search
Back to results

Visual-OLfactory Training in Participants With COVID-19 Resultant Loss of Smell (VOLT)

Primary Purpose

Anosmia, Covid19, Ageusia

Status
Completed
Phase
Not Applicable
Locations
United States
Study Type
Interventional
Intervention
Smell Training
Sponsored by
Washington University School of Medicine
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional treatment trial for Anosmia focused on measuring Anosmia, Loss of Smell, Loss of Taste, Hyposmia, Ageusia, Covid-19, SARS-CoV-2

Eligibility Criteria

18 Years - 70 Years (Adult, Older Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria:

- Subjective or clinically diagnosed olfactory dysfunction of 3 months duration or longer initially diagnosed within 2 weeks of a COVID-19 infection

Exclusion Criteria:

  • Diagnosed olfactory dysfunction due to head trauma
  • Chronic rhinosinusitis
  • Congenital olfactory dysfunction
  • Nasal polyps
  • Neurodegenerative disorders (for example, Alzheimer or Parkinson Disease)
  • Pre-Assessment UPSIT score ≥34 for males and ≥35 for females
  • Pregnant
  • Inability to read, write, and understand English
  • Inability to perform home olfactory training (for example, due to limited access to internet)
  • Residence outside of the the United States of America
  • Previously conducting smell training

Sites / Locations

  • Washington University School of Medicine in Saint Louis

Arms of the Study

Arm 1

Arm 2

Arm 3

Arm 4

Arm Type

Active Comparator

Experimental

Experimental

Experimental

Arm Label

Unimodal Olfactory Training with Conventional Odors

Unimodal Olfactory Training with Patient-Preferred Odors

Bimodal Visual, Olfactory Training with Conventional Odors

Bimodal Visual, Olfactory Training with Patient-Preferred Odors

Arm Description

Participants will undergo smell training without a visual component, and train using 4 pre-determined scents: rose, lemon, eucalyptus, and clove.

Participants will undergo smell training without a visual component, and undergo an odor selection process in which they choose four scents to train with that they identify as important. A total of 24 scents will be included for patients to select from, including: Lemon, Orange, Grapefruit, Lime, Eucalyptus, Peppermint, Spearmint, Tea Tree, Rose, Lavender, Jasmine, Geranium, Frankincense, Cedarwood, Juniper, Sandalwood, Black Pepper, Oregano, Rosemary, Clove, Vanilla, Coffee, Cinnamon, Nutmeg.

Participants will undergo smell training while simultaneously focusing on a picture of the odor, and train using 4 pre-determined scents: rose, lemon, eucalyptus, and clove.

Participants will undergo smell training while simultaneously focusing on a picture of the odor, and undergo an odor selection process in which they choose four scents to train with that they identify as important. A total of 24 scents will be included for patients to select from, including: Lemon, Orange, Grapefruit, Lime, Eucalyptus, Peppermint, Spearmint, Tea Tree, Rose, Lavender, Jasmine, Geranium, Frankincense, Cedarwood, Juniper, Sandalwood, Black Pepper, Oregano, Rosemary, Clove, Vanilla, Coffee, Cinnamon, Nutmeg.

Outcomes

Primary Outcome Measures

University of Pennsylvania Smell Identification Test (UPSIT)
The UPSIT includes 4 odor-impregnated booklets that contain 10 forced-choice multiple choice questions each for participants to scratch-and-sniff to identify various odors and is a commercially available test. Normosmia is defined as ≥34 for males and ≥35 for females, and a change of 4 points or more from baseline indicates a clinically meaningful result.

Secondary Outcome Measures

Clinical Global Impression Severity (CGI-S) Scale
The CGI-S is a subjective rating scale in which a participant can rate the severity of their dysfunction. The scale is rated from 1-7 with 1 being normal sense of smell, 4 being moderate loss of smell, and 7 being complete loss of smell. Each rating has a definition to better elucidate what any particular rating might mean, so as to decrease variability between patient responses with the same subjective level of dysfunction or improvement.
Clinical Global Impression Improvement (CGI-I) Scale
The CGI-I is a subjective rating scale in which a participant can rate the rate the improvement (or lack thereof) of their dysfunction after smell training. The scale is rated from 1-7 with 1 being very much improved sense of smell, 4 being no change in sense of smell, and 7 being very much worse sense of smell. Each rating has a definition to better elucidate what any particular rating might mean, so as to decrease variability between patient responses with the same subjective level of dysfunction or improvement.
Olfactory Dysfunction Outcomes Rating (ODOR)
A 28-item health-related quality of life instrument specific for olfactory dysfunction developed by Dr. Jake Lee in Dr. Jay F. Piccirillo's lab at Washington University.

Full Information

First Posted
January 13, 2021
Last Updated
June 16, 2022
Sponsor
Washington University School of Medicine
search

1. Study Identification

Unique Protocol Identification Number
NCT04710394
Brief Title
Visual-OLfactory Training in Participants With COVID-19 Resultant Loss of Smell
Acronym
VOLT
Official Title
Efficacy of Bimodal Visual-Olfactory Training in Participants With COVID-19 Resultant Hyposmia or Anosmia Using Participant-Preferred Scents
Study Type
Interventional

2. Study Status

Record Verification Date
June 2022
Overall Recruitment Status
Completed
Study Start Date
January 11, 2021 (Actual)
Primary Completion Date
March 11, 2022 (Actual)
Study Completion Date
March 11, 2022 (Actual)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Sponsor
Name of the Sponsor
Washington University School of Medicine

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Data Monitoring Committee
No

5. Study Description

Brief Summary
Olfactory dysfunction is a defining symptom of COVID-19 infection. As the number of total, confirmed COVID-19 cases approached 19 million in the United States, it is estimated that there will be 250,000 to 500,000 new cases of chronically diminished smell (hyposmia) and loss of smell (anosmia) this year. Olfactory dysfunction is proposed to worsen numerous common co-morbidities in patients and has been shown to lead to a decreased quality of life. There are very few effective treatments for hyposmia or anosmia, and there is no gold standard of treatment. One proposed treatment option is smell training, which has shown promising yet variable results in a multitude of studies. It garners its theoretical basis from the high degree of neuroplasticity within the olfactory system, both peripherally and centrally. However, due to a relative inadequacy of proper studies on olfactory training, it is unknown what the most efficacious method in which to undergo the training is. This study proposes two novel procedural modifications to smell training in an attempt to enhance its efficacy. The investigators propose using a bimodal visual-olfactory approach, rather than relying on olfaction alone, during smell training, as well as using patient-preferred scents in the training that are identified as important by the study participant, rather than pre-determined scents with inadequate scientific backing. The investigators hypothesize that by utilizing bimodal visual-olfactory training and patient-selected scents, the olfactory training will be more efficacious and more motivating for participants.
Detailed Description
Over 200,000 people visit physicians yearly for taste and smell disorders and given the well-documented prevalence of olfactory dysfunction in COVID-19 infection, there is likely to be an increased need to address these concerns. The loss of the sense of smell has been shown to be linked to decreased quality of life, depression, decreased enjoyment of the flavor of foods, and may even be a contributing factor in the physiologic anorexia of aging. Some of the most common causes of olfactory dysfunction include post-infectious, post-traumatic, and neurodegenerative. Of these, post-viral olfactory dysfunction is the leading cause, accounting for an estimated 18.6 to 42.5% of individuals with olfactory dysfunction. Respiratory viruses found to be responsible for olfactory loss include common respiratory viruses including rhinovirus, coronavirus, parainfluenza virus, adenovirus, and influenza virus. It is then no surprise, that olfactory dysfunction is a defining symptom of COVID-19 infection. Estimates for the prevalence of smell dysfunction in COVID-19 infection vary. In a cross-sectional survey of 59 patients with COVID-19, 34% (20/59) self-reported a smell and/or taste disorder. In a multi-center European study, 85.6% (357/417) of cases with confirmed COVID-19 experienced olfactory dysfunction. Only an estimated 44% of these patients experienced recovery of olfaction after 2 weeks of convalescence from COVID-19 infection. Although it is impossible to know the long-term recovery rates of this newly emerging pathogen, as the total number of confirmed COVID-19 cases approaches 19 million in the United States, unpublished data generated by Amish Mustafa Khan in Dr. Jay F. Piccirillo's lab at Washington University estimates nearly 250,000 to 500,000 new cases of chronic olfactory dysfunction. There is no gold standard set of guidelines for the diagnosis and treatment of post-viral hyposmia or anosmia. Most evidence for pharmacological interventions is weak, with very few controlled studies that account for spontaneous improvement overtime. Moreover, treatments that are effective for sino-nasal disease such as topical corticosteroids are not effective for sensorineural post-viral olfactory loss. A systemic review of post-viral olfactory dysfunction studied eight commonly utilized pharmacological treatments: Oral corticosteroids, local corticosteroids, zinc sulfate, alpha-lipoic acid, caroverine, Vitamin A, Gingko Bilboa, Minocycle. Improvement was noted for study participants receiving oral corticosteroids, local corticosteroids, alpha lipoid acid, and caroverine. However, these studies were of poor quality, and the authors conclude that there is no strong evidence supporting the use of any pharmacological intervention for the treatment of post-viral olfactory dysfunction. One proposed treatment shown to be beneficial for a wide variety of etiologies of olfactory dysfunction, including post-viral upper respiratory infection, is olfactory training. The theoretical basis for olfactory training emerges from multiple experimental and clinical studies suggesting that the olfactory pathway has neuroplasticity to recover, both peripherally, due to the regenerative capacity of olfactory receptor cells, and centrally. In a study using fMRI after olfactory training, there were increased functional connections in olfactory areas such as the anterior entorhinal cortex, inferior prefrontal gyrus, and the primary somatosensory cortex, suggesting that the olfactory pathways are capable of reorganization with training. In another study, increased exposure by anosmic participants to androstenone resulted in an increase in amplitude of the olfactory evoked potential and the olfactory event-related potential, suggesting that that the peripheral olfactory receptor cells are also neuroplastic, likely due to an increase in expression of olfactory neuron receptors in response to training. The investigators believe that patients experiencing olfactory dysfunction secondary to COVID-19 are especially good candidates for olfactory training for two reasons. Firstly, the pathophysiology of COVID-19 olfactory dysfunction is mediated through damage to the peripheral olfactory receptor cells located in the nasal epithelium lining the nasal cavity and central pathways via neuro-invasion through the olfactory pathway. This suggests that interventions most likely to be efficacious in this patient population target both central and peripheral pathways, as olfactory training does. Secondly, relative to other causes of olfactory dysfunction, post-viral olfactory dysfunction more commonly presents with hyposmia, rather than anosmia. Residual olfactory function is an important prognosticator that improves the likelihood of improvement. Furthermore, patients with post-viral olfactory dysfunction more commonly present with concurrent dysosmia than other common causes of olfactory dysfunction. It is likely that dysomia may be a result of disordered axonal regeneration. This further suggests that patients with post-viral olfactory loss are most likely to benefit from olfactory training. Olfactory training typically consists of a patient smelling a scented oil dropped in a labeled jar on a cotton ball for a specified length of time a certain number of times per day. The details of the most efficacious method for olfactory training is not yet described, with various studies adjusting the length of time of training, frequency of training, or even adding nasal corticosteroids alongside olfactory training. While olfactory training is promising, these inconsistencies highlight the inadequacies in the training. Two unstudied areas include the effects of a bimodal visual-olfactory approach to olfactory training as well as the effects of patient preference in determining the scents in which to undergo the training. Bimodal training has been shown to be effective in other sensory training, such as through audio-visual training to enhance the auditory adaptation process, and even in animal studies with ferrets with bilateral cochlear implants, improving auditory spatial processing. Loss of hearing has been shown to result in improved vision, adding to the hypothesis that an intimate connection exists between senses and that its relationship is worthy of continued modulation and study. Furthermore, perhaps many patients have undergone olfactory training with scents that patients have no interest in being able to smell, and perhaps patient compliance has been an underreported cause of the variability in olfactory training results due to the resulting decreased motivation to smell scents patients have no desire to be able to smell. The original clinical trial on olfactory training, and most since, have chosen to evaluate the efficacy of olfactory training using four pre-determined scents: rose (flowery), lemon (fruity), eucalyptus (resinous), and cloves (aromatic). These scents were chosen due to the work of German psychologist Hans Henning who categorized smells into six different categories: floral, putrid, fruity, burned, spicy, and resinous. The unpleasant smells of putrid and burned were omitted from the olfactory training protocol, resulting in the four smells that are often studied today. Although humans respond to odors as members of odor categories, there is little scientific basis behind making these four specific scents the standard for olfactory training. There are various studies that have used select scents or an array of other scents, however, there are no known studies that have used patient preference in choosing scents in which to undergo olfactory training. The investigators hypothesize that using patient preference in choosing the scents that the participant is to undergo olfactory training and adding in a visual component to the training will not only be a patient-centered research approach, but also a more effective means of improving olfactory function.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Anosmia, Covid19, Ageusia, Hyposmia, Hypogeusia, SARS-CoV-2 Infection, COVID-19 Pandemic
Keywords
Anosmia, Loss of Smell, Loss of Taste, Hyposmia, Ageusia, Covid-19, SARS-CoV-2

7. Study Design

Primary Purpose
Treatment
Study Phase
Not Applicable
Interventional Study Model
Factorial Assignment
Model Description
Two-by-two factorial interventional study design will lend to achieving the study aims. Participants meeting eligibility criterion will be randomized to one of four arms: Unimodal Olfactory Training with Conventional Odors Unimodal Olfactory Training with Patient-Preferred Odors Bimodal Visual, Olfactory Training with Conventional Odors Bimodal Visual, Olfactory Training with Patient-Preferred Odors
Masking
ParticipantCare Provider
Allocation
Randomized
Enrollment
240 (Actual)

8. Arms, Groups, and Interventions

Arm Title
Unimodal Olfactory Training with Conventional Odors
Arm Type
Active Comparator
Arm Description
Participants will undergo smell training without a visual component, and train using 4 pre-determined scents: rose, lemon, eucalyptus, and clove.
Arm Title
Unimodal Olfactory Training with Patient-Preferred Odors
Arm Type
Experimental
Arm Description
Participants will undergo smell training without a visual component, and undergo an odor selection process in which they choose four scents to train with that they identify as important. A total of 24 scents will be included for patients to select from, including: Lemon, Orange, Grapefruit, Lime, Eucalyptus, Peppermint, Spearmint, Tea Tree, Rose, Lavender, Jasmine, Geranium, Frankincense, Cedarwood, Juniper, Sandalwood, Black Pepper, Oregano, Rosemary, Clove, Vanilla, Coffee, Cinnamon, Nutmeg.
Arm Title
Bimodal Visual, Olfactory Training with Conventional Odors
Arm Type
Experimental
Arm Description
Participants will undergo smell training while simultaneously focusing on a picture of the odor, and train using 4 pre-determined scents: rose, lemon, eucalyptus, and clove.
Arm Title
Bimodal Visual, Olfactory Training with Patient-Preferred Odors
Arm Type
Experimental
Arm Description
Participants will undergo smell training while simultaneously focusing on a picture of the odor, and undergo an odor selection process in which they choose four scents to train with that they identify as important. A total of 24 scents will be included for patients to select from, including: Lemon, Orange, Grapefruit, Lime, Eucalyptus, Peppermint, Spearmint, Tea Tree, Rose, Lavender, Jasmine, Geranium, Frankincense, Cedarwood, Juniper, Sandalwood, Black Pepper, Oregano, Rosemary, Clove, Vanilla, Coffee, Cinnamon, Nutmeg.
Intervention Type
Behavioral
Intervention Name(s)
Smell Training
Other Intervention Name(s)
Olfactory Training
Intervention Description
Participants will be provided with 4 labeled jars, each containing an odor pre-impregnated cotton pad. Participants will sniff each scent for 10 seconds, twice daily, once in the morning and once in evening. The participant will take 30 seconds of rest between each scent. All participants will undergo this smell training regimen for 12 weeks.
Primary Outcome Measure Information:
Title
University of Pennsylvania Smell Identification Test (UPSIT)
Description
The UPSIT includes 4 odor-impregnated booklets that contain 10 forced-choice multiple choice questions each for participants to scratch-and-sniff to identify various odors and is a commercially available test. Normosmia is defined as ≥34 for males and ≥35 for females, and a change of 4 points or more from baseline indicates a clinically meaningful result.
Time Frame
Measurement will be taken at time zero (pre-intervention) and 12 weeks (post-intervention)
Secondary Outcome Measure Information:
Title
Clinical Global Impression Severity (CGI-S) Scale
Description
The CGI-S is a subjective rating scale in which a participant can rate the severity of their dysfunction. The scale is rated from 1-7 with 1 being normal sense of smell, 4 being moderate loss of smell, and 7 being complete loss of smell. Each rating has a definition to better elucidate what any particular rating might mean, so as to decrease variability between patient responses with the same subjective level of dysfunction or improvement.
Time Frame
Measurement will be taken at time zero (pre-intervention) and 12 weeks (post-intervention)
Title
Clinical Global Impression Improvement (CGI-I) Scale
Description
The CGI-I is a subjective rating scale in which a participant can rate the rate the improvement (or lack thereof) of their dysfunction after smell training. The scale is rated from 1-7 with 1 being very much improved sense of smell, 4 being no change in sense of smell, and 7 being very much worse sense of smell. Each rating has a definition to better elucidate what any particular rating might mean, so as to decrease variability between patient responses with the same subjective level of dysfunction or improvement.
Time Frame
Measurement will be taken at time zero (pre-intervention) and 12 weeks (post-intervention)
Title
Olfactory Dysfunction Outcomes Rating (ODOR)
Description
A 28-item health-related quality of life instrument specific for olfactory dysfunction developed by Dr. Jake Lee in Dr. Jay F. Piccirillo's lab at Washington University.
Time Frame
Measurement will be taken at time zero (pre-intervention) and 12 weeks (post-intervention)

10. Eligibility

Sex
All
Minimum Age & Unit of Time
18 Years
Maximum Age & Unit of Time
70 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: - Subjective or clinically diagnosed olfactory dysfunction of 3 months duration or longer initially diagnosed within 2 weeks of a COVID-19 infection Exclusion Criteria: Diagnosed olfactory dysfunction due to head trauma Chronic rhinosinusitis Congenital olfactory dysfunction Nasal polyps Neurodegenerative disorders (for example, Alzheimer or Parkinson Disease) Pre-Assessment UPSIT score ≥34 for males and ≥35 for females Pregnant Inability to read, write, and understand English Inability to perform home olfactory training (for example, due to limited access to internet) Residence outside of the the United States of America Previously conducting smell training
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Jay F. Piccirillo, M.D., FACS
Organizational Affiliation
Washington University School of Medicine
Official's Role
Principal Investigator
Facility Information:
Facility Name
Washington University School of Medicine in Saint Louis
City
Saint Louis
State/Province
Missouri
ZIP/Postal Code
63108
Country
United States

12. IPD Sharing Statement

Plan to Share IPD
Yes
IPD Sharing Plan Description
Data and research resources generated from this clinical trial will be made available by request, while safeguarding the privacy of participants in accordance with NIH policy and HIPAA guidelines. The data to be shared will include information about the project, protocol, data dictionary, and the final individual de-identified research subject data. These data will include the responses to the baseline and post-intervention Olfactory Dysfunction Outcomes Rating (ODOR), Clinical Global Impression Severity (CGI-S) Scale , University of Pennsylvania Smell Identification Test (UPSIT), post-intervention Clinical Global Impression Improvement (CGI-I) Scale, and treatment assignment.
IPD Sharing Time Frame
The data will be made available within 12 months of the completion date of the research project, for 2 subsequent years.
IPD Sharing Access Criteria
Data access will be arranged through a data-sharing agreement, which will indicate the criteria for data access, documentation of IRB approval from requestor's institution, incorporation of appropriate privacy and confidentiality standards to ensure data security at the recipient site, and prohibit manipulation of data for the purposes of identifying subjects or redistribution to third parties. Data access will be managed by the Research Compliance and Recruitment Coordinator, and data maintenance will be managed by the Study Biostatistician.
IPD Sharing URL
http://otolaryngologyoutcomesresearch.wustl.edu/
Citations:
PubMed Identifier
1242570
Citation
Runnebaum B, Runnebaum H, Stober I, Zander J. Progesterone 20 alpha-dihydroprogesterone and 20 beta-dihydroprogesterone levels in different compartments from the human foeto-placental unit. Acta Endocrinol (Copenh). 1975 Nov;80(3):558-68. doi: 10.1530/acta.0.0800558.
Results Reference
background
PubMed Identifier
24429163
Citation
Croy I, Nordin S, Hummel T. Olfactory disorders and quality of life--an updated review. Chem Senses. 2014 Mar;39(3):185-94. doi: 10.1093/chemse/bjt072. Epub 2014 Jan 15.
Results Reference
background
PubMed Identifier
21298638
Citation
Neuland C, Bitter T, Marschner H, Gudziol H, Guntinas-Lichius O. Health-related and specific olfaction-related quality of life in patients with chronic functional anosmia or severe hyposmia. Laryngoscope. 2011 Apr;121(4):867-72. doi: 10.1002/lary.21387. Epub 2011 Feb 4.
Results Reference
background
PubMed Identifier
26624966
Citation
Pekala K, Chandra RK, Turner JH. Efficacy of olfactory training in patients with olfactory loss: a systematic review and meta-analysis. Int Forum Allergy Rhinol. 2016 Mar;6(3):299-307. doi: 10.1002/alr.21669. Epub 2015 Dec 1.
Results Reference
background
PubMed Identifier
22192366
Citation
Doty RL. Olfaction in Parkinson's disease and related disorders. Neurobiol Dis. 2012 Jun;46(3):527-52. doi: 10.1016/j.nbd.2011.10.026. Epub 2011 Dec 20.
Results Reference
background
PubMed Identifier
28531300
Citation
Boesveldt S, Postma EM, Boak D, Welge-Luessen A, Schopf V, Mainland JD, Martens J, Ngai J, Duffy VB. Anosmia-A Clinical Review. Chem Senses. 2017 Sep 1;42(7):513-523. doi: 10.1093/chemse/bjx025. Erratum In: Chem Senses. 2017 Sep 1;42(7):607.
Results Reference
background
PubMed Identifier
19235739
Citation
Hummel T, Rissom K, Reden J, Hahner A, Weidenbecher M, Huttenbrink KB. Effects of olfactory training in patients with olfactory loss. Laryngoscope. 2009 Mar;119(3):496-9. doi: 10.1002/lary.20101.
Results Reference
background
PubMed Identifier
24114690
Citation
Konstantinidis I, Tsakiropoulou E, Bekiaridou P, Kazantzidou C, Constantinidis J. Use of olfactory training in post-traumatic and postinfectious olfactory dysfunction. Laryngoscope. 2013 Dec;123(12):E85-90. doi: 10.1002/lary.24390. Epub 2013 Oct 4.
Results Reference
background
PubMed Identifier
26594622
Citation
Kollndorfer K, Fischmeister FP, Kowalczyk K, Hoche E, Mueller CA, Trattnig S, Schopf V. Olfactory training induces changes in regional functional connectivity in patients with long-term smell loss. Neuroimage Clin. 2015 Sep 15;9:401-10. doi: 10.1016/j.nicl.2015.09.004. eCollection 2015.
Results Reference
background
PubMed Identifier
25544900
Citation
Kollndorfer K, Kowalczyk K, Hoche E, Mueller CA, Pollak M, Trattnig S, Schopf V. Recovery of olfactory function induces neuroplasticity effects in patients with smell loss. Neural Plast. 2014;2014:140419. doi: 10.1155/2014/140419. Epub 2014 Dec 3.
Results Reference
background
PubMed Identifier
14678505
Citation
Wang L, Chen L, Jacob T. Evidence for peripheral plasticity in human odour response. J Physiol. 2004 Jan 1;554(Pt 1):236-44. doi: 10.1113/jphysiol.2003.054726.
Results Reference
background
PubMed Identifier
17003712
Citation
Gudziol V, Lotsch J, Hahner A, Zahnert T, Hummel T. Clinical significance of results from olfactory testing. Laryngoscope. 2006 Oct;116(10):1858-63. doi: 10.1097/01.mlg.0000234915.51189.cb.
Results Reference
background
PubMed Identifier
6463130
Citation
Doty RL, Shaman P, Dann M. Development of the University of Pennsylvania Smell Identification Test: a standardized microencapsulated test of olfactory function. Physiol Behav. 1984 Mar;32(3):489-502. doi: 10.1016/0031-9384(84)90269-5.
Results Reference
background
PubMed Identifier
17882917
Citation
Doty RL. Office procedures for quantitative assessment of olfactory function. Am J Rhinol. 2007 Jul-Aug;21(4):460-73. doi: 10.2500/ajr.2007.21.3043.
Results Reference
background
PubMed Identifier
2726398
Citation
Doty RL, Frye RE, Agrawal U. Internal consistency reliability of the fractionated and whole University of Pennsylvania Smell Identification Test. Percept Psychophys. 1989 May;45(5):381-4. doi: 10.3758/bf03210709.
Results Reference
background
PubMed Identifier
21935630
Citation
Hummel C, Zucco GM, Iannilli E, Maboshe W, Landis BN, Hummel T. OLAF: standardization of international olfactory tests. Eur Arch Otorhinolaryngol. 2012 Mar;269(3):871-80. doi: 10.1007/s00405-011-1770-0. Epub 2011 Sep 21.
Results Reference
background
PubMed Identifier
25003804
Citation
Marine N, Boriana A. Olfactory markers of depression and Alzheimer's disease. Neurosci Biobehav Rev. 2014 Sep;45:262-70. doi: 10.1016/j.neubiorev.2014.06.016. Epub 2014 Jul 6.
Results Reference
background
PubMed Identifier
29204537
Citation
Doty RL. Olfactory dysfunction and its measurement in the clinic. World J Otorhinolaryngol Head Neck Surg. 2015 Oct 26;1(1):28-33. doi: 10.1016/j.wjorl.2015.09.007. eCollection 2015 Sep.
Results Reference
background
PubMed Identifier
25890082
Citation
Hugh SC, Siu J, Hummel T, Forte V, Campisi P, Papsin BC, Propst EJ. Olfactory testing in children using objective tools: comparison of Sniffin' Sticks and University of Pennsylvania Smell Identification Test (UPSIT). J Otolaryngol Head Neck Surg. 2015 Mar 1;44(1):10. doi: 10.1186/s40463-015-0061-y.
Results Reference
background
PubMed Identifier
28653978
Citation
Dunlop BW, Gray J, Rapaport MH. Transdiagnostic Clinical Global Impression Scoring for Routine Clinical Settings. Behav Sci (Basel). 2017 Jun 27;7(3):40. doi: 10.3390/bs7030040.
Results Reference
background
PubMed Identifier
15133691
Citation
Frasnelli J, Hummel T. Olfactory dysfunction and daily life. Eur Arch Otorhinolaryngol. 2005 Mar;262(3):231-5. doi: 10.1007/s00405-004-0796-y. Epub 2004 May 5.
Results Reference
background
PubMed Identifier
24096819
Citation
Geissler K, Reimann H, Gudziol H, Bitter T, Guntinas-Lichius O. Olfactory training for patients with olfactory loss after upper respiratory tract infections. Eur Arch Otorhinolaryngol. 2014 Jun;271(6):1557-62. doi: 10.1007/s00405-013-2747-y. Epub 2013 Oct 6.
Results Reference
background
PubMed Identifier
18390818
Citation
Albrecht J, Anzinger A, Kopietz R, Schopf V, Kleemann AM, Pollatos O, Wiesmann M. Test-retest reliability of the olfactory detection threshold test of the Sniffin' sticks. Chem Senses. 2008 Jun;33(5):461-7. doi: 10.1093/chemse/bjn013. Epub 2008 Apr 4.
Results Reference
background
PubMed Identifier
22614554
Citation
Fleiner F, Lau L, Goktas O. Active olfactory training for the treatment of smelling disorders. Ear Nose Throat J. 2012 May;91(5):198-203, 215. doi: 10.1177/014556131209100508.
Results Reference
background
PubMed Identifier
19629016
Citation
Kawase T, Sakamoto S, Hori Y, Maki A, Suzuki Y, Kobayashi T. Bimodal audio-visual training enhances auditory adaptation process. Neuroreport. 2009 Sep 23;20(14):1231-4. doi: 10.1097/WNR.0b013e32832fbef8.
Results Reference
background
PubMed Identifier
25122908
Citation
Isaiah A, Vongpaisal T, King AJ, Hartley DE. Multisensory training improves auditory spatial processing following bilateral cochlear implantation. J Neurosci. 2014 Aug 13;34(33):11119-30. doi: 10.1523/JNEUROSCI.4767-13.2014.
Results Reference
background
PubMed Identifier
17015029
Citation
Bavelier D, Dye MW, Hauser PC. Do deaf individuals see better? Trends Cogn Sci. 2006 Nov;10(11):512-8. doi: 10.1016/j.tics.2006.09.006. Epub 2006 Oct 2.
Results Reference
background
PubMed Identifier
27287364
Citation
Hoffman HJ, Rawal S, Li CM, Duffy VB. New chemosensory component in the U.S. National Health and Nutrition Examination Survey (NHANES): first-year results for measured olfactory dysfunction. Rev Endocr Metab Disord. 2016 Jun;17(2):221-40. doi: 10.1007/s11154-016-9364-1.
Results Reference
background
PubMed Identifier
11192906
Citation
Seiden AM, Duncan HJ. The diagnosis of a conductive olfactory loss. Laryngoscope. 2001 Jan;111(1):9-14. doi: 10.1097/00005537-200101000-00002.
Results Reference
background
PubMed Identifier
3336267
Citation
Cain WS, Gent JF, Goodspeed RB, Leonard G. Evaluation of olfactory dysfunction in the Connecticut Chemosensory Clinical Research Center. Laryngoscope. 1988 Jan;98(1):83-8. doi: 10.1288/00005537-198801000-00017.
Results Reference
background
PubMed Identifier
2021470
Citation
Deems DA, Doty RL, Settle RG, Moore-Gillon V, Shaman P, Mester AF, Kimmelman CP, Brightman VJ, Snow JB Jr. Smell and taste disorders, a study of 750 patients from the University of Pennsylvania Smell and Taste Center. Arch Otolaryngol Head Neck Surg. 1991 May;117(5):519-28. doi: 10.1001/archotol.1991.01870170065015.
Results Reference
background
PubMed Identifier
11233469
Citation
Quint C, Temmel AF, Schickinger B, Pabinger S, Ramberger P, Hummel T. Patterns of non-conductive olfactory disorders in eastern Austria: a study of 120 patients from the Department of Otorhinolaryngology at the University of Vienna. Wien Klin Wochenschr. 2001 Jan 15;113(1-2):52-7.
Results Reference
background
PubMed Identifier
15563908
Citation
Seiden AM. Postviral olfactory loss. Otolaryngol Clin North Am. 2004 Dec;37(6):1159-66. doi: 10.1016/j.otc.2004.06.007.
Results Reference
background
PubMed Identifier
17277621
Citation
Suzuki M, Saito K, Min WP, Vladau C, Toida K, Itoh H, Murakami S. Identification of viruses in patients with postviral olfactory dysfunction. Laryngoscope. 2007 Feb;117(2):272-7. doi: 10.1097/01.mlg.0000249922.37381.1e.
Results Reference
background
PubMed Identifier
20437286
Citation
Hedner M, Larsson M, Arnold N, Zucco GM, Hummel T. Cognitive factors in odor detection, odor discrimination, and odor identification tasks. J Clin Exp Neuropsychol. 2010 Dec;32(10):1062-7. doi: 10.1080/13803391003683070. Epub 2010 Apr 30.
Results Reference
background
PubMed Identifier
32215618
Citation
Giacomelli A, Pezzati L, Conti F, Bernacchia D, Siano M, Oreni L, Rusconi S, Gervasoni C, Ridolfo AL, Rizzardini G, Antinori S, Galli M. Self-reported Olfactory and Taste Disorders in Patients With Severe Acute Respiratory Coronavirus 2 Infection: A Cross-sectional Study. Clin Infect Dis. 2020 Jul 28;71(15):889-890. doi: 10.1093/cid/ciaa330. No abstract available.
Results Reference
background
PubMed Identifier
32253535
Citation
Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, Dequanter D, Blecic S, El Afia F, Distinguin L, Chekkoury-Idrissi Y, Hans S, Delgado IL, Calvo-Henriquez C, Lavigne P, Falanga C, Barillari MR, Cammaroto G, Khalife M, Leich P, Souchay C, Rossi C, Journe F, Hsieh J, Edjlali M, Carlier R, Ris L, Lovato A, De Filippis C, Coppee F, Fakhry N, Ayad T, Saussez S. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020 Aug;277(8):2251-2261. doi: 10.1007/s00405-020-05965-1. Epub 2020 Apr 6.
Results Reference
background
PubMed Identifier
26879592
Citation
Harless L, Liang J. Pharmacologic treatment for postviral olfactory dysfunction: a systematic review. Int Forum Allergy Rhinol. 2016 Jul;6(7):760-7. doi: 10.1002/alr.21727. Epub 2016 Feb 16.
Results Reference
background
Links:
URL
https://outcomesresearch.github.io/volt
Description
Official study web application for administration of smell training intervention. All study participants will receive login credentials.

Learn more about this trial

Visual-OLfactory Training in Participants With COVID-19 Resultant Loss of Smell

We'll reach out to this number within 24 hrs