Biomarkers for Periodontitis Relapse
Primary Purpose
Periodontitis
Status
Completed
Phase
Not Applicable
Locations
Sweden
Study Type
Interventional
Intervention
Periodontal surgery
Regenerative periodontal surgery
Sponsored by
About this trial
This is an interventional treatment trial for Periodontitis focused on measuring Periodontitis, Gingival crevicular fluid (GCF), Serum, Inflammation
Eligibility Criteria
Inclusion Criteria:
- patient with diagnosed periodontitis
- at least three teeth with ≥ 4mm loss of bone support detected at radiograph, combined with periodontal pocket depth ≥5mm and bleeding on probing and/or pus, in two quadrants
Exclusion Criteria:
- periodontal therapy the last 3 months
- intake of antibiotic the last 3 months
- intake of anti-inflammatory drug the last 2 weeks before collection of samples
Sites / Locations
- Specialist Clinic in Dental Care, Gävle Hospital, Public Dental Health Gävleborg AB, Region Gävleborg
- Specialist Clinic in Dental Care, Gävle Hospital, Public Dental Health Gävleborg, Region Gävleborg
Arms of the Study
Arm 1
Arm 2
Arm Type
Other
Other
Arm Label
Flap surgery alone
Flap surgery with adjunctive EMD
Arm Description
Access flap
Access flap and adjunctive enamel matrix derivative
Outcomes
Primary Outcome Measures
Bleeding on probing (BOP) 3 months
Change in BOP
Bleeding on probing (BOP) 6 months
Change in BOP
Bleeding on probing (BOP) 12 months
Change in BOP
Periodontal pocket depth (PPD) 3 months
Change in PPD
Periodontal pocket depth (PPD) 6 months
Change in PPD
Periodontal pocket depth (PPD) 12 months
Change in PPD
Plaque Index (PLI) 3 months
Change in PLI
Plaque Index (PLI) 6 months
Change in PLI
Plaque Index (PLI) 12 months
Change in PLI
Biomarkers in blood serum 3 months
Change in serum protein profile using Inflammation panel (92 proteins) by Olink Bioscience plus V-PLEX Vascular Injury Panel 2 Human Kit to assess concentration of CRP, ICAM-1, SAA and VCAM-1.
Biomarkers in blood serum 6 months
Change in serum protein profile using Inflammation panel (92 proteins) by Olink Bioscience plus V-PLEX Vascular Injury Panel 2 Human Kit to assess concentration of CRP, ICAM-1, SAA and VCAM-1.
Biomarkers in blood serum 12 months
Change in serum protein profile using Inflammation panel (92 proteins) by Olink Bioscience plus V-PLEX Vascular Injury Panel 2 Human Kit to assess concentration of CRP, ICAM-1, SAA and VCAM-1.
Biomarkers in gingival crevicular fluid (GCF) 3 months
Change in GCF protein profile using Inflammation panel (92 proteins) by Olink Bioscience.
Biomarkers in gingival crevicular fluid (GCF) 6 months
Change in GCF protein profile using Inflammation panel (92 proteins) by Olink Bioscience.
Biomarkers in gingival crevicular fluid (GCF) 12 months
Change in GCF protein profile using Inflammation panel (92 proteins) by Olink Bioscience.
Secondary Outcome Measures
Association between BOP and serum protein profile 3 months
Change in serum protein profile in relation to the clinical parameter bleeding on probing (BOP)
Association between BOP and serum protein profile 6 months
Change in serum protein profile in relation to the clinical parameter bleeding on probing (BOP)
Association between BOP and serum protein profile 12 months
Change in serum protein profile in relation to the clinical parameter bleeding on probing (BOP)
Association between PPD and serum protein profile 3 months
Change in serum protein profile in relation to the clinical parameter periodontal pocket depth (PPD)
Association between PPD and serum protein profile 6 months
Change in serum protein profile in relation to the clinical parameter periodontal pocket depth (PPD)
Association between PPD and serum protein profile 12 months
Change in serum protein profile in relation to the clinical parameter periodontal pocket depth (PPD)
Association between BOP and GCF protein profile 3 months
Change in protein profile in the gingival crevicular fluid (GCF) in relation to the clinical parameters bleeding on probing (BOP)
Association between BOP and GCF protein profile 6 months
Change in protein profile in the gingival crevicular fluid (GCF) in relation to the clinical parameters bleeding on probing (BOP)
Association between BOP and GCF protein profile 12 months
Change in protein profile in the gingival crevicular fluid (GCF) in relation to the clinical parameters bleeding on probing (BOP)
Association between PPD and GCF protein profile 3 months
Change in protein profile in the gingival crevicular fluid (GCF) in relation to the clinical parameters probing pocket depth (PPD)
Association between PPD and GCF protein profile 6 months
Change in protein profile in the gingival crevicular fluid (GCF) in relation to the clinical parameters probing pocket depth (PPD)
Association between PPD and GCF protein profile 12 months
Change in protein profile in the gingival crevicular fluid (GCF) in relation to the clinical parameters probing pocket depth (PPD)
Full Information
NCT ID
NCT04663165
First Posted
November 12, 2020
Last Updated
December 8, 2020
Sponsor
Anders Holmlund
Collaborators
Umeå University
1. Study Identification
Unique Protocol Identification Number
NCT04663165
Brief Title
Biomarkers for Periodontitis Relapse
Official Title
Biomarkers in Gingival Exudate and Blood Serum Before and After Surgical Treatment of Periodontitis
Study Type
Interventional
2. Study Status
Record Verification Date
December 2020
Overall Recruitment Status
Completed
Study Start Date
February 4, 2010 (Actual)
Primary Completion Date
September 23, 2013 (Actual)
Study Completion Date
January 12, 2015 (Actual)
3. Sponsor/Collaborators
Responsible Party, by Official Title
Sponsor-Investigator
Name of the Sponsor
Anders Holmlund
Collaborators
Umeå University
4. Oversight
Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Data Monitoring Committee
No
5. Study Description
Brief Summary
In this clinical study, we have collected GCF at diseased teeth and at the same time drawn blood, both before and at 3, 6 and 12 months after periodontal surgical treatment. This give us the opportunity to investigate if periodontal treatment could reduce inflammatory biomarkers in the systemic circulation and if there is a co-variation between biomarkers in GCF and blood.
In part I of this study, we focus on biomarkers from blood serum in patients with periodontitis, before surgical therapy and under a healing period 12 months.
In part II, biomarkers in the locally collected GCF will be analyzed together with clinically reported measurements and compared with biomarkers in blood serum.
Hypothesis are
Periodontal treatment followed by clinical healing and periodontal health will be associated a change/ reduction in biomarkers in GCF.
The systemic levels of inflammatory biomarkers may show a delayed response to clinical healing. Periodontal surgical therapy may reduce circulating inflammatory biomarkers that could affect the low-grade chronic inflammation.
There is a co-variation between inflammatory biomarkers in GCF and the systemic circulation.
Detailed Description
Periodontitis, a disease affecting the tissue supporting the tooth, is initiated by microbes colonizing the tooth causing an inflammation of the soft tissue around the tooth. In some sensitive individuals the inflammatory response leads to loss of jawbone, which affect the bone support of the tooth and may end up in loss of teeth. Periodontitis is the sixth most prevalent disease in the world, 40% of the population with affected jawbone support and approximately 10% of the population suffer from severe loss of the supporting jawbone at teeth. Periodontitis may be halted or resolved by removing the microbial biofilm from the teeth root and in severe cases combined with surgical treatment removing inflammatory tissue. The genetic factors explain approximately 50% of the disease, and but the etiology is in parts unclear and effective therapy in sensitive individuals is still missing.
The inflammatory response initiated by microbes leads to degradation of the tooth supporting tissues. The current view is that pro-inflammatory cytokines and prostaglandins, produced by leukocytes and cells of mesenchymal origin in the inflamed tissue are responsible for recruiting and activation of bone-resorbing cells, osteoclasts. The inflammatory biomarkers and tissue degradation products will leak out into the exudate in the gingival pocket next to the root surface. The bone resorption activity connected to changes in biomarkers levels and clinical parameters, during healing after periodontal treatment seem to be of value to study. The analysis of the local exudate (gingival crevicular fluid, GCF) could be used for predicting and monitoring periodontitis, as well as finding new targets for treatment.
Periodontitis could also have a systemic effect, as locally released inflammatory mediators might enter the systemic circulation and influence the development of inflammatory conditions such as cardiovascular disease (CVD), diabetes and rheumatoid arthritis. Earlier studies have shown that a low-grade chronic inflammation plays an important role in the pathogenies in atherosclerosis. Substances that indicate low-grade chronic inflammation in blood serum is for example levels of C-reactive protein (CRP), fibrinogen, and adhesion-molecules, and these biomarkers are related to CVD. The question is if periodontal treatment could change/reduce the systemic inflammatory burden of inflammatory biomarkers (CRP, fibrinogen, interleukins, and matrix metalloproteinases (MMP)).
We know today that there is association between oral health and CVD, but we do not know if the relationship it is of a causal nature. There are some intervention studies that indicate that the oral inflammatory burden may have a systemic effect. To better understand the role of the oral inflammation in development of atherosclerosis, it is important to study biomarkers at different timepoints both from the local sites (GCF) and the general systemic environment in blood. If there is a co-variation in levels of inflammatory biomarkers locally in the GCF and in the systemic circulation, this could be a strong indication of a more causal nature of the association, but we need more studies.
The value of the study is to better understand what drives the local disease progression in periodontitis and also increase the knowledge by which mechanism the oral inflammation could exert its systemic effect. Measuring levels of biomarkers in GCF and serum at several timepoints after treatment we may contribute with new insights in the role of inflammatory inducing molecules in periodontal disease, but also if there exists any systemic effect from locally released inflammatory mediators. The possibility that some molecules co-variate with disease progression or regression is of great value.
The possible co-variation of molecules with disease progression or regression is important knowledge in understanding how oral infection may affect the general health.
Part I: Serum biomarkers for periodontitis relapse Part II: GCF biomarkers for periodontal healing and relapse
This is a prospective clinical intervention study to investigate healing of severe periodontitis sites after periodontal surgical therapy and in what extent the clinical healing is associated with changes of the inflammatory expression of biomarkers in gingival crevicular fluid (GCF) and in blood serum.
21 patients were recruited consecutively and treated surgically of one experienced specialist in periodontology. Two teeth in different quadrants per patient, with the deepest pocket measured, were selected and included in the study. Periodontal surgery was performed and at 13 of the teeth an additional treatment with enamel matrix derivative (EMD/Emdogain®) were performed. Registration of full mouth plaque score (FMPS), periodontal pocket depth (PPD), bleeding on probing (BOP) or pus were performed before surgery, after 3, 6 and 12 months. Radiographs were taken at examination before treatment and at the follow-up at 12 months.
Blood samples and samples of gingival crevicular fluid (GCF) were collected before and at the follow-up visits 3, 6 and 12 months after surgical treatment. GCF samples was labelled and stored at -80°C.
Blood samples were drawn and handled by the chemical laboratory at Gävle hospital in conjunction to therapy and follow-up points. Blood were collected from each patient and 5x1mL serum was labelled and stored at -80°C.
Protein analysis on blood sera and GCF performed and concentrations of 92 proteins were assessed by proximity extension assay (Olink Bioscience, Sweden) using the Inflammation panel.
Vascular Injury Panel 2 Human Kit (Meso Scale Diagnostics) were used to assess concentration of C-Reactive Protein (CRP), Intercellular Adhesion Molecule-1 (ICAM-1), Serum Amyloid A (SAA) and Vascular Cell Adhesion Molecule-1 (VCAM-1) in sera.
6. Conditions and Keywords
Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Periodontitis
Keywords
Periodontitis, Gingival crevicular fluid (GCF), Serum, Inflammation
7. Study Design
Primary Purpose
Treatment
Study Phase
Not Applicable
Interventional Study Model
Sequential Assignment
Model Description
a clinical prospective interventional study with longterm follow-up
Masking
None (Open Label)
Allocation
Non-Randomized
Enrollment
21 (Actual)
8. Arms, Groups, and Interventions
Arm Title
Flap surgery alone
Arm Type
Other
Arm Description
Access flap
Arm Title
Flap surgery with adjunctive EMD
Arm Type
Other
Arm Description
Access flap and adjunctive enamel matrix derivative
Intervention Type
Procedure
Intervention Name(s)
Periodontal surgery
Intervention Description
Flap surgery at teeth with periodontal pocket depth 5 mm or more with additional bleeding or pus on probing. Elimination of dental calculus and granulation tissue as well as scaling of the root surface with scalers and ultrasonic device. Flap closure with non-resorbable sutures.
Intervention Type
Procedure
Intervention Name(s)
Regenerative periodontal surgery
Intervention Description
Flap surgery at teeth with periodontal pocket depth 5 mm or more with additional bleeding or pus on probing combined with vertical bone defect of 4mm or more. After elimination of dental calculus and granulation tissue as well as scaling of the root surface with scalers and ultrasonic device, adjunctive treatment with EDTA gel applied to root surface for two minutes, followed by rinsing with saline solution. Finally, application of enamel matrix derivative on a blood free root surface, followed by flap closure with non-resorbable sutures.
Primary Outcome Measure Information:
Title
Bleeding on probing (BOP) 3 months
Description
Change in BOP
Time Frame
between baseline and 3 months after treatment
Title
Bleeding on probing (BOP) 6 months
Description
Change in BOP
Time Frame
between baseline and 6 months after treatment
Title
Bleeding on probing (BOP) 12 months
Description
Change in BOP
Time Frame
between baseline and 12 months after treatment
Title
Periodontal pocket depth (PPD) 3 months
Description
Change in PPD
Time Frame
between baseline and 3 months after treatment
Title
Periodontal pocket depth (PPD) 6 months
Description
Change in PPD
Time Frame
between baseline and 6 months after treatment
Title
Periodontal pocket depth (PPD) 12 months
Description
Change in PPD
Time Frame
between baseline and 12 months after treatment
Title
Plaque Index (PLI) 3 months
Description
Change in PLI
Time Frame
between baseline and 3 months after treatment
Title
Plaque Index (PLI) 6 months
Description
Change in PLI
Time Frame
between baseline and 6 months after treatment
Title
Plaque Index (PLI) 12 months
Description
Change in PLI
Time Frame
between baseline and 12 months after treatment
Title
Biomarkers in blood serum 3 months
Description
Change in serum protein profile using Inflammation panel (92 proteins) by Olink Bioscience plus V-PLEX Vascular Injury Panel 2 Human Kit to assess concentration of CRP, ICAM-1, SAA and VCAM-1.
Time Frame
between baseline and 3 months after treatment
Title
Biomarkers in blood serum 6 months
Description
Change in serum protein profile using Inflammation panel (92 proteins) by Olink Bioscience plus V-PLEX Vascular Injury Panel 2 Human Kit to assess concentration of CRP, ICAM-1, SAA and VCAM-1.
Time Frame
between baseline and 6 months after treatment
Title
Biomarkers in blood serum 12 months
Description
Change in serum protein profile using Inflammation panel (92 proteins) by Olink Bioscience plus V-PLEX Vascular Injury Panel 2 Human Kit to assess concentration of CRP, ICAM-1, SAA and VCAM-1.
Time Frame
between baseline and 12 months after treatment
Title
Biomarkers in gingival crevicular fluid (GCF) 3 months
Description
Change in GCF protein profile using Inflammation panel (92 proteins) by Olink Bioscience.
Time Frame
between baseline and 3 months after treatment
Title
Biomarkers in gingival crevicular fluid (GCF) 6 months
Description
Change in GCF protein profile using Inflammation panel (92 proteins) by Olink Bioscience.
Time Frame
between baseline and 6 months after treatment
Title
Biomarkers in gingival crevicular fluid (GCF) 12 months
Description
Change in GCF protein profile using Inflammation panel (92 proteins) by Olink Bioscience.
Time Frame
between baseline and 12 months after treatment
Secondary Outcome Measure Information:
Title
Association between BOP and serum protein profile 3 months
Description
Change in serum protein profile in relation to the clinical parameter bleeding on probing (BOP)
Time Frame
between baseline and 3 months after treatment
Title
Association between BOP and serum protein profile 6 months
Description
Change in serum protein profile in relation to the clinical parameter bleeding on probing (BOP)
Time Frame
between baseline and 6 months after treatment
Title
Association between BOP and serum protein profile 12 months
Description
Change in serum protein profile in relation to the clinical parameter bleeding on probing (BOP)
Time Frame
between baseline and 12 months after treatment
Title
Association between PPD and serum protein profile 3 months
Description
Change in serum protein profile in relation to the clinical parameter periodontal pocket depth (PPD)
Time Frame
between baseline and 3 months after treatment
Title
Association between PPD and serum protein profile 6 months
Description
Change in serum protein profile in relation to the clinical parameter periodontal pocket depth (PPD)
Time Frame
between baseline and 6 months after treatment
Title
Association between PPD and serum protein profile 12 months
Description
Change in serum protein profile in relation to the clinical parameter periodontal pocket depth (PPD)
Time Frame
between baseline and 12 months after treatment
Title
Association between BOP and GCF protein profile 3 months
Description
Change in protein profile in the gingival crevicular fluid (GCF) in relation to the clinical parameters bleeding on probing (BOP)
Time Frame
between baseline and 3 months after treatment
Title
Association between BOP and GCF protein profile 6 months
Description
Change in protein profile in the gingival crevicular fluid (GCF) in relation to the clinical parameters bleeding on probing (BOP)
Time Frame
between baseline and 6 months after treatment
Title
Association between BOP and GCF protein profile 12 months
Description
Change in protein profile in the gingival crevicular fluid (GCF) in relation to the clinical parameters bleeding on probing (BOP)
Time Frame
between baseline and 12 months after treatment
Title
Association between PPD and GCF protein profile 3 months
Description
Change in protein profile in the gingival crevicular fluid (GCF) in relation to the clinical parameters probing pocket depth (PPD)
Time Frame
between baseline and 3 months after treatment
Title
Association between PPD and GCF protein profile 6 months
Description
Change in protein profile in the gingival crevicular fluid (GCF) in relation to the clinical parameters probing pocket depth (PPD)
Time Frame
between baseline and 6 months after treatment
Title
Association between PPD and GCF protein profile 12 months
Description
Change in protein profile in the gingival crevicular fluid (GCF) in relation to the clinical parameters probing pocket depth (PPD)
Time Frame
between baseline and 12 months after treatment
10. Eligibility
Sex
All
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria:
patient with diagnosed periodontitis
at least three teeth with ≥ 4mm loss of bone support detected at radiograph, combined with periodontal pocket depth ≥5mm and bleeding on probing and/or pus, in two quadrants
Exclusion Criteria:
periodontal therapy the last 3 months
intake of antibiotic the last 3 months
intake of anti-inflammatory drug the last 2 weeks before collection of samples
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Lundberg, Prof.
Organizational Affiliation
Department of Molecular Periodontology, Umeå University, Sweden
Official's Role
Principal Investigator
Facility Information:
Facility Name
Specialist Clinic in Dental Care, Gävle Hospital, Public Dental Health Gävleborg AB, Region Gävleborg
City
Gävle
State/Province
Gävleborg
ZIP/Postal Code
801 87
Country
Sweden
Facility Name
Specialist Clinic in Dental Care, Gävle Hospital, Public Dental Health Gävleborg, Region Gävleborg
City
Gävle
State/Province
Gävleborg
ZIP/Postal Code
801 87
Country
Sweden
12. IPD Sharing Statement
Plan to Share IPD
No
Citations:
PubMed Identifier
28266116
Citation
Frencken JE, Sharma P, Stenhouse L, Green D, Laverty D, Dietrich T. Global epidemiology of dental caries and severe periodontitis - a comprehensive review. J Clin Periodontol. 2017 Mar;44 Suppl 18:S94-S105. doi: 10.1111/jcpe.12677.
Results Reference
background
PubMed Identifier
1679130
Citation
Page RC. The role of inflammatory mediators in the pathogenesis of periodontal disease. J Periodontal Res. 1991 May;26(3 Pt 2):230-42. doi: 10.1111/j.1600-0765.1991.tb01649.x.
Results Reference
background
PubMed Identifier
9672100
Citation
Lerner UH, Modeer T, Krekmanova L, Claesson R, Rasmussen L. Gingival crevicular fluid from patients with periodontitis contains bone resorbing activity. Eur J Oral Sci. 1998 Jun;106(3):778-87. doi: 10.1046/j.0909-8836.1998.eos106304.x.
Results Reference
background
PubMed Identifier
15142219
Citation
Holmlund A, Hanstrom L, Lerner UH. Bone resorbing activity and cytokine levels in gingival crevicular fluid before and after treatment of periodontal disease. J Clin Periodontol. 2004 Jun;31(6):475-82. doi: 10.1111/j.1600-051X.2004.00504.x.
Results Reference
background
PubMed Identifier
27027257
Citation
Stadler AF, Angst PD, Arce RM, Gomes SC, Oppermann RV, Susin C. Gingival crevicular fluid levels of cytokines/chemokines in chronic periodontitis: a meta-analysis. J Clin Periodontol. 2016 Sep;43(9):727-45. doi: 10.1111/jcpe.12557. Epub 2016 Jun 23.
Results Reference
background
PubMed Identifier
10903648
Citation
Danesh J, Whincup P, Walker M, Lennon L, Thomson A, Appleby P, Gallimore JR, Pepys MB. Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. BMJ. 2000 Jul 22;321(7255):199-204. doi: 10.1136/bmj.321.7255.199.
Results Reference
background
PubMed Identifier
14742655
Citation
D'Aiuto F, Parkar M, Andreou G, Suvan J, Brett PM, Ready D, Tonetti MS. Periodontitis and systemic inflammation: control of the local infection is associated with a reduction in serum inflammatory markers. J Dent Res. 2004 Feb;83(2):156-60. doi: 10.1177/154405910408300214.
Results Reference
background
PubMed Identifier
28362032
Citation
Kolny M, Stasiowski MJ, Zuber M, Marciniak R, Chabierska E, Pluta A, Jalowiecki P, Byrczek T. Randomized, comparative study of the effectiveness of three different techniques of interscalene brachial plexus block using 0.5% ropivacaine for shoulder arthroscopy. Anaesthesiol Intensive Ther. 2017;49(1):47-52. doi: 10.5603/AIT.2017.0009.
Results Reference
background
PubMed Identifier
28363032
Citation
Holmlund A, Lampa E, Lind L. Poor Response to Periodontal Treatment May Predict Future Cardiovascular Disease. J Dent Res. 2017 Jul;96(7):768-773. doi: 10.1177/0022034517701901. Epub 2017 Mar 31.
Results Reference
background
Learn more about this trial
Biomarkers for Periodontitis Relapse
We'll reach out to this number within 24 hrs