Deoxynucleosides Pyrimidines as Treatment for Mitochondrial Depletion Syndrome (dC-dT-MDS)
Primary Purpose
Mitochondrial Diseases, Mitochondrial Encephalomyopathy, Mitochondrial Encephalopathy
Status
Recruiting
Phase
Phase 2
Locations
Canada
Study Type
Interventional
Intervention
deoxycytidine and deoxythymidine
Sponsored by
About this trial
This is an interventional treatment trial for Mitochondrial Diseases focused on measuring Deoxycytidine, Deoxythymidine, Deoxynucleoside, Pyrimidine, Mitochondria, mtDNA, Depletion
Eligibility Criteria
Inclusion Criteria:
- Children 0 -18 Y
- Written informed consent obtained,
- Clinical Diagnosis of a Mitochondrial Depletion Disorder.
- Pathogenic variant(s) in one of the following genes: POLG, C10orf2, RRM2B, MPV17, SUCLA2, SUCLG1, FBXL4
- Females of childbearing age:
Negative urinary pregnancy test at screening Agree to use effective contraception for the duration of the study
Exclusion Criteria:
- Inability of a parent or legal guardian to give informed consent for any reason
- Chronic severe diarrhea
Sites / Locations
- Research InstituMcGill University Health Centre - Children Hospital of MontrealRecruiting
Arms of the Study
Arm 1
Arm Type
Experimental
Arm Label
dC/dT100-400 Arm
Arm Description
Children & Adult (0-60 Y), who takes the investigational product deoxynucleosides pyrimidine (mix of deoxycytidine and deoxythymidine), following the protocol.
Outcomes
Primary Outcome Measures
Rate of Responder versus Non-Responder Status with investigational product
"Responder" defined as having ≥ 2 of (1) electroencephalography EEG improvement, (2) decreased seizure frequency, (3) cognitive improvement, (4) caregiver impression of improvement, (5) clinical improvement, (6) Normal Organics and Metabolism functions Description of the primary variable(s) The primary efficacy endpoint is the composite cluster of the first occurrence, over the duration of study, of Mitochondria Depletion Syndrome.
Secondary Outcome Measures
Number of participants experiencing dose-limiting toxicities, adverse events (AEs), serious adverse events (SAEs)
Safety profile will be assessed through number of participants experiencing adverse events (AEs), serious adverse events (SAEs), laboratory evaluations, vital signs, and physical examinations.
Full Information
NCT ID
NCT04802707
First Posted
March 10, 2021
Last Updated
January 26, 2023
Sponsor
McGill University Health Centre/Research Institute of the McGill University Health Centre
1. Study Identification
Unique Protocol Identification Number
NCT04802707
Brief Title
Deoxynucleosides Pyrimidines as Treatment for Mitochondrial Depletion Syndrome
Acronym
dC-dT-MDS
Official Title
A Phase II, Monocenter, Single Arm Study To Assess The Safety and Efficacy Of Combination Deoxycytidine and Deoxythymidine For Mitochondrial Depletion Disorders
Study Type
Interventional
2. Study Status
Record Verification Date
January 2023
Overall Recruitment Status
Recruiting
Study Start Date
October 18, 2021 (Actual)
Primary Completion Date
December 31, 2023 (Anticipated)
Study Completion Date
June 30, 2024 (Anticipated)
3. Sponsor/Collaborators
Responsible Party, by Official Title
Principal Investigator
Name of the Sponsor
McGill University Health Centre/Research Institute of the McGill University Health Centre
4. Oversight
Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Data Monitoring Committee
Yes
5. Study Description
Brief Summary
Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a genetically and clinically heterogeneous group of autosomal recessive disorders that are characterized by a severe reduction in mtDNA content leading to impaired energy production in affected tissues and organs. MDS are due to defects in mtDNA maintenance caused by mutations in nuclear genes that function in either mitochondrial nucleotide synthesis. MDS are phenotypically heterogeneous and usually classified as myopathic, encephalomyopathic, hepatocerebral or neurogastrointestinal.
No efficacious therapy is available for any of these disorders. Affected individuals should have a comprehensive evaluation to assess the degree of involvement of different systems. Treatment is directed mainly toward providing symptomatic management. No treatment for MDS.
Clinical trials studies and in vitro/in vivo research studies showed that the enhancement of the salvage pathway by increasing the availability of deoxyribonucleosides needed for each specific genetic defect prevents mtDNA depletion.
Early recognition and immediate therapy to restore mitochondrial function could potentially improve clinical course.
Confirming the benefit of deoxynucleosides as a safe and potentially efficacious therapy, will lead to the availability of the first specific and effective treatment for Mitochondria Depletion Disorders.
In this phase II Trial a mix of Deoxynucleosides Pyrimidine (Deoxycytidine dC and Deoxythymidine dT) will be used as early treatment of MDS.
The dose used has been already used in other clinical trials, and appears to effective and well-tolerated. The subjects included are children (0-18Y), with positive MDS diagnosis and express mutations in one of the following genes: POLG, C10orf2, RRM2B, MPV17, SUCLA2, SUCLG1, FBXL4. Subjects with MDS expressing neurological phenotypes dysfunction.
Detailed Description
This Trial is designed as Phase II, Monocenter, Open label study in the pediatric population.
The aim is to evaluate the safety, tolerability and efficacy of Deoxycytidine and Deoxythymidine in treatment of children with Mitochondrial Depletion Disorders.
Primary Objectives The primary objective of this study is to evaluate the efficacy of dC/dT100-400 in subjects with mitochondria depletion disorders.
Secondary Objectives The secondary objectives of this study are to evaluate tolerability and safety of dC/dT100-400 in subjects with mitochondria depletion disorders.
First Outcome
Efficacy of dC/dT100-400 :
Neurological improvement by electroencephalography (EEG), seizure diary, development and quality of life, clinical status observed during the neurological follow-up.
Improved clinical status observed during the genetic follow-up and the Newcastle Paediatric Mitochondrial Disease Scale (NPMDS), which are forms used by geneticist to allow evaluation of the progression of mitochondrial disease in patients less than 18 years of age.
Bloodwork for different assessments:
liver function (aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), bilirubin and albumin.), kidney function (creatinine, urea, electrolytes). Assess for myopathy with serum creatine kinase (CK). Evaluation of mitochondrial function with capillary/venous blood gas, serum lactate, plasma amino acids, acylcarnitine profile, urine amino acids, urine purines and pyrimidines acids, and growth differentiation factor 15 (GDF15; a marker of severity of mitochondria dysfunction).
Secondary Outcome
- Safety and tolerability will be tested by recording adverse effects (AE): AE will be monitored and collected throughout the study.
Diarrhea: Reported diarrhea frequency during the treatment, will permit to define the tolerability of dC/dT100-400.
AE leading to study drug discontinuation, treatment-emergent adverse events (TEAEs), SAEs (Severe Adverse Effect) will be reported from the first day the subjects start taking medication until the last dose taken.
6. Conditions and Keywords
Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Mitochondrial Diseases, Mitochondrial Encephalomyopathy, Mitochondrial Encephalopathy, Mitochondrial DNA Depletion, Mitochondrial Metabolism Disorders
Keywords
Deoxycytidine, Deoxythymidine, Deoxynucleoside, Pyrimidine, Mitochondria, mtDNA, Depletion
7. Study Design
Primary Purpose
Treatment
Study Phase
Phase 2
Interventional Study Model
Single Group Assignment
Model Description
Phase II, One Site, Open label study in the pediatric and adult population
Masking
None (Open Label)
Allocation
N/A
Enrollment
50 (Anticipated)
8. Arms, Groups, and Interventions
Arm Title
dC/dT100-400 Arm
Arm Type
Experimental
Arm Description
Children & Adult (0-60 Y), who takes the investigational product deoxynucleosides pyrimidine (mix of deoxycytidine and deoxythymidine), following the protocol.
Intervention Type
Combination Product
Intervention Name(s)
deoxycytidine and deoxythymidine
Intervention Description
The Investigational Product (IP) dC/dT100-400 will be administered orally every day (QD) and the dose is divided over 3 taking/day for the daily dose of 100 mg/kg from Day 1-7, 200 mg/kg from Day 8-14, 300 mg/kg from Day 15- 21 and 400 mg/kg from Day 22 to 730. Doses was chosen according to the safety and efficacy doses used in the literature.
Primary Outcome Measure Information:
Title
Rate of Responder versus Non-Responder Status with investigational product
Description
"Responder" defined as having ≥ 2 of (1) electroencephalography EEG improvement, (2) decreased seizure frequency, (3) cognitive improvement, (4) caregiver impression of improvement, (5) clinical improvement, (6) Normal Organics and Metabolism functions Description of the primary variable(s) The primary efficacy endpoint is the composite cluster of the first occurrence, over the duration of study, of Mitochondria Depletion Syndrome.
Time Frame
104 weeks
Secondary Outcome Measure Information:
Title
Number of participants experiencing dose-limiting toxicities, adverse events (AEs), serious adverse events (SAEs)
Description
Safety profile will be assessed through number of participants experiencing adverse events (AEs), serious adverse events (SAEs), laboratory evaluations, vital signs, and physical examinations.
Time Frame
104 weeks
10. Eligibility
Sex
All
Minimum Age & Unit of Time
1 Month
Maximum Age & Unit of Time
60 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria:
Children & Adults (0 -60 Y)
Written informed consent obtained,
Clinical Diagnosis of a Mitochondrial Depletion Disorder.
Pathogenic variant(s) in one of the following genes: POLG, C10orf2, RRM2B, MPV17, SUCLA2, SUCLG1, FBXL4
Females of childbearing age:
Negative urinary pregnancy test at screening Agree to use effective contraception for the duration of the study
Exclusion Criteria:
Inability of a parent or legal guardian to give informed consent for any reason
Chronic severe diarrhea
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
Kenneth Alexis MD Myers, MD PhD FRCPC
Phone
514-934-1934
Ext
23316
Email
kenneth.myers@mcgill.ca
First Name & Middle Initial & Last Name or Official Title & Degree
Saoussen Dr Berrahmoune, PhD
Phone
514-934-1934
Ext
76204
Email
saoussen.berrahmoune@rimuhc.ca
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Kenneth Alexis MD Myers, MD PhD FRCPC
Organizational Affiliation
RI-MUHC, Children Hospital of Montreal (MUHC), McGill University
Official's Role
Principal Investigator
Facility Information:
Facility Name
Research InstituMcGill University Health Centre - Children Hospital of Montreal
City
Montréal
State/Province
Quebec
ZIP/Postal Code
H4A 3J1
Country
Canada
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Dr. Kenneth Myers, MD
Phone
514-934-1934
Ext
76204
Email
kenneth.myers@mcgill.ca
First Name & Middle Initial & Last Name & Degree
Saoussen Berrahmoune, PhD
Phone
5149004065
Email
saoussen.berrahmoune@rimuhc.ca
First Name & Middle Initial & Last Name & Degree
Daniela Buhas, MD
First Name & Middle Initial & Last Name & Degree
Kenneth Myers, MD
12. IPD Sharing Statement
Plan to Share IPD
Yes
IPD Sharing Plan Description
REDCap software will be used as IPD. The data's will be shared anonymous, subject will bes identified by an Identifiant (ID).
REDCap is managed by quality data's teams of research institute of McGill University Health Center (RI-MUHC).
For clinical study reports since the study is planned at the Children Hospital of Montreal, Clinical Study Report (CSR) access will be done through open architecture clinical information system (Oacis) tool of hospital Study Protocol And Informed Consent Form (ICF) will be shared by Email or on core network of RIMUHC
IPD Sharing Time Frame
104 weeks
IPD Sharing Access Criteria
Research Staff, Principal Investigator (PI), Co-Investigator, regulation authority and clinical research associate (CRA) for monitoring are authorized to access to the data's for CRA (anonymous data's)
Citations:
PubMed Identifier
23168274
Citation
Osellame LD, Blacker TS, Duchen MR. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab. 2012 Dec;26(6):711-23. doi: 10.1016/j.beem.2012.05.003. Epub 2012 Jun 23.
Results Reference
result
PubMed Identifier
12771225
Citation
Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P. Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res. 2003 Jun 1;31(11):e61. doi: 10.1093/nar/gng060.
Results Reference
result
PubMed Identifier
12826641
Citation
DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med. 2003 Jun 26;348(26):2656-68. doi: 10.1056/NEJMra022567. No abstract available.
Results Reference
result
PubMed Identifier
20329599
Citation
Huang CC, Hsu CH. [Mitochondrial disease and mitochondrial DNA depletion syndromes]. Acta Neurol Taiwan. 2009 Dec;18(4):287-95. Chinese.
Results Reference
result
PubMed Identifier
29344903
Citation
Rusecka J, Kaliszewska M, Bartnik E, Tonska K. Nuclear genes involved in mitochondrial diseases caused by instability of mitochondrial DNA. J Appl Genet. 2018 Feb;59(1):43-57. doi: 10.1007/s13353-017-0424-3. Epub 2018 Jan 17.
Results Reference
result
PubMed Identifier
28324239
Citation
Viscomi C, Zeviani M. MtDNA-maintenance defects: syndromes and genes. J Inherit Metab Dis. 2017 Jul;40(4):587-599. doi: 10.1007/s10545-017-0027-5. Epub 2017 Mar 21.
Results Reference
result
PubMed Identifier
30848931
Citation
Blazquez-Bermejo C, Carreno-Gago L, Molina-Granada D, Aguirre J, Ramon J, Torres-Torronteras J, Cabrera-Perez R, Martin MA, Dominguez-Gonzalez C, de la Cruz X, Lombes A, Garcia-Arumi E, Marti R, Camara Y. Increased dNTP pools rescue mtDNA depletion in human POLG-deficient fibroblasts. FASEB J. 2019 Jun;33(6):7168-7179. doi: 10.1096/fj.201801591R. Epub 2019 Mar 8.
Results Reference
result
PubMed Identifier
23385875
Citation
El-Hattab AW, Scaglia F. Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics. 2013 Apr;10(2):186-98. doi: 10.1007/s13311-013-0177-6.
Results Reference
result
PubMed Identifier
24708634
Citation
Nogueira C, Almeida LS, Nesti C, Pezzini I, Videira A, Vilarinho L, Santorelli FM. Syndromes associated with mitochondrial DNA depletion. Ital J Pediatr. 2014 Apr 3;40:34. doi: 10.1186/1824-7288-40-34.
Results Reference
result
PubMed Identifier
32000920
Citation
Basel D. Mitochondrial DNA Depletion Syndromes. Clin Perinatol. 2020 Mar;47(1):123-141. doi: 10.1016/j.clp.2019.10.008. Epub 2019 Oct 31.
Results Reference
result
PubMed Identifier
19103785
Citation
Rahman S, Poulton J. Diagnosis of mitochondrial DNA depletion syndromes. Arch Dis Child. 2009 Jan;94(1):3-5. doi: 10.1136/adc.2008.147983. No abstract available.
Results Reference
result
PubMed Identifier
19125351
Citation
Spinazzola A, Invernizzi F, Carrara F, Lamantea E, Donati A, Dirocco M, Giordano I, Meznaric-Petrusa M, Baruffini E, Ferrero I, Zeviani M. Clinical and molecular features of mitochondrial DNA depletion syndromes. J Inherit Metab Dis. 2009 Apr;32(2):143-58. doi: 10.1007/s10545-008-1038-z. Epub 2008 Dec 27.
Results Reference
result
PubMed Identifier
20444604
Citation
Suomalainen A, Isohanni P. Mitochondrial DNA depletion syndromes--many genes, common mechanisms. Neuromuscul Disord. 2010 Jul;20(7):429-37. doi: 10.1016/j.nmd.2010.03.017. Epub 2010 May 4.
Results Reference
result
PubMed Identifier
22176657
Citation
Copeland WC. Defects in mitochondrial DNA replication and human disease. Crit Rev Biochem Mol Biol. 2012 Jan-Feb;47(1):64-74. doi: 10.3109/10409238.2011.632763.
Results Reference
result
PubMed Identifier
25857492
Citation
Khan NA, Govindaraj P, Meena AK, Thangaraj K. Mitochondrial disorders: challenges in diagnosis & treatment. Indian J Med Res. 2015 Jan;141(1):13-26. doi: 10.4103/0971-5916.154489.
Results Reference
result
PubMed Identifier
28837072
Citation
Hikmat O, Eichele T, Tzoulis C, Bindoff LA. Understanding the Epilepsy in POLG Related Disease. Int J Mol Sci. 2017 Aug 24;18(9):1845. doi: 10.3390/ijms18091845.
Results Reference
result
PubMed Identifier
28215579
Citation
El-Hattab AW, Craigen WJ, Scaglia F. Mitochondrial DNA maintenance defects. Biochim Biophys Acta Mol Basis Dis. 2017 Jun;1863(6):1539-1555. doi: 10.1016/j.bbadis.2017.02.017. Epub 2017 Feb 16.
Results Reference
result
Citation
El-Hattab, A.W., et al., Mitochondrial DNA Maintenance Defects Overview, in GeneReviews((R)), M.P. Adam, et al., Editors. 1993: Seattle (WA).
Results Reference
result
PubMed Identifier
24985751
Citation
Copeland WC. Defects of mitochondrial DNA replication. J Child Neurol. 2014 Sep;29(9):1216-24. doi: 10.1177/0883073814537380. Epub 2014 Jun 30.
Results Reference
result
PubMed Identifier
19192035
Citation
Spinazzola A, Zeviani M. Disorders from perturbations of nuclear-mitochondrial intergenomic cross-talk. J Intern Med. 2009 Feb;265(2):174-92. doi: 10.1111/j.1365-2796.2008.02059.x.
Results Reference
result
Citation
Cohen, B.H., P.F. Chinnery, and W.C. Copeland, POLG-Related Disorders, in GeneReviews((R)), M.P. Adam, et al., Editors. 1993: Seattle (WA).
Results Reference
result
PubMed Identifier
22084276
Citation
Milone M, Benarroch EE, Wong LJ. POLG-related disorders: defects of the nuclear and mitochondrial genome interaction. Neurology. 2011 Nov 15;77(20):1847-52. doi: 10.1212/WNL.0b013e318238863a. No abstract available.
Results Reference
result
PubMed Identifier
30451971
Citation
Rahman S, Copeland WC. POLG-related disorders and their neurological manifestations. Nat Rev Neurol. 2019 Jan;15(1):40-52. doi: 10.1038/s41582-018-0101-0.
Results Reference
result
PubMed Identifier
27554452
Citation
Anagnostou ME, Ng YS, Taylor RW, McFarland R. Epilepsy due to mutations in the mitochondrial polymerase gamma (POLG) gene: A clinical and molecular genetic review. Epilepsia. 2016 Oct;57(10):1531-1545. doi: 10.1111/epi.13508. Epub 2016 Aug 24.
Results Reference
result
PubMed Identifier
18238797
Citation
Engelsen BA, Tzoulis C, Karlsen B, Lillebo A, Laegreid LM, Aasly J, Zeviani M, Bindoff LA. POLG1 mutations cause a syndromic epilepsy with occipital lobe predilection. Brain. 2008 Mar;131(Pt 3):818-28. doi: 10.1093/brain/awn007. Epub 2008 Jan 30.
Results Reference
result
PubMed Identifier
16621917
Citation
Horvath R, Hudson G, Ferrari G, Futterer N, Ahola S, Lamantea E, Prokisch H, Lochmuller H, McFarland R, Ramesh V, Klopstock T, Freisinger P, Salvi F, Mayr JA, Santer R, Tesarova M, Zeman J, Udd B, Taylor RW, Turnbull D, Hanna M, Fialho D, Suomalainen A, Zeviani M, Chinnery PF. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain. 2006 Jul;129(Pt 7):1674-84. doi: 10.1093/brain/awl088. Epub 2006 Apr 18.
Results Reference
result
PubMed Identifier
30228318
Citation
Hikmat O, Tzoulis C, Chong WK, Chentouf L, Klingenberg C, Fratter C, Carr LJ, Prabhakar P, Kumaraguru N, Gissen P, Cross JH, Jacques TS, Taanman JW, Bindoff LA, Rahman S. Correction: The clinical spectrum and natural history of early-onset diseases due to DNA polymerase gamma mutations. Genet Med. 2019 Apr;21(4):1027. doi: 10.1038/s41436-018-0098-1.
Results Reference
result
PubMed Identifier
31973983
Citation
Lim A, Thomas RH. The mitochondrial epilepsies. Eur J Paediatr Neurol. 2020 Jan;24:47-52. doi: 10.1016/j.ejpn.2019.12.021. Epub 2020 Jan 7.
Results Reference
result
PubMed Identifier
17483096
Citation
Ashley N, Adams S, Slama A, Zeviani M, Suomalainen A, Andreu AL, Naviaux RK, Poulton J. Defects in maintenance of mitochondrial DNA are associated with intramitochondrial nucleotide imbalances. Hum Mol Genet. 2007 Jun 15;16(12):1400-11. doi: 10.1093/hmg/ddm090. Epub 2007 May 3.
Results Reference
result
PubMed Identifier
21774628
Citation
Gandhi VV, Samuels DC. A review comparing deoxyribonucleoside triphosphate (dNTP) concentrations in the mitochondrial and cytoplasmic compartments of normal and transformed cells. Nucleosides Nucleotides Nucleic Acids. 2011 May;30(5):317-39. doi: 10.1080/15257770.2011.586955.
Results Reference
result
PubMed Identifier
21483760
Citation
Gonzalez-Vioque E, Torres-Torronteras J, Andreu AL, Marti R. Limited dCTP availability accounts for mitochondrial DNA depletion in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). PLoS Genet. 2011 Mar;7(3):e1002035. doi: 10.1371/journal.pgen.1002035. Epub 2011 Mar 31.
Results Reference
result
PubMed Identifier
11182283
Citation
Absalon MJ, Harding CO, Fain DR, Li L, Mack KJ. Leigh syndrome in an infant resulting from mitochondrial DNA depletion. Pediatr Neurol. 2001 Jan;24(1):60-3. doi: 10.1016/s0887-8994(00)00226-5.
Results Reference
result
PubMed Identifier
31462754
Citation
Keshavan N, Abdenur J, Anderson G, Assouline Z, Barcia G, Bouhikbar L, Chakrapani A, Cleary M, Cohen MC, Feillet F, Fratter C, Hauser N, Jacques T, Lam A, McCullagh H, Phadke R, Rotig A, Sharrard M, Simon M, Smith C, Sommerville EW, Taylor RW, Yue WW, Rahman S. The natural history of infantile mitochondrial DNA depletion syndrome due to RRM2B deficiency. Genet Med. 2020 Jan;22(1):199-209. doi: 10.1038/s41436-019-0613-z. Epub 2019 Aug 29.
Results Reference
result
PubMed Identifier
19667227
Citation
Shaibani A, Shchelochkov OA, Zhang S, Katsonis P, Lichtarge O, Wong LJ, Shinawi M. Mitochondrial neurogastrointestinal encephalopathy due to mutations in RRM2B. Arch Neurol. 2009 Aug;66(8):1028-32. doi: 10.1001/archneurol.2009.139.
Results Reference
result
PubMed Identifier
17486094
Citation
Bourdon A, Minai L, Serre V, Jais JP, Sarzi E, Aubert S, Chretien D, de Lonlay P, Paquis-Flucklinger V, Arakawa H, Nakamura Y, Munnich A, Rotig A. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet. 2007 Jun;39(6):776-80. doi: 10.1038/ng2040. Epub 2007 May 7.
Results Reference
result
PubMed Identifier
19138848
Citation
Kollberg G, Darin N, Benan K, Moslemi AR, Lindal S, Tulinius M, Oldfors A, Holme E. A novel homozygous RRM2B missense mutation in association with severe mtDNA depletion. Neuromuscul Disord. 2009 Feb;19(2):147-50. doi: 10.1016/j.nmd.2008.11.014. Epub 2009 Jan 12.
Results Reference
result
Citation
El-Hattab, A.W., et al., MPV17-Related Mitochondrial DNA Maintenance Defect, in GeneReviews((R)), M.P. Adam, et al., Editors. 1993: Seattle (WA).
Results Reference
result
PubMed Identifier
29282788
Citation
El-Hattab AW, Wang J, Dai H, Almannai M, Staufner C, Alfadhel M, Gambello MJ, Prasun P, Raza S, Lyons HJ, Afqi M, Saleh MAM, Faqeih EA, Alzaidan HI, Alshenqiti A, Flore LA, Hertecant J, Sacharow S, Barbouth DS, Murayama K, Shah AA, Lin HC, Wong LC. MPV17-related mitochondrial DNA maintenance defect: New cases and review of clinical, biochemical, and molecular aspects. Hum Mutat. 2018 Apr;39(4):461-470. doi: 10.1002/humu.23387. Epub 2018 Jan 13.
Results Reference
result
Citation
El-Hattab, A.W. and F. Scaglia, SUCLA2-Related Mitochondrial DNA Depletion Syndrome, Encephalomyopathic Form with Methylmalonic Aciduria, in GeneReviews((R)), M.P. Adam, et al., Editors. 1993: Seattle (WA).
Results Reference
result
Citation
El-Hattab, A.W. and F. Scaglia, SUCLG1-Related Mitochondrial DNA Depletion Syndrome, Encephalomyopathic Form with Methylmalonic Aciduria, in GeneReviews((R)), M.P. Adam, et al., Editors. 1993: Seattle (WA).
Results Reference
result
Citation
Almannai, M., et al., FBXL4-Related Encephalomyopathic Mitochondrial DNA Depletion Syndrome, in GeneReviews((R)), M.P. Adam, et al., Editors. 1993: Seattle (WA).
Results Reference
result
PubMed Identifier
15684706
Citation
Saada A. Deoxyribonucleotides and disorders of mitochondrial DNA integrity. DNA Cell Biol. 2004 Dec;23(12):797-806. doi: 10.1089/dna.2004.23.797.
Results Reference
result
PubMed Identifier
27906631
Citation
Wang L. Mitochondrial purine and pyrimidine metabolism and beyond. Nucleosides Nucleotides Nucleic Acids. 2016 Dec;35(10-12):578-594. doi: 10.1080/15257770.2015.1125001.
Results Reference
result
PubMed Identifier
12013896
Citation
Akanuma J. [Mitochondrial DNA depletion syndrome]. Nihon Rinsho. 2002 Apr;60 Suppl 4:398-401. No abstract available. Japanese.
Results Reference
result
PubMed Identifier
12508073
Citation
Zipursky A. The genetics of childhood disease and development. Pediatr Res. 2003 Jan;53(1):3. doi: 10.1203/00006450-200301000-00003. No abstract available.
Results Reference
result
PubMed Identifier
22711161
Citation
Filosto M, Scarpelli M, Tonin P, Lucchini G, Pavan F, Santus F, Parini R, Donati MA, Cotelli MS, Vielmi V, Todeschini A, Canonico F, Tomelleri G, Padovani A, Rovelli A. Course and management of allogeneic stem cell transplantation in patients with mitochondrial neurogastrointestinal encephalomyopathy. J Neurol. 2012 Dec;259(12):2699-706. doi: 10.1007/s00415-012-6572-9. Epub 2012 Jun 19.
Results Reference
result
PubMed Identifier
16971696
Citation
Hirano M, Marti R, Casali C, Tadesse S, Uldrick T, Fine B, Escolar DM, Valentino ML, Nishino I, Hesdorffer C, Schwartz J, Hawks RG, Martone DL, Cairo MS, DiMauro S, Stanzani M, Garvin JH Jr, Savage DG. Allogeneic stem cell transplantation corrects biochemical derangements in MNGIE. Neurology. 2006 Oct 24;67(8):1458-60. doi: 10.1212/01.wnl.0000240853.97716.24. Epub 2006 Sep 13.
Results Reference
result
PubMed Identifier
17353390
Citation
Yavuz H, Ozel A, Christensen M, Christensen E, Schwartz M, Elmaci M, Vissing J. Treatment of mitochondrial neurogastrointestinal encephalomyopathy with dialysis. Arch Neurol. 2007 Mar;64(3):435-8. doi: 10.1001/archneur.64.3.435.
Results Reference
result
PubMed Identifier
19766516
Citation
Hasselmann O, Blau N, Ramaekers VT, Quadros EV, Sequeira JM, Weissert M. Cerebral folate deficiency and CNS inflammatory markers in Alpers disease. Mol Genet Metab. 2010 Jan;99(1):58-61. doi: 10.1016/j.ymgme.2009.08.005.
Results Reference
result
PubMed Identifier
17080429
Citation
Rodriguez MC, MacDonald JR, Mahoney DJ, Parise G, Beal MF, Tarnopolsky MA. Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle Nerve. 2007 Feb;35(2):235-42. doi: 10.1002/mus.20688.
Results Reference
result
PubMed Identifier
21855607
Citation
Saito K, Kimura N, Oda N, Shimomura H, Kumada T, Miyajima T, Murayama K, Tanaka M, Fujii T. Pyruvate therapy for mitochondrial DNA depletion syndrome. Biochim Biophys Acta. 2012 May;1820(5):632-6. doi: 10.1016/j.bbagen.2011.08.006. Epub 2011 Aug 11.
Results Reference
result
PubMed Identifier
18546365
Citation
Wong LJ, Naviaux RK, Brunetti-Pierri N, Zhang Q, Schmitt ES, Truong C, Milone M, Cohen BH, Wical B, Ganesh J, Basinger AA, Burton BK, Swoboda K, Gilbert DL, Vanderver A, Saneto RP, Maranda B, Arnold G, Abdenur JE, Waters PJ, Copeland WC. Molecular and clinical genetics of mitochondrial diseases due to POLG mutations. Hum Mutat. 2008 Sep;29(9):E150-72. doi: 10.1002/humu.20824.
Results Reference
result
PubMed Identifier
17549623
Citation
Lara MC, Valentino ML, Torres-Torronteras J, Hirano M, Marti R. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): biochemical features and therapeutic approaches. Biosci Rep. 2007 Jun;27(1-3):151-63. doi: 10.1007/s10540-007-9043-2.
Results Reference
result
PubMed Identifier
16971699
Citation
Lara MC, Weiss B, Illa I, Madoz P, Massuet L, Andreu AL, Valentino ML, Anikster Y, Hirano M, Marti R. Infusion of platelets transiently reduces nucleoside overload in MNGIE. Neurology. 2006 Oct 24;67(8):1461-3. doi: 10.1212/01.wnl.0000239824.95411.52. Epub 2006 Sep 13.
Results Reference
result
PubMed Identifier
23817075
Citation
Camara Y, Gonzalez-Vioque E, Scarpelli M, Torres-Torronteras J, Marti R. Feeding the deoxyribonucleoside salvage pathway to rescue mitochondrial DNA. Drug Discov Today. 2013 Oct;18(19-20):950-7. doi: 10.1016/j.drudis.2013.06.009. Epub 2013 Jun 28.
Results Reference
result
PubMed Identifier
23714749
Citation
Uusimaa J, Evans J, Smith C, Butterworth A, Craig K, Ashley N, Liao C, Carver J, Diot A, Macleod L, Hargreaves I, Al-Hussaini A, Faqeih E, Asery A, Al Balwi M, Eyaid W, Al-Sunaid A, Kelly D, van Mourik I, Ball S, Jarvis J, Mulay A, Hadzic N, Samyn M, Baker A, Rahman S, Stewart H, Morris AA, Seller A, Fratter C, Taylor RW, Poulton J. Clinical, biochemical, cellular and molecular characterization of mitochondrial DNA depletion syndrome due to novel mutations in the MPV17 gene. Eur J Hum Genet. 2014 Feb;22(2):184-91. doi: 10.1038/ejhg.2013.112. Epub 2013 May 29.
Results Reference
result
PubMed Identifier
26760297
Citation
Dalla Rosa I, Camara Y, Durigon R, Moss CF, Vidoni S, Akman G, Hunt L, Johnson MA, Grocott S, Wang L, Thorburn DR, Hirano M, Poulton J, Taylor RW, Elgar G, Marti R, Voshol P, Holt IJ, Spinazzola A. MPV17 Loss Causes Deoxynucleotide Insufficiency and Slow DNA Replication in Mitochondria. PLoS Genet. 2016 Jan 13;12(1):e1005779. doi: 10.1371/journal.pgen.1005779. eCollection 2016 Jan.
Results Reference
result
PubMed Identifier
22608879
Citation
Bulst S, Holinski-Feder E, Payne B, Abicht A, Krause S, Lochmuller H, Chinnery PF, Walter MC, Horvath R. In vitro supplementation with deoxynucleoside monophosphates rescues mitochondrial DNA depletion. Mol Genet Metab. 2012 Sep;107(1-2):95-103. doi: 10.1016/j.ymgme.2012.04.022. Epub 2012 May 3.
Results Reference
result
PubMed Identifier
26342080
Citation
Franzolin E, Salata C, Bianchi V, Rampazzo C. The Deoxynucleoside Triphosphate Triphosphohydrolase Activity of SAMHD1 Protein Contributes to the Mitochondrial DNA Depletion Associated with Genetic Deficiency of Deoxyguanosine Kinase. J Biol Chem. 2015 Oct 23;290(43):25986-96. doi: 10.1074/jbc.M115.675082. Epub 2015 Sep 4.
Results Reference
result
PubMed Identifier
18467430
Citation
Akman HO, Dorado B, Lopez LC, Garcia-Cazorla A, Vila MR, Tanabe LM, Dauer WT, Bonilla E, Tanji K, Hirano M. Thymidine kinase 2 (H126N) knockin mice show the essential role of balanced deoxynucleotide pools for mitochondrial DNA maintenance. Hum Mol Genet. 2008 Aug 15;17(16):2433-40. doi: 10.1093/hmg/ddn143. Epub 2008 May 8.
Results Reference
result
PubMed Identifier
19889013
Citation
Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, Moshe SL, Perucca E, Wiebe S, French J. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010 Jun;51(6):1069-77. doi: 10.1111/j.1528-1167.2009.02397.x. Epub 2009 Nov 3. Erratum In: Epilepsia. 2010 Sep;51(9):1922.
Results Reference
result
PubMed Identifier
31125140
Citation
Dominguez-Gonzalez C, Madruga-Garrido M, Mavillard F, Garone C, Aguirre-Rodriguez FJ, Donati MA, Kleinsteuber K, Marti I, Martin-Hernandez E, Morealejo-Aycinena JP, Munell F, Nascimento A, Kalko SG, Sardina MD, Alvarez Del Vayo C, Serrano O, Long Y, Tu Y, Levin B, Thompson JLP, Engelstad K, Uddin J, Torres-Torronteras J, Jimenez-Mallebrera C, Marti R, Paradas C, Hirano M. Deoxynucleoside Therapy for Thymidine Kinase 2-Deficient Myopathy. Ann Neurol. 2019 Aug;86(2):293-303. doi: 10.1002/ana.25506. Epub 2019 Jun 17.
Results Reference
result
PubMed Identifier
33246973
Citation
Hernandez-Voth A, Sayas Catalan J, Corral Blanco M, Castano Mendez A, Martin MA, De Fuenmayor Fernandez de la Hoz C, Villena Garrido V, Dominguez-Gonzalez C. Deoxynucleoside therapy for respiratory involvement in adult patients with thymidine kinase 2-deficient myopathy. BMJ Open Respir Res. 2020 Nov;7(1):e000774. doi: 10.1136/bmjresp-2020-000774.
Results Reference
result
PubMed Identifier
245993
Citation
Purine and pyrimidine metabolism. Ciba Found Symp. 1977;(48):331-55. No abstract available.
Results Reference
result
PubMed Identifier
7660879
Citation
Bory C, Chantin C, Boulieu R. Abnormal purine and pyrimidine metabolism in inherited superactivity of PRPP synthetase. Adv Exp Med Biol. 1994;370:15-8. doi: 10.1007/978-1-4615-2584-4_4. No abstract available.
Results Reference
result
PubMed Identifier
15090651
Citation
Castellanos M, Wilson DB, Shuler ML. A modular minimal cell model: purine and pyrimidine transport and metabolism. Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6681-6. doi: 10.1073/pnas.0400962101. Epub 2004 Apr 16.
Results Reference
result
PubMed Identifier
23169334
Citation
Khan I, Sarker SJ, Hackshaw A. Smaller sample sizes for phase II trials based on exact tests with actual error rates by trading-off their nominal levels of significance and power. Br J Cancer. 2012 Nov 20;107(11):1801-9. doi: 10.1038/bjc.2012.444.
Results Reference
result
Learn more about this trial
Deoxynucleosides Pyrimidines as Treatment for Mitochondrial Depletion Syndrome
We'll reach out to this number within 24 hrs