrane oxygenation, or maximal available respiratory support during the 30 days that followed randomization
Seven-category Ordinal Scale
A seven-category ordinal scale consisting of the following categories: 1, not hospitalized with resumption of normal activities; 2, not hospitalized, but unable to resume normal activities; 3, hospitalized, not requiring supplemental oxygen; 4, hospitalized, requiring supplemental oxygen; 5, hospitalized, requiring nasal high-flow oxygen therapy, noninvasive mechanical ventilation, or both; 6, hospitalized, requiring extracorporeal membrane oxygenation (ECMO), invasive mechanical ventilation, or both; and 7, death.
Secondary Hierarchical Composite Endpoint
The secondary global rank score, or global severity score, is a nonparametric, hierarchically ranked outcome. The global rank score was generated by ranking all 701 participants on a scale of 1 to 701, from worst to best clinical outcomes. Participants were ranked by (1) time to death; (2) the number of days supported by invasive mechanical ventilation or extracorporeal membrane oxygenation (ECMO); (3) The inspired concentration of oxygen/percent oxygen saturation (FiO2/SpO2) ratio area under the curve; (4) For participants enrolled as outpatients who are subsequently hospitalized, the number of days out of the hospital during the 30 day-period following randomization; (5) For participants enrolled as outpatients who don't get hospitalized during the 30-day observation period, a COVID-19 symptom scale rating fever, cough, dyspnea, muscle aches, sore throat, loss of smell or taste, headache, diarrhea, fatigue, nausea/vomiting, chest pain (each are rated from 0-10 then summed).
Full Information
NCT ID
NCT04517396
First Posted
August 17, 2020
Last Updated
March 22, 2023
Sponsor
University of Pennsylvania
Collaborators
University of Arizona, Universidad Católica de Santa María (National Sponsor in Perú), Hospital Nacional Adolfo Guevara Velasco, Peru, Hospital Nacional Edgardo Rebagliati Martins, Hospital Nacional Alberto Sabogal Sologuren, Peru, Hospital Nacional Guillermo Almenara Irigoyen, Peru, Hospital Nacional Carlos Alberto Seguin Escobedo - EsSalud, Universidad de Santander, Bucaramanga, Colombia (National Sponsor in Colombia), National Center for Advancing Translational Sciences (NCATS), Hospitales Civiles de Guadalajara, Mexico, Hospital 2 de Mayo. Lima, Peru, Hospital de la Fuerza Aérea del Perú. Lima, Peru, Hospital Militar Central "Coronel Luis Arias Schereiber"; Lima, Perú, Hospital Victor Lazarte Echegaray. Lima, Peru, Ioannina University General Hospital. Greece, AHEPA Thessaloniki University General Hospital. Greece, SOTIRIA Athens General University Hospital of Chest Diseases. Greece, THRIASIO Eleusis General Hospital. Greece, Alexandroupolis University General Hospital. Greece, G.Gennimatas General Hospital, Colombia Centro 1: BIOMELAB S.A.S. Barranquilla, Colombia, Fundación Oftalmológica de Santander. Santander, Colombia, IPS Centro Científico Asistencial. Barranquilla, Colombia, Fundación Cardiomet. Quindio, Colombia, Clínica de Marly. Bogotá, Colombia, Clinica Internacional. Lima, Peru
1. Study Identification
Unique Protocol Identification Number
NCT04517396
Brief Title
FEnofibRate as a Metabolic INtervention for COVID-19
Acronym
FERMIN
Official Title
FEnofibRate as a Metabolic INtervention for Coronavirus Disease 2019
Study Type
Interventional
2. Study Status
Record Verification Date
March 2023
Overall Recruitment Status
Completed
Study Start Date
August 18, 2020 (Actual)
Primary Completion Date
March 30, 2022 (Actual)
Study Completion Date
March 30, 2022 (Actual)
3. Sponsor/Collaborators
Responsible Party, by Official Title
Principal Investigator
Name of the Sponsor
University of Pennsylvania
Collaborators
University of Arizona, Universidad Católica de Santa María (National Sponsor in Perú), Hospital Nacional Adolfo Guevara Velasco, Peru, Hospital Nacional Edgardo Rebagliati Martins, Hospital Nacional Alberto Sabogal Sologuren, Peru, Hospital Nacional Guillermo Almenara Irigoyen, Peru, Hospital Nacional Carlos Alberto Seguin Escobedo - EsSalud, Universidad de Santander, Bucaramanga, Colombia (National Sponsor in Colombia), National Center for Advancing Translational Sciences (NCATS), Hospitales Civiles de Guadalajara, Mexico, Hospital 2 de Mayo. Lima, Peru, Hospital de la Fuerza Aérea del Perú. Lima, Peru, Hospital Militar Central "Coronel Luis Arias Schereiber"; Lima, Perú, Hospital Victor Lazarte Echegaray. Lima, Peru, Ioannina University General Hospital. Greece, AHEPA Thessaloniki University General Hospital. Greece, SOTIRIA Athens General University Hospital of Chest Diseases. Greece, THRIASIO Eleusis General Hospital. Greece, Alexandroupolis University General Hospital. Greece, G.Gennimatas General Hospital, Colombia Centro 1: BIOMELAB S.A.S. Barranquilla, Colombia, Fundación Oftalmológica de Santander. Santander, Colombia, IPS Centro Científico Asistencial. Barranquilla, Colombia, Fundación Cardiomet. Quindio, Colombia, Clínica de Marly. Bogotá, Colombia, Clinica Internacional. Lima, Peru
4. Oversight
Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Product Manufactured in and Exported from the U.S.
No
Data Monitoring Committee
Yes
5. Study Description
Brief Summary
The severe acute respiratory syndrome coronavirus 2 (SARS-CoC-2), the virus responsible for coronavirus disease 2019 (COVID-19), is associated with a high incidence of acute respiratory distress syndrome (ARDS) and death. Aging, obesity, diabetes, hypertension and other risk factors associated with abnormal lipid and carbohydrate metabolism are risk factors for death in COVID-19. Recent studies suggest that COVID-19 progression is dependent on metabolic mechanisms. Moreover, gene expression analyses in cultured human bronchial cells infected with SARS-CoV-2 and lung tissue from patients with COVID-19, indicated a marked shift in cellular metabolism, with excessive intracellular lipid generation. In this cell culture system, fenofibrate (a widely available low-cost generic drug approved by the FDA and multiple other regulatory agencies around the world to treat dyslipemias) at concentrations that can be achieved clinically, markedly inhibited SARS-CoV-2 viral replication. Fenofibrate also has immunomodulatory effects that may be beneficial in the setting of COVID-19. The aim of this trial is to assess the clinical impact of fenofibrate (145 mg/d of Tricor or dose-equivalent preparations for 10 days, with dose adjustment in chronic kidney disease ([CKD]) to improve clinical outcomes in patients with COVID-19.
6. Conditions and Keywords
Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Covid19
7. Study Design
Primary Purpose
Treatment
Study Phase
Phase 2
Interventional Study Model
Parallel Assignment
Masking
ParticipantCare ProviderInvestigatorOutcomes Assessor
Allocation
Randomized
Enrollment
701 (Actual)
8. Arms, Groups, and Interventions
Arm Title
Fenofibrate + Usual Care
Arm Type
Experimental
Arm Description
The randomized intervention will be Fenofibrate, in combination with usual care. Dosing: 145 mg of Tricor or a dose-equivalent preparation
Arm Title
Placebo + Usual Care
Arm Type
Placebo Comparator
Arm Description
The randomized intervention will a matching placebo, in combination with usual care.
Intervention Type
Other
Intervention Name(s)
Fenofibrate/fenofibric acid
Intervention Description
The randomized intervention will be fenofibrate (Tricor) at a dose of 145 mg/d or dose-equivalent preparation of fenofibrate or fenofibric acid, for 10 days. In all cases, appropriate dose reductions will be implemented for patients with chronic kidney disease as per the approved preparation label. The intended duration of randomized treatment will be for 10 days.
Intervention Type
Other
Intervention Name(s)
Placebo
Intervention Description
The control intervention will be a placebo, for 10 days.
Intervention Type
Other
Intervention Name(s)
Usual care
Intervention Description
All participants will otherwise receive usual medical care
Primary Outcome Measure Information:
Title
Primary Hierarchical Composite Endpoint
Description
The primary endpoint of the trial is a global rank score that ranks patient outcomes according to 5 factors. The global rank score, or global severity score, is a nonparametric, hierarchically ranked outcome. The global rank score was generated by ranking all 701 participants on a scale of 1 to 701, from worst to best clinical outcomes. Participants were ranked by (1) time to death; (2) the number of days supported by invasive mechanical ventilation or extracorporeal membrane oxygenation (ECMO); (3) The inspired concentration of oxygen/percent oxygen saturation (FiO2/SpO2) ratio area under the curve; (4) For participants enrolled as outpatients who are subsequently hospitalized, the number of days out of the hospital during the 30 day-period following randomization; (5) For participants enrolled as outpatients who don't get hospitalized during the 30-day observation period, the modified Borg dyspnea scale
Time Frame
30 days
Secondary Outcome Measure Information:
Title
Number of Days Alive, Out of the Intensive Care Unit, Free of Mechanical Ventilation/Extracorporeal Membrane Oxygenation, or Maximal Available Respiratory Support in the 30 Days Following Randomization
Description
Number of days participants were alive, out of the intensive care unit, free of mechanical ventilation/extracorporeal membrane oxygenation, or maximal available respiratory support during the 30 days that followed randomization
Time Frame
Up to 30 days
Title
Seven-category Ordinal Scale
Description
A seven-category ordinal scale consisting of the following categories: 1, not hospitalized with resumption of normal activities; 2, not hospitalized, but unable to resume normal activities; 3, hospitalized, not requiring supplemental oxygen; 4, hospitalized, requiring supplemental oxygen; 5, hospitalized, requiring nasal high-flow oxygen therapy, noninvasive mechanical ventilation, or both; 6, hospitalized, requiring extracorporeal membrane oxygenation (ECMO), invasive mechanical ventilation, or both; and 7, death.
Time Frame
At 15 days
Title
Secondary Hierarchical Composite Endpoint
Description
The secondary global rank score, or global severity score, is a nonparametric, hierarchically ranked outcome. The global rank score was generated by ranking all 701 participants on a scale of 1 to 701, from worst to best clinical outcomes. Participants were ranked by (1) time to death; (2) the number of days supported by invasive mechanical ventilation or extracorporeal membrane oxygenation (ECMO); (3) The inspired concentration of oxygen/percent oxygen saturation (FiO2/SpO2) ratio area under the curve; (4) For participants enrolled as outpatients who are subsequently hospitalized, the number of days out of the hospital during the 30 day-period following randomization; (5) For participants enrolled as outpatients who don't get hospitalized during the 30-day observation period, a COVID-19 symptom scale rating fever, cough, dyspnea, muscle aches, sore throat, loss of smell or taste, headache, diarrhea, fatigue, nausea/vomiting, chest pain (each are rated from 0-10 then summed).
Time Frame
Up to 30 days
Other Pre-specified Outcome Measures:
Title
All-Cause Death
Description
Death from any cause during the observation period
Time Frame
Up to 30 days
Title
Number of Days Alive and Out of the Hospital During the 30 Days Following Randomization
Description
Number of days that participants were alive and out of the hospital during the 30 days following randomization
Time Frame
Up to 30 days
Title
Exploratory Hierarchical Composite Endpoint
Description
The exploratory global rank score, or global severity score, is a nonparametric, hierarchically ranked outcome. The global rank score was generated by ranking all 701 participants on a scale of 1 to 701, from worst to best clinical outcomes. Participants were ranked by (1) time to death; (2) the number of days supported by invasive mechanical ventilation or extracorporeal membrane oxygenation (ECMO); (3) The inspired concentration of oxygen/percent oxygen saturation (FiO2/SpO2) ratio area under the curve; (4) The number of days out of the hospital during the 30 day-period following randomization.
Time Frame
Up to 30 days
10. Eligibility
Sex
All
Minimum Age & Unit of Time
18 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria:
A diagnosis of COVID-19, based on: (a) A compatible clinical presentation with a positive laboratory test for SARS-CoV-2, or (b) Considered by the primary team to be a Person Under Investigation undergoing testing for COVID-19 with a high clinical probability, in addition to compatible pulmonary infiltrates on chest x-ray (bilateral, intersticial or ground glass opacities) or chest CT.
Able to provide informed consent.
Fewer than 14 days since symptom onset.
Exclusion Criteria:
Known pregnancy or breastfeeding
Estimated glomerular filtration rate (eGFR) <30 mL/min/1.73m2 or undergoing dialysis (CKD stages 4-5).
History of active liver disease, cholelithiasis, uncontrolled hypothyroidism, or rhabdomyolysis (suspected or confirmed). Patients with a history of hypothyroidism receiving a stable dose of thyroid replacement therapy for at least 6 weeks, with a documented normal TSH (primary hypothyroidism) or free thyroxine (secondary or tertiary hypothyroidism) level at least 6 weeks after the last dose change will be considered eligible for enrollment.
Known hypersensitivity to fenofibrate or fenofibric acid.
Ongoing treatment with fenofibrate, clofibrate, warfarin and other coumarin anticoagulants, glimepiride, cyclosporine, tacrolimus
Use of statins other than simvastatin, pravastatin or atorvastatin ≤40 mg/d or rosuvastatin ≤20 mg/d
Prisoners/incarcerated individuals
Inability to read, write or no access to a smart phone, computer or tablet device
Intubated patients.
Facility Information:
Facility Name
University of Pennsylvania Health System
City
Philadelphia
State/Province
Pennsylvania
ZIP/Postal Code
19104
Country
United States
12. IPD Sharing Statement
Plan to Share IPD
No
IPD Sharing Plan Description
Not making it available
Citations:
PubMed Identifier
32091533
Citation
Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020 Apr 7;323(13):1239-1242. doi: 10.1001/jama.2020.2648. No abstract available.
Results Reference
background
PubMed Identifier
32242089
Citation
Bornstein SR, Dalan R, Hopkins D, Mingrone G, Boehm BO. Endocrine and metabolic link to coronavirus infection. Nat Rev Endocrinol. 2020 Jun;16(6):297-298. doi: 10.1038/s41574-020-0353-9.
Results Reference
background
PubMed Identifier
16759303
Citation
Yang JK, Feng Y, Yuan MY, Yuan SY, Fu HJ, Wu BY, Sun GZ, Yang GR, Zhang XL, Wang L, Xu X, Xu XP, Chan JC. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med. 2006 Jun;23(6):623-8. doi: 10.1111/j.1464-5491.2006.01861.x.
Results Reference
background
PubMed Identifier
32171076
Citation
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020 Mar 28;395(10229):1054-1062. doi: 10.1016/S0140-6736(20)30566-3. Epub 2020 Mar 11. Erratum In: Lancet. 2020 Mar 28;395(10229):1038. Lancet. 2020 Mar 28;395(10229):1038.
Results Reference
background
PubMed Identifier
32109013
Citation
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020 Apr 30;382(18):1708-1720. doi: 10.1056/NEJMoa2002032. Epub 2020 Feb 28.
Results Reference
background
PubMed Identifier
32167524
Citation
Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu J, Zhou X, Chen D, Xiong W, Xu L, Zhou F, Jiang J, Bai C, Zheng J, Song Y. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020 Jul 1;180(7):934-943. doi: 10.1001/jamainternmed.2020.0994. Erratum In: JAMA Intern Med. 2020 Jul 1;180(7):1031.
Results Reference
background
PubMed Identifier
32369736
Citation
Zhu L, She ZG, Cheng X, Qin JJ, Zhang XJ, Cai J, Lei F, Wang H, Xie J, Wang W, Li H, Zhang P, Song X, Chen X, Xiang M, Zhang C, Bai L, Xiang D, Chen MM, Liu Y, Yan Y, Liu M, Mao W, Zou J, Liu L, Chen G, Luo P, Xiao B, Zhang C, Zhang Z, Lu Z, Wang J, Lu H, Xia X, Wang D, Liao X, Peng G, Ye P, Yang J, Yuan Y, Huang X, Guo J, Zhang BH, Li H. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020 Jun 2;31(6):1068-1077.e3. doi: 10.1016/j.cmet.2020.04.021. Epub 2020 May 1.
Results Reference
background
PubMed Identifier
20580052
Citation
McBride CE, Machamer CE. Palmitoylation of SARS-CoV S protein is necessary for partitioning into detergent-resistant membranes and cell-cell fusion but not interaction with M protein. Virology. 2010 Sep 15;405(1):139-48. doi: 10.1016/j.virol.2010.05.031. Epub 2010 Jul 1.
Results Reference
background
Citation
Ehrlich E, Uhl S, Ioannidis K, Hofree M, tenOever B, Nahmias Y. The SARS-CoV-2 Transcriptional Metabolic Signature in Lung Epithelium. Cell Sneak Peak (submission only). 2020
Results Reference
background
PubMed Identifier
18653653
Citation
Schaefer MB, Pose A, Ott J, Hecker M, Behnk A, Schulz R, Weissmann N, Gunther A, Seeger W, Mayer K. Peroxisome proliferator-activated receptor-alpha reduces inflammation and vascular leakage in a murine model of acute lung injury. Eur Respir J. 2008 Nov;32(5):1344-53. doi: 10.1183/09031936.00035808. Epub 2008 Jul 24.
Results Reference
background
PubMed Identifier
26151160
Citation
Hecker M, Behnk A, Morty RE, Sommer N, Vadasz I, Herold S, Seeger W, Mayer K. PPAR-alpha activation reduced LPS-induced inflammation in alveolar epithelial cells. Exp Lung Res. 2015;41(7):393-403. doi: 10.3109/01902148.2015.1046200.
Results Reference
background
PubMed Identifier
27339772
Citation
Huang D, Zhao Q, Liu H, Guo Y, Xu H. PPAR-alpha Agonist WY-14643 Inhibits LPS-Induced Inflammation in Synovial Fibroblasts via NF-kB Pathway. J Mol Neurosci. 2016 Aug;59(4):544-53. doi: 10.1007/s12031-016-0775-y. Epub 2016 Jun 24.
Results Reference
background
PubMed Identifier
28352420
Citation
Ling H, Luoma JT, Hilleman D. A Review of Currently Available Fenofibrate and Fenofibric Acid Formulations. Cardiol Res. 2013 Apr;4(2):47-55. doi: 10.4021/cr270w. Epub 2013 May 9.
Results Reference
background
PubMed Identifier
24631411
Citation
Ladabaum U, Mannalithara A, Myer PA, Singh G. Obesity, abdominal obesity, physical activity, and caloric intake in US adults: 1988 to 2010. Am J Med. 2014 Aug;127(8):717-727.e12. doi: 10.1016/j.amjmed.2014.02.026. Epub 2014 Mar 11.
Results Reference
background
PubMed Identifier
28335841
Citation
O'Connor CM, Whellan DJ, Fiuzat M, Punjabi NM, Tasissa G, Anstrom KJ, Benjafield AV, Woehrle H, Blase AB, Lindenfeld J, Oldenburg O. Cardiovascular Outcomes With Minute Ventilation-Targeted Adaptive Servo-Ventilation Therapy in Heart Failure: The CAT-HF Trial. J Am Coll Cardiol. 2017 Mar 28;69(12):1577-1587. doi: 10.1016/j.jacc.2017.01.041. Erratum In: J Am Coll Cardiol. 2017 May 9;69(18):2355.
Results Reference
background
PubMed Identifier
27483064
Citation
Margulies KB, Hernandez AF, Redfield MM, Givertz MM, Oliveira GH, Cole R, Mann DL, Whellan DJ, Kiernan MS, Felker GM, McNulty SE, Anstrom KJ, Shah MR, Braunwald E, Cappola TP; NHLBI Heart Failure Clinical Research Network. Effects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA. 2016 Aug 2;316(5):500-8. doi: 10.1001/jama.2016.10260.
Results Reference
background
PubMed Identifier
20841546
Citation
Felker GM, Maisel AS. A global rank end point for clinical trials in acute heart failure. Circ Heart Fail. 2010 Sep;3(5):643-6. doi: 10.1161/CIRCHEARTFAILURE.109.926030. No abstract available.
Results Reference
background
PubMed Identifier
32031570
Citation
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020 Mar 17;323(11):1061-1069. doi: 10.1001/jama.2020.1585. Erratum In: JAMA. 2021 Mar 16;325(11):1113.
Results Reference
background
PubMed Identifier
15840177
Citation
Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005 Apr 20;5:13. doi: 10.1186/1471-2288-5-13.
Results Reference
background
PubMed Identifier
15195324
Citation
Julious SA. Sample sizes for clinical trials with normal data. Stat Med. 2004 Jun 30;23(12):1921-86. doi: 10.1002/sim.1783.
Results Reference
background
PubMed Identifier
497341
Citation
O'Brien PC, Fleming TR. A multiple testing procedure for clinical trials. Biometrics. 1979 Sep;35(3):549-56.
Results Reference
background
Citation
PASS 16 Power Analysis and Sample Size Software. NCSS, LLC. Kaysville, Utah, USA, ncss.com/software/pass. 2018
Results Reference
background
PubMed Identifier
29984411
Citation
Fay MP, Malinovsky Y. Confidence intervals of the Mann-Whitney parameter that are compatible with the Wilcoxon-Mann-Whitney test. Stat Med. 2018 Nov 30;37(27):3991-4006. doi: 10.1002/sim.7890. Epub 2018 Jul 8.
Results Reference
background
PubMed Identifier
3567292
Citation
Willan AR, Pater JL. Carryover and the two-period crossover clinical trial. Biometrics. 1986 Sep;42(3):593-9.
Results Reference
background
PubMed Identifier
7370374
Citation
Brown BW Jr. The crossover experiment for clinical trials. Biometrics. 1980 Mar;36(1):69-79.
Results Reference
background
PubMed Identifier
14338679
Citation
GRIZZLE JE. THE TWO-PERIOD CHANGE-OVER DESIGN AN ITS USE IN CLINICAL TRIALS. Biometrics. 1965 Jun;21:467-80. No abstract available.
Results Reference
background
Citation
Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox Model. In: Statistics for Biology and Health. New York, NY: Springer; 2001
Results Reference
background
Citation
Little RJ. Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association. 1995;90:1112-1121
Results Reference
background
PubMed Identifier
26547468
Citation
Li P, Stuart EA, Allison DB. Multiple Imputation: A Flexible Tool for Handling Missing Data. JAMA. 2015 Nov 10;314(18):1966-7. doi: 10.1001/jama.2015.15281. No abstract available.
Results Reference
background
PubMed Identifier
17994463
Citation
Tahmaz M, Kumbasar B, Ergen K, Ure U, Karatemiz G, Kazancioglu R. Acute renal failure secondary to fenofibrate monotherapy-induced rhabdomyolysis. Ren Fail. 2007;29(7):927-30. doi: 10.1080/08860220701573640.
Results Reference
background
PubMed Identifier
15269493
Citation
Ghosh B, Sengupta S, Bhattacharjee B, Majumder A, Sarkar SB. Fenofibrate-induced myopathy. Neurol India. 2004 Jun;52(2):268-9.
Results Reference
background
PubMed Identifier
32481339
Citation
Zhou J, Li D, Cheng Q. Fenofibrate monotherapy-induced rhabdomyolysis in a patient with post-pancreatitis diabetes mellitus: A rare case report and a review of the literature. Medicine (Baltimore). 2020 May 22;99(21):e20390. doi: 10.1097/MD.0000000000020390.
Results Reference
background
PubMed Identifier
16310551
Citation
Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, Forder P, Pillai A, Davis T, Glasziou P, Drury P, Kesaniemi YA, Sullivan D, Hunt D, Colman P, d'Emden M, Whiting M, Ehnholm C, Laakso M; FIELD study investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005 Nov 26;366(9500):1849-61. doi: 10.1016/S0140-6736(05)67667-2. Erratum In: Lancet. 2006 Oct 21;368(9545):1420. Lancet. 2006 Oct 21;368(9545):1415.
Results Reference
background
PubMed Identifier
16291008
Citation
Davidson MH. Reducing residual risk for patients on statin therapy: the potential role of combination therapy. Am J Cardiol. 2005 Nov 7;96(9A):3K-13K; discussion 34K-35K. doi: 10.1016/j.amjcard.2005.08.002. Epub 2005 Sep 12.
Results Reference
background
PubMed Identifier
22840347
Citation
Guo J, Meng F, Ma N, Li C, Ding Z, Wang H, Hou R, Qin Y. Meta-analysis of safety of the coadministration of statin with fenofibrate in patients with combined hyperlipidemia. Am J Cardiol. 2012 Nov 1;110(9):1296-301. doi: 10.1016/j.amjcard.2012.06.050. Epub 2012 Jul 27.
Results Reference
background
PubMed Identifier
20110022
Citation
Davidson MH, Rooney MW, Drucker J, Eugene Griffin H, Oosman S, Beckert M; LCP-AtorFen Investigators. Efficacy and tolerability of atorvastatin/fenofibrate fixed-dose combination tablet compared with atorvastatin and fenofibrate monotherapies in patients with dyslipidemia: a 12-week, multicenter, double-blind, randomized, parallel-group study. Clin Ther. 2009 Dec;31(12):2824-38. doi: 10.1016/j.clinthera.2009.12.007.
Results Reference
background
PubMed Identifier
20228404
Citation
ACCORD Study Group; Ginsberg HN, Elam MB, Lovato LC, Crouse JR 3rd, Leiter LA, Linz P, Friedewald WT, Buse JB, Gerstein HC, Probstfield J, Grimm RH, Ismail-Beigi F, Bigger JT, Goff DC Jr, Cushman WC, Simons-Morton DG, Byington RP. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010 Apr 29;362(17):1563-74. doi: 10.1056/NEJMoa1001282. Epub 2010 Mar 14. Erratum In: N Engl J Med. 2010 May 6;362(18):1748.
Results Reference
background
PubMed Identifier
15317833
Citation
Bergman AJ, Murphy G, Burke J, Zhao JJ, Valesky R, Liu L, Lasseter KC, He W, Prueksaritanont T, Qiu Y, Hartford A, Vega JM, Paolini JF. Simvastatin does not have a clinically significant pharmacokinetic interaction with fenofibrate in humans. J Clin Pharmacol. 2004 Sep;44(9):1054-62. doi: 10.1177/0091270004268044.
Results Reference
background
PubMed Identifier
20413454
Citation
Whitfield LR, Porcari AR, Alvey C, Abel R, Bullen W, Hartman D. Effect of gemfibrozil and fenofibrate on the pharmacokinetics of atorvastatin. J Clin Pharmacol. 2011 Mar;51(3):378-88. doi: 10.1177/0091270010366446. Epub 2010 Apr 22.
Results Reference
background
PubMed Identifier
25688207
Citation
Patino-Rodriguez O, Martinez-Medina RM, Torres-Roque I, Martinez-Delgado M, Mares-Garcia AS, Escobedo-Moratilla A, Covarrubias-Pinedo A, Arzola-Paniagua A, Herrera-Torres JL, Perez-Urizar J. Absence of a significant pharmacokinetic interaction between atorvastatin and fenofibrate: a randomized, crossover, study of a fixed-dose formulation in healthy Mexican subjects. Front Pharmacol. 2015 Jan 29;6:4. doi: 10.3389/fphar.2015.00004. eCollection 2015.
Results Reference
background
PubMed Identifier
10976543
Citation
Backman JT, Kyrklund C, Kivisto KT, Wang JS, Neuvonen PJ. Plasma concentrations of active simvastatin acid are increased by gemfibrozil. Clin Pharmacol Ther. 2000 Aug;68(2):122-9. doi: 10.1067/mcp.2000.108507.
Results Reference
background
PubMed Identifier
12811363
Citation
Kyrklund C, Backman JT, Neuvonen M, Neuvonen PJ. Gemfibrozil increases plasma pravastatin concentrations and reduces pravastatin renal clearance. Clin Pharmacol Ther. 2003 Jun;73(6):538-44. doi: 10.1016/S0009-9236(03)00052-3.
Results Reference
background
PubMed Identifier
15116058
Citation
Schneck DW, Birmingham BK, Zalikowski JA, Mitchell PD, Wang Y, Martin PD, Lasseter KC, Brown CD, Windass AS, Raza A. The effect of gemfibrozil on the pharmacokinetics of rosuvastatin. Clin Pharmacol Ther. 2004 May;75(5):455-63. doi: 10.1016/j.clpt.2003.12.014.
Results Reference
background
PubMed Identifier
31890711
Citation
Guiomar V, Oliveira D, Correia C, Pereira E. Efficacy of Rituximab in Refractory Inflammatory Myopathy Associated With Coexistence of Behcet's Disease and Antiphospholipid Syndrome. Eur J Case Rep Intern Med. 2019 Nov 11;6(11):001294. doi: 10.12890/2019_001294. eCollection 2019.
Results Reference
background
PubMed Identifier
12398566
Citation
Atmaca H, Sayarlioglu H, Kulah E, Demircan N, Akpolat T. Rhabdomyolysis associated with gemfibrozil-colchicine therapy. Ann Pharmacother. 2002 Nov;36(11):1719-21. doi: 10.1345/aph.1C028.
Results Reference
background
PubMed Identifier
16248366
Citation
Sugie M, Kuriki A, Arai D, Ichikawa H, Kawamura M. [A case report of acute neuromyopathy induced by concomitant use of colchicine and bezafibrate]. No To Shinkei. 2005 Sep;57(9):785-90. Japanese.
Results Reference
background
PubMed Identifier
12595630
Citation
Feher MD, Hepburn AL, Hogarth MB, Ball SG, Kaye SA. Fenofibrate enhances urate reduction in men treated with allopurinol for hyperuricaemia and gout. Rheumatology (Oxford). 2003 Feb;42(2):321-5. doi: 10.1093/rheumatology/keg103.
Results Reference
background
PubMed Identifier
15481999
Citation
Schlesinger N. Management of acute and chronic gouty arthritis: present state-of-the-art. Drugs. 2004;64(21):2399-416. doi: 10.2165/00003495-200464210-00003.
Results Reference
background
PubMed Identifier
16913436
Citation
Lee YH, Lee CH, Lee J. Effect of fenofibrate in combination with urate lowering agents in patients with gout. Korean J Intern Med. 2006 Jun;21(2):89-93. doi: 10.3904/kjim.2006.21.2.89.
Results Reference
background
PubMed Identifier
30425304
Citation
Jung JY, Choi Y, Suh CH, Yoon D, Kim HA. Effect of fenofibrate on uric acid level in patients with gout. Sci Rep. 2018 Nov 13;8(1):16767. doi: 10.1038/s41598-018-35175-z.
Results Reference
background
PubMed Identifier
29571506
Citation
Khanna PP. Gout: a patrician malady no more. Lancet Diabetes Endocrinol. 2018 Apr;6(4):263-264. doi: 10.1016/S2213-8587(18)30073-1. No abstract available.
Results Reference
background
PubMed Identifier
29496472
Citation
Waldman B, Ansquer JC, Sullivan DR, Jenkins AJ, McGill N, Buizen L, Davis TME, Best JD, Li L, Feher MD, Foucher C, Kesaniemi YA, Flack J, d'Emden MC, Scott RS, Hedley J, Gebski V, Keech AC; FIELD investigators. Effect of fenofibrate on uric acid and gout in type 2 diabetes: a post-hoc analysis of the randomised, controlled FIELD study. Lancet Diabetes Endocrinol. 2018 Apr;6(4):310-318. doi: 10.1016/S2213-8587(18)30029-9. Epub 2018 Feb 26.
Results Reference
background
Citation
Ting R-D, Keech A. Fenofibrate and renal disease: clinical effects in diabetes. Clinical Lipidology. 2013;8(6):669-680
Results Reference
background
PubMed Identifier
11847949
Citation
McDonald KB, Garber BG, Perreault MM. Pancreatitis associated with simvastatin plus fenofibrate. Ann Pharmacother. 2002 Feb;36(2):275-9. doi: 10.1345/aph.1A180.
Results Reference
background
PubMed Identifier
21094360
Citation
Enger C, Gately R, Ming EE, Niemcryk SJ, Williams L, McAfee AT. Pharmacoepidemiology safety study of fibrate and statin concomitant therapy. Am J Cardiol. 2010 Dec 1;106(11):1594-601. doi: 10.1016/j.amjcard.2010.07.041. Epub 2010 Oct 14.
Results Reference
background
PubMed Identifier
36344766
Citation
Chirinos JA, Lopez-Jaramillo P, Giamarellos-Bourboulis EJ, Davila-Del-Carpio GH, Bizri AR, Andrade-Villanueva JF, Salman O, Cure-Cure C, Rosado-Santander NR, Cornejo Giraldo MP, Gonzalez-Hernandez LA, Moghnieh R, Angeliki R, Cruz Saldarriaga ME, Pariona M, Medina C, Dimitroulis I, Vlachopoulos C, Gutierrez C, Rodriguez-Mori JE, Gomez-Laiton E, Cotrina Pereyra R, Ravelo Hernandez JL, Arbanil H, Accini-Mendoza J, Perez-Mayorga M, Milionis C, Poulakou G, Sanchez G, Valdivia-Vega R, Villavicencio-Carranza M, Ayala-Garcia RJ, Castro-Callirgos CA, Alfaro Carrasco RM, Garrido Lecca Danos W, Sharkoski T, Greene K, Pourmussa B, Greczylo C, Ortega-Legaspi J, Jacoby D, Chittams J, Katsaounou P, Alexiou Z, Sympardi S, Sweitzer NK, Putt M, Cohen JB; FERMIN Investigators. A randomized clinical trial of lipid metabolism modulation with fenofibrate for acute coronavirus disease 2019. Nat Metab. 2022 Dec;4(12):1847-1857. doi: 10.1038/s42255-022-00698-3. Epub 2022 Nov 7.
Results Reference
derived
PubMed Identifier
35982675
Citation
Chirinos J, Lopez-Jaramillo P, Giamarellos-Bourboulis E, Davila-Del-Carpio G, Bizri A, Andrade-Villanueva J, Salman O, Cure-Cure C, Rosado-Santander N, Giraldo MC, Gonzalez-Hernandez L, Moghnieh R, Angeliki R, Saldarriaga MC, Pariona M, Medina C, Dimitroulis I, Vlachopoulos C, Gutierrez C, Rodriguez-Mori J, Gomez-Laiton E, Pereyra R, Hernandez JR, Arbanil H, Accini-Mendoza J, Perez-Mayorga M, Milionis H, Poulakou G, Sanchez G, Valdivia-Vega R, Villavicencio-Carranza M, Ayala-Garcia R, Castro-Callirgos C, Carrasco RA, Danos WL, Sharkoski T, Greene K, Pourmussa B, Greczylo C, Chittams J, Katsaounou P, Alexiou Z, Sympardi S, Sweitzer N, Putt M, Cohen J. A Randomized Trial of Lipid Metabolism Modulation with Fenofibrate for Acute Coronavirus Disease 2019. Res Sq. 2022 Aug 10:rs.3.rs-1933913. doi: 10.21203/rs.3.rs-1933913/v1. Preprint.
Results Reference
derived
Learn more about this trial
FEnofibRate as a Metabolic INtervention for COVID-19
We'll reach out to this number within 24 hrs