search
Back to results

Transspinal Stimulation Plus Locomotor Training for SCI

Primary Purpose

Spinal Cord Injuries, Paraplegia, Spinal, Tetraplegia/Tetraparesis

Status
Recruiting
Phase
Not Applicable
Locations
United States
Study Type
Interventional
Intervention
Standing transspinal stimulation followed by robotic gait training
Lying transspinal stimulation followed by robotic gait training
Standing sham transspinal stimulation followed by robotic gait training
Sponsored by
City University of New York
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional treatment trial for Spinal Cord Injuries focused on measuring Locomotor Training, Transcutaneous Spinal Cord Stimulation, Lokomat, Peripheral Nerve Stimulation, H-Reflex, Spinal Neural Circuits, Neuroplasticity, Recovery

Eligibility Criteria

18 Years - 70 Years (Adult, Older Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria:

  • Willingness to comply with all study procedures and availability for the duration of the study.
  • Ability to understand the consent form, and sign the consent form.
  • Male or female, age 18-70 years old.
  • In good general health as evidenced by medical history.
  • Diagnosed with motor incomplete SCI (AIS C-D).
  • Bone mineral density of the hip (proximal femur) T-score <3.5 SD from age- and gender-matched normative data.
  • Lesion above thoracic (T) 10 to ensure absent lower motoneuron lesion.
  • Presence of tendon reflexes to be able to elicit the soleus H-reflex.
  • Absent permanent ankle joint contractures that prevent passive or active ankle movement because corticospinal and spinal excitability is based on the ankle angle. The ankle straps of the Lokomat require also flexible ankle joints.
  • A diagnosis of first time SCI due to trauma, vascular, or orthopedic pathology.
  • Time after SCI of more than 6 months.
  • Stable medical condition without cardiopulmonary disease or cognitive impairment.

Exclusion Criteria:

  • Supraspinal lesions.
  • Significant neuropathies of the peripheral nervous system.
  • Significant degenerative neurological disorders of the spine or spinal cord.
  • AIS A or B.
  • Presence of pressure sores.
  • Advanced urinary tract infection.
  • Neoplastic or vascular disorders of the spine or spinal cord.
  • Participation in an ongoing research study or new rehabilitation program.
  • Pregnant women or women who suspect they may be, or may become pregnant will be excluded from participation because the risks of thoracolumbar stimulation to the fetus are unknown.
  • People with cochlear implants, pacemaker, implanted infusion device, and/or implanted stimulators of any type and purpose will be excluded to avoid their malfunction due to stimulation.
  • People with history of seizures.
  • Medical conditions that increase the possibility of seizures.
  • Medications that may change the seizure threshold.

Sites / Locations

  • Veterans Affairs Medical CenterRecruiting
  • Department of Physical Therapy, Motor Control and NeuroRecovery LaboratoryRecruiting

Arms of the Study

Arm 1

Arm 2

Arm 3

Arm Type

Experimental

Experimental

Sham Comparator

Arm Label

Real transspinal stimulation delivered during standing followed by locomotor training

Real transspinal stimulation delivered while lying supine followed by locomotor training

Sham transspinal stimulation delivered during standing followed by locomotor training

Arm Description

Transspinal tonic stimulation of the thoracolumbar region will be delivered at a frequency of 30 Hz during standing with as needed body weight support (BWS) in a standing frame or in the Lokomat to ensure safety.

Transspinal tonic stimulation will be delivered at a frequency of 30 Hz while lying supine.

One sham group will be receiving transspinal stimulation during standing at an intensity where sensation is absent.

Outcomes

Primary Outcome Measures

Plasticity of spinal neuronal networks
Neurophysiological assessments probing changes in excitatory and inhibitory spinal reflex excitability from interventions by recording amplitude modulation of the soleus H-reflex following posterior tibial and common peroneal nerves stimulation both at rest and during robotic-assisted stepping.
Plasticity of corticospinal networks
Neurophysiological measurements assessing changes in corticospinal excitability from the interventions by recording responses to single-pulse transcranial magnetic stimulation (TMS) at rest and during robotic-assisted stepping.

Secondary Outcome Measures

Ambulatory function
Change in two-minute walk and 10-meter timed test.
Balance
Changes in BESTtest clinical assessments.
Autonomic function
Questionnaire assessing participants perceived changes in bowel, bladder, and sexual function

Full Information

First Posted
March 11, 2021
Last Updated
May 27, 2022
Sponsor
City University of New York
Collaborators
Bronx Veterans Medical Research Foundation, Inc, Icahn School of Medicine at Mount Sinai
search

1. Study Identification

Unique Protocol Identification Number
NCT04807764
Brief Title
Transspinal Stimulation Plus Locomotor Training for SCI
Official Title
Priming With High-Frequency Trans-spinal Stimulation to Augment Locomotor Benefits in Spinal Cord Injury
Study Type
Interventional

2. Study Status

Record Verification Date
May 2022
Overall Recruitment Status
Recruiting
Study Start Date
August 1, 2021 (Actual)
Primary Completion Date
December 1, 2025 (Anticipated)
Study Completion Date
December 1, 2025 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Principal Investigator
Name of the Sponsor
City University of New York
Collaborators
Bronx Veterans Medical Research Foundation, Inc, Icahn School of Medicine at Mount Sinai

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
Yes
Product Manufactured in and Exported from the U.S.
No
Data Monitoring Committee
Yes

5. Study Description

Brief Summary
Locomotor training is often used with the aim to improve corticospinal function and walking ability in individuals with Spinal Cord Injury. Excitingly, the benefits of locomotor training may be augmented by noninvasive electrical stimulation of the spinal cord and enhance motor recovery at SCI. This study will compare the effects of priming locomotor training with high-frequency noninvasive thoracolumbar spinal stimulation. In people with motor-incomplete SCI, a series of clinical and electrical tests of brain and spinal cord function will be performed before and after 40 sessions of locomotor training where spinal stimulation is delivered immediately before either lying down or during standing.
Detailed Description
Spinal cord injury (SCI) greatly impairs standing and walking ability, which severely compromises daily living activities. While these deficits are partially improved by locomotor training, even after multiple training sessions, abnormal muscle activity and coordination still persist. Thus, locomotor training alone cannot fully optimize the neuronal plasticity required to strengthen the synapses connecting the brain, spinal cord, and local circuits. As such, treatment interventions that effectively promote neuromodulation of spinal locomotor networks and strengthen neural connectivity of the injured human spinal cord in combination with physical rehabilitation are greatly needed. It is proposed that transcutaneous spinal cord (transspinal) stimulation as a method to synergistically 'prime' the nervous system to better respond to locomotor training. Transspinal stimulation alters motoneuron excitability over multiple spinal segments, a pre-requisite for functioning descending and local inputs. Importantly, whether concurrent treatment with transspinal stimulation and locomotor training maximizes motor recovery after SCI is unknown. The goal of this clinical trial is to use high frequency (30 Hz) transspinal stimulation to prime locomotor training and ultimately improve standing, walking, and overall function in individuals with chronic incomplete SCI (iSCI). Forty-five individuals with iSCI will undergo 40 sessions of body weight-supported step training primed with high-frequency transspinal stimulation. Participants will be randomized to receive transspinal stimulation during standing (real or sham) or while supine (real). Aim 1 evaluates how priming locomotor training with high-frequency transspinal stimulation in SCI alters corticomotoneuronal connectivity strength, as indicated by motor evoked potentials recorded from the legs. Aim 2 evaluates how priming locomotor training with high-frequency transspinal stimulation in iSCI affects reorganization and appropriate engagement of spinal neuronal circuits. Finally, Aim 3 evaluates activity-based motor function, ability to stand and walk, and quality of life. These results will support the notion that tonic high-frequency transspinal stimulation strengthens corticomotoneuronal connectivity and improves spinal circuit organization through posture-dependent corticospinal neuroplasticity. It is anticipated that the information gained from this mechanistic clinical trial will greatly impact clinical practice. This is because in real-world clinical settings, noninvasive transspinal stimulation can be more easily and widely implemented than invasive epidural stimulation.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Spinal Cord Injuries, Paraplegia, Spinal, Tetraplegia/Tetraparesis, Paraplegia, Spastic
Keywords
Locomotor Training, Transcutaneous Spinal Cord Stimulation, Lokomat, Peripheral Nerve Stimulation, H-Reflex, Spinal Neural Circuits, Neuroplasticity, Recovery

7. Study Design

Primary Purpose
Treatment
Study Phase
Not Applicable
Interventional Study Model
Parallel Assignment
Model Description
This is a mechanistic randomized clinical trial. We will enroll 45 individuals with SCI. We will use blocked randomization into three groups with a block size of nine, with stratification according to severity of SCI (ambulatory with assistive device, or not ambulatory).1 We will check after completion of intervention by all subjects in each group whether the groups are balanced or not regarding baseline motor function and perform tests of association accordingly.
Masking
None (Open Label)
Allocation
Randomized
Enrollment
45 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
Real transspinal stimulation delivered during standing followed by locomotor training
Arm Type
Experimental
Arm Description
Transspinal tonic stimulation of the thoracolumbar region will be delivered at a frequency of 30 Hz during standing with as needed body weight support (BWS) in a standing frame or in the Lokomat to ensure safety.
Arm Title
Real transspinal stimulation delivered while lying supine followed by locomotor training
Arm Type
Experimental
Arm Description
Transspinal tonic stimulation will be delivered at a frequency of 30 Hz while lying supine.
Arm Title
Sham transspinal stimulation delivered during standing followed by locomotor training
Arm Type
Sham Comparator
Arm Description
One sham group will be receiving transspinal stimulation during standing at an intensity where sensation is absent.
Intervention Type
Combination Product
Intervention Name(s)
Standing transspinal stimulation followed by robotic gait training
Other Intervention Name(s)
Standing transspinal stimulation
Intervention Description
Fifteen people with spinal cord injury will receive 40 daily sessions of 30 minutes of non-invasive high frequency (e.g. 30 Hz) transcutaneous transspinal stimulation during standing followed by 30 minutes of assisted stepping robotic gait training. Before and after training standardized clinical and neurophysiological tests will be used to assess recovery of sensorimotor function.
Intervention Type
Combination Product
Intervention Name(s)
Lying transspinal stimulation followed by robotic gait training
Other Intervention Name(s)
Lying transspinal stimulation
Intervention Description
Fifteen people with spinal cord injury will receive 40 daily sessions of 30 minutes of non-invasive high frequency (e.g. 30 Hz) transcutaneous transspinal stimulation while lying supine on a therapy table followed by 30 minutes of assisted stepping robotic gait training. Before and after training standardized clinical and neurophysiological tests will be used to assess recovery of sensorimotor function.
Intervention Type
Other
Intervention Name(s)
Standing sham transspinal stimulation followed by robotic gait training
Other Intervention Name(s)
Robotic gait training
Intervention Description
Fifteen people with spinal cord injury will receive 40 daily sessions of 30 minutes of sham transspinal stimulation during standing at an intensity where sensation is absent followed by 30 minutes of robotic gait training. Before and after training standardized clinical and neurophysiological tests will be used to assess recovery of sensorimotor function.
Primary Outcome Measure Information:
Title
Plasticity of spinal neuronal networks
Description
Neurophysiological assessments probing changes in excitatory and inhibitory spinal reflex excitability from interventions by recording amplitude modulation of the soleus H-reflex following posterior tibial and common peroneal nerves stimulation both at rest and during robotic-assisted stepping.
Time Frame
4 years
Title
Plasticity of corticospinal networks
Description
Neurophysiological measurements assessing changes in corticospinal excitability from the interventions by recording responses to single-pulse transcranial magnetic stimulation (TMS) at rest and during robotic-assisted stepping.
Time Frame
4 years
Secondary Outcome Measure Information:
Title
Ambulatory function
Description
Change in two-minute walk and 10-meter timed test.
Time Frame
4 years
Title
Balance
Description
Changes in BESTtest clinical assessments.
Time Frame
4 years
Title
Autonomic function
Description
Questionnaire assessing participants perceived changes in bowel, bladder, and sexual function
Time Frame
4 years

10. Eligibility

Sex
All
Minimum Age & Unit of Time
18 Years
Maximum Age & Unit of Time
70 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: Willingness to comply with all study procedures and availability for the duration of the study. Ability to understand the consent form, and sign the consent form. Male or female, age 18-70 years old. In good general health as evidenced by medical history. Diagnosed with motor incomplete SCI (AIS C-D). Bone mineral density of the hip (proximal femur) T-score <3.5 SD from age- and gender-matched normative data. Lesion above thoracic (T) 10 to ensure absent lower motoneuron lesion. Presence of tendon reflexes to be able to elicit the soleus H-reflex. Absent permanent ankle joint contractures that prevent passive or active ankle movement because corticospinal and spinal excitability is based on the ankle angle. The ankle straps of the Lokomat require also flexible ankle joints. A diagnosis of first time SCI due to trauma, vascular, or orthopedic pathology. Time after SCI of more than 6 months. Stable medical condition without cardiopulmonary disease or cognitive impairment. Exclusion Criteria: Supraspinal lesions. Significant neuropathies of the peripheral nervous system. Significant degenerative neurological disorders of the spine or spinal cord. AIS A or B. Presence of pressure sores. Advanced urinary tract infection. Neoplastic or vascular disorders of the spine or spinal cord. Participation in an ongoing research study or new rehabilitation program. Pregnant women or women who suspect they may be, or may become pregnant will be excluded from participation because the risks of thoracolumbar stimulation to the fetus are unknown. People with cochlear implants, pacemaker, implanted infusion device, and/or implanted stimulators of any type and purpose will be excluded to avoid their malfunction due to stimulation. People with history of seizures. Medical conditions that increase the possibility of seizures. Medications that may change the seizure threshold.
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
Maria Knikou, PT, PhD
Phone
17189823316
Email
Maria.Knikou@csi.cuny.edu
First Name & Middle Initial & Last Name or Official Title & Degree
Noam Y. Harel, MD, PhD
Phone
718-584-9000
Ext
1742
Email
noam.harel@mountsinai.org
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Maria Knikou, PT, PhD
Organizational Affiliation
Research Foundation of the City University of New York
Official's Role
Principal Investigator
First Name & Middle Initial & Last Name & Degree
Noam Y. Harel, MD, PhD
Organizational Affiliation
Bronx Veterans Medical Research Foundation
Official's Role
Principal Investigator
Facility Information:
Facility Name
Veterans Affairs Medical Center
City
Bronx
State/Province
New York
ZIP/Postal Code
10468
Country
United States
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Noam Y. Harel, MD, PhD
Phone
718-584-9000
Ext
1742
Email
noam.harel@mountsinai.org
First Name & Middle Initial & Last Name & Degree
Gregory Mendez, BS
Phone
718-584-9000
Ext
3107
Email
gregory.mendez1@va.gov
Facility Name
Department of Physical Therapy, Motor Control and NeuroRecovery Laboratory
City
Staten Island
State/Province
New York
ZIP/Postal Code
10314
Country
United States
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Maria Knikou, PT, PhD
Phone
718-982-3316
Email
maria.knikou@csi.cuny.edu

12. IPD Sharing Statement

Citations:
PubMed Identifier
29988534
Citation
Cote MP, Murray LM, Knikou M. Spinal Control of Locomotion: Individual Neurons, Their Circuits and Functions. Front Physiol. 2018 Jun 25;9:784. doi: 10.3389/fphys.2018.00784. eCollection 2018.
Results Reference
background
PubMed Identifier
17551860
Citation
Ellaway PH, Catley M, Davey NJ, Kuppuswamy A, Strutton P, Frankel HL, Jamous A, Savic G. Review of physiological motor outcome measures in spinal cord injury using transcranial magnetic stimulation and spinal reflexes. J Rehabil Res Dev. 2007;44(1):69-76. doi: 10.1682/jrrd.2005.08.0140.
Results Reference
background
PubMed Identifier
18677185
Citation
Wirth B, van Hedel HJ, Curt A. Ankle paresis in incomplete spinal cord injury: relation to corticospinal conductivity and ambulatory capacity. J Clin Neurophysiol. 2008 Aug;25(4):210-7. doi: 10.1097/WNP.0b013e318183f4e3.
Results Reference
background
PubMed Identifier
25814508
Citation
Cirillo J, Calabro FJ, Perez MA. Impaired Organization of Paired-Pulse TMS-Induced I-Waves After Human Spinal Cord Injury. Cereb Cortex. 2016 May;26(5):2167-77. doi: 10.1093/cercor/bhv048. Epub 2015 Mar 25.
Results Reference
background
PubMed Identifier
19320005
Citation
Arvanian VL, Schnell L, Lou L, Golshani R, Hunanyan A, Ghosh A, Pearse DD, Robinson JK, Schwab ME, Fawcett JW, Mendell LM. Chronic spinal hemisection in rats induces a progressive decline in transmission in uninjured fibers to motoneurons. Exp Neurol. 2009 Apr;216(2):471-80. doi: 10.1016/j.expneurol.2009.01.004.
Results Reference
background
PubMed Identifier
17250567
Citation
Nielsen JB, Crone C, Hultborn H. The spinal pathophysiology of spasticity--from a basic science point of view. Acta Physiol (Oxf). 2007 Feb;189(2):171-80. doi: 10.1111/j.1748-1716.2006.01652.x.
Results Reference
background
PubMed Identifier
16534501
Citation
Knikou M. Plantar cutaneous input modulates differently spinal reflexes in subjects with intact and injured spinal cord. Spinal Cord. 2007 Jan;45(1):69-77. doi: 10.1038/sj.sc.3101917. Epub 2006 Mar 14.
Results Reference
background
PubMed Identifier
19863261
Citation
Knikou M, Angeli CA, Ferreira CK, Harkema SJ. Soleus H-reflex gain, threshold, and amplitude as function of body posture and load in spinal cord intact and injured subjects. Int J Neurosci. 2009;119(11):2056-73. doi: 10.1080/00207450903139747.
Results Reference
background
PubMed Identifier
19011843
Citation
Knikou M, Angeli CA, Ferreira CK, Harkema SJ. Soleus H-reflex modulation during body weight support treadmill walking in spinal cord intact and injured subjects. Exp Brain Res. 2009 Mar;193(3):397-407. doi: 10.1007/s00221-008-1636-x. Epub 2008 Nov 15.
Results Reference
background
PubMed Identifier
25890133
Citation
Barthelemy D, Willerslev-Olsen M, Lundell H, Biering-Sorensen F, Nielsen JB. Assessment of transmission in specific descending pathways in relation to gait and balance following spinal cord injury. Prog Brain Res. 2015;218:79-101. doi: 10.1016/bs.pbr.2014.12.012. Epub 2015 Mar 29.
Results Reference
background
PubMed Identifier
20554839
Citation
Barthelemy D, Willerslev-Olsen M, Lundell H, Conway BA, Knudsen H, Biering-Sorensen F, Nielsen JB. Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons. J Neurophysiol. 2010 Aug;104(2):1167-76. doi: 10.1152/jn.00382.2010. Epub 2010 Jun 16.
Results Reference
background
PubMed Identifier
30264729
Citation
James ND, McMahon SB, Field-Fote EC, Bradbury EJ. Neuromodulation in the restoration of function after spinal cord injury. Lancet Neurol. 2018 Oct;17(10):905-917. doi: 10.1016/S1474-4422(18)30287-4. Epub 2018 Sep 18.
Results Reference
background
PubMed Identifier
22300890
Citation
Tansey KE, McKay WB, Kakulas BA. Restorative neurology: consideration of the new anatomy and physiology of the injured nervous system. Clin Neurol Neurosurg. 2012 Jun;114(5):436-40. doi: 10.1016/j.clineuro.2012.01.010. Epub 2012 Feb 1.
Results Reference
background
PubMed Identifier
25122715
Citation
Smith AC, Mummidisetty CK, Rymer WZ, Knikou M. Locomotor training alters the behavior of flexor reflexes during walking in human spinal cord injury. J Neurophysiol. 2014 Nov 1;112(9):2164-75. doi: 10.1152/jn.00308.2014. Epub 2014 Aug 13.
Results Reference
background
PubMed Identifier
25205562
Citation
Smith AC, Rymer WZ, Knikou M. Locomotor training modifies soleus monosynaptic motoneuron responses in human spinal cord injury. Exp Brain Res. 2015 Jan;233(1):89-103. doi: 10.1007/s00221-014-4094-7. Epub 2014 Sep 10.
Results Reference
background
PubMed Identifier
30092092
Citation
Martinez SA, Nguyen ND, Bailey E, Doyle-Green D, Hauser HA, Handrakis JP, Knezevic S, Marett C, Weinman J, Romero AF, Santiago TM, Yang AH, Yung L, Asselin PK, Weir JP, Kornfeld SD, Bauman WA, Spungen AM, Harel NY. Multimodal cortical and subcortical exercise compared with treadmill training for spinal cord injury. PLoS One. 2018 Aug 9;13(8):e0202130. doi: 10.1371/journal.pone.0202130. eCollection 2018.
Results Reference
background
PubMed Identifier
23708757
Citation
Knikou M. Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury. Exp Brain Res. 2013 Jul;228(3):279-96. doi: 10.1007/s00221-013-3560-y. Epub 2013 May 25.
Results Reference
background
PubMed Identifier
11105672
Citation
Dobkin BH. Spinal and supraspinal plasticity after incomplete spinal cord injury: correlations between functional magnetic resonance imaging and engaged locomotor networks. Prog Brain Res. 2000;128:99-111. doi: 10.1016/S0079-6123(00)28010-2. No abstract available.
Results Reference
background
PubMed Identifier
16000519
Citation
Thomas SL, Gorassini MA. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. J Neurophysiol. 2005 Oct;94(4):2844-55. doi: 10.1152/jn.00532.2005. Epub 2005 Jul 6.
Results Reference
background
PubMed Identifier
7620630
Citation
Wernig A, Muller S, Nanassy A, Cagol E. Laufband therapy based on 'rules of spinal locomotion' is effective in spinal cord injured persons. Eur J Neurosci. 1995 Apr 1;7(4):823-9. doi: 10.1111/j.1460-9568.1995.tb00686.x. Erratum In: Eur J Neurosci 1995 Jun 1;7(6):1429.
Results Reference
background
PubMed Identifier
24598526
Citation
Knikou M, Mummidisetty CK. Locomotor training improves premotoneuronal control after chronic spinal cord injury. J Neurophysiol. 2014 Jun 1;111(11):2264-75. doi: 10.1152/jn.00871.2013. Epub 2014 Mar 5.
Results Reference
background
PubMed Identifier
25609110
Citation
Knikou M, Smith AC, Mummidisetty CK. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury. J Neurophysiol. 2015 Apr 1;113(7):2447-60. doi: 10.1152/jn.00872.2014. Epub 2015 Jan 21.
Results Reference
background
PubMed Identifier
25453463
Citation
Ramer LM, Ramer MS, Bradbury EJ. Restoring function after spinal cord injury: towards clinical translation of experimental strategies. Lancet Neurol. 2014 Dec;13(12):1241-56. doi: 10.1016/S1474-4422(14)70144-9. Epub 2014 Nov 10.
Results Reference
background
PubMed Identifier
19767747
Citation
Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, Roy RR, Sofroniew MV, Edgerton VR. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci. 2009 Oct;12(10):1333-42. doi: 10.1038/nn.2401. Epub 2009 Sep 20.
Results Reference
background
PubMed Identifier
30247091
Citation
Angeli CA, Boakye M, Morton RA, Vogt J, Benton K, Chen Y, Ferreira CK, Harkema SJ. Recovery of Over-Ground Walking after Chronic Motor Complete Spinal Cord Injury. N Engl J Med. 2018 Sep 27;379(13):1244-1250. doi: 10.1056/NEJMoa1803588. Epub 2018 Sep 24.
Results Reference
background
PubMed Identifier
24713270
Citation
Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain. 2014 May;137(Pt 5):1394-409. doi: 10.1093/brain/awu038. Epub 2014 Apr 8. Erratum In: Brain. 2015 Feb;138(Pt 2):e330.
Results Reference
background
PubMed Identifier
30353100
Citation
Gill ML, Grahn PJ, Calvert JS, Linde MB, Lavrov IA, Strommen JA, Beck LA, Sayenko DG, Van Straaten MG, Drubach DI, Veith DD, Thoreson AR, Lopez C, Gerasimenko YP, Edgerton VR, Lee KH, Zhao KD. Publisher Correction: Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med. 2018 Dec;24(12):1942. doi: 10.1038/s41591-018-0248-7.
Results Reference
background
PubMed Identifier
21601270
Citation
Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman RG, Edgerton VR. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet. 2011 Jun 4;377(9781):1938-47. doi: 10.1016/S0140-6736(11)60547-3. Epub 2011 May 19.
Results Reference
background
PubMed Identifier
26207623
Citation
Rejc E, Angeli C, Harkema S. Effects of Lumbosacral Spinal Cord Epidural Stimulation for Standing after Chronic Complete Paralysis in Humans. PLoS One. 2015 Jul 24;10(7):e0133998. doi: 10.1371/journal.pone.0133998. eCollection 2015.
Results Reference
background
PubMed Identifier
27566051
Citation
Rejc E, Angeli CA, Bryant N, Harkema SJ. Effects of Stand and Step Training with Epidural Stimulation on Motor Function for Standing in Chronic Complete Paraplegics. J Neurotrauma. 2017 May 1;34(9):1787-1802. doi: 10.1089/neu.2016.4516. Epub 2016 Oct 5.
Results Reference
background
PubMed Identifier
30382197
Citation
Wagner FB, Mignardot JB, Le Goff-Mignardot CG, Demesmaeker R, Komi S, Capogrosso M, Rowald A, Seanez I, Caban M, Pirondini E, Vat M, McCracken LA, Heimgartner R, Fodor I, Watrin A, Seguin P, Paoles E, Van Den Keybus K, Eberle G, Schurch B, Pralong E, Becce F, Prior J, Buse N, Buschman R, Neufeld E, Kuster N, Carda S, von Zitzewitz J, Delattre V, Denison T, Lambert H, Minassian K, Bloch J, Courtine G. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018 Nov;563(7729):65-71. doi: 10.1038/s41586-018-0649-2. Epub 2018 Oct 31.
Results Reference
background
PubMed Identifier
27981912
Citation
Hofstoetter US, Knikou M, Guertin PA, Minassian K. Probing the Human Spinal Locomotor Circuits by Phasic Step-Induced Feedback and by Tonic Electrical and Pharmacological Neuromodulation. Curr Pharm Des. 2017;23(12):1805-1820. doi: 10.2174/1381612822666161214144655.
Results Reference
background
PubMed Identifier
31577515
Citation
Pulverenti TS, Islam MA, Alsalman O, Murray LM, Harel NY, Knikou M. Transspinal stimulation decreases corticospinal excitability and alters the function of spinal locomotor networks. J Neurophysiol. 2019 Dec 1;122(6):2331-2343. doi: 10.1152/jn.00554.2019. Epub 2019 Oct 2.
Results Reference
background
PubMed Identifier
29736858
Citation
Donovan J, Kirshblum S. Clinical Trials in Traumatic Spinal Cord Injury. Neurotherapeutics. 2018 Jul;15(3):654-668. doi: 10.1007/s13311-018-0632-5.
Results Reference
background
PubMed Identifier
22171053
Citation
James ND, Bartus K, Grist J, Bennett DL, McMahon SB, Bradbury EJ. Conduction failure following spinal cord injury: functional and anatomical changes from acute to chronic stages. J Neurosci. 2011 Dec 14;31(50):18543-55. doi: 10.1523/JNEUROSCI.4306-11.2011.
Results Reference
background
PubMed Identifier
31079235
Citation
Murray LM, Knikou M. Repeated cathodal transspinal pulse and direct current stimulation modulate cortical and corticospinal excitability differently in healthy humans. Exp Brain Res. 2019 Jul;237(7):1841-1852. doi: 10.1007/s00221-019-05559-2. Epub 2019 May 11.
Results Reference
background
PubMed Identifier
25007330
Citation
Knikou M. Transpinal and transcortical stimulation alter corticospinal excitability and increase spinal output. PLoS One. 2014 Jul 9;9(7):e102313. doi: 10.1371/journal.pone.0102313. eCollection 2014.
Results Reference
background
PubMed Identifier
30352388
Citation
Knikou M, Murray LM. Neural interactions between transspinal evoked potentials and muscle spindle afferents in humans. J Electromyogr Kinesiol. 2018 Dec;43:174-183. doi: 10.1016/j.jelekin.2018.10.005. Epub 2018 Oct 9.
Results Reference
background
PubMed Identifier
26205686
Citation
Gerasimenko Y, Gorodnichev R, Moshonkina T, Sayenko D, Gad P, Reggie Edgerton V. Transcutaneous electrical spinal-cord stimulation in humans. Ann Phys Rehabil Med. 2015 Sep;58(4):225-231. doi: 10.1016/j.rehab.2015.05.003. Epub 2015 Jul 20.
Results Reference
background
PubMed Identifier
26077679
Citation
Gerasimenko YP, Lu DC, Modaber M, Zdunowski S, Gad P, Sayenko DG, Morikawa E, Haakana P, Ferguson AR, Roy RR, Edgerton VR. Noninvasive Reactivation of Motor Descending Control after Paralysis. J Neurotrauma. 2015 Dec 15;32(24):1968-80. doi: 10.1089/neu.2015.4008. Epub 2015 Aug 20.
Results Reference
background
PubMed Identifier
22679796
Citation
Gorodnichev RM, Pivovarova EA, Pukhov A, Moiseev SA, Savokhin AA, Moshonkina TR, Shcherbakova NA, Kilimnik VA, Selionov VA, Kozlovskaia IB, Edgerton VR, Gerasimenko IuP. [Transcutaneous electrical stimulation of the spinal cord: non-invasive tool for activation of locomotor circuitry in human]. Fiziol Cheloveka. 2012 Mar-Apr;38(2):46-56. Russian.
Results Reference
background
PubMed Identifier
11695529
Citation
Shapkova EY, Schomburg ED. Two types of motor modulation underlying human stepping evoked by spinal cord electrical stimulation (SCES). Acta Physiol Pharmacol Bulg. 2001;26(3):155-7.
Results Reference
background
PubMed Identifier
26450344
Citation
Hofstoetter US, Krenn M, Danner SM, Hofer C, Kern H, McKay WB, Mayr W, Minassian K. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals. Artif Organs. 2015 Oct;39(10):E176-86. doi: 10.1111/aor.12615. Epub 2015 Oct 6.
Results Reference
background
PubMed Identifier
24090290
Citation
Hofstoetter US, McKay WB, Tansey KE, Mayr W, Kern H, Minassian K. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J Spinal Cord Med. 2014 Mar;37(2):202-11. doi: 10.1179/2045772313Y.0000000149. Epub 2013 Nov 26.
Results Reference
background
PubMed Identifier
26890324
Citation
Minassian K, Hofstoetter US. Spinal Cord Stimulation and Augmentative Control Strategies for Leg Movement after Spinal Paralysis in Humans. CNS Neurosci Ther. 2016 Apr;22(4):262-70. doi: 10.1111/cns.12530. Epub 2016 Feb 18.
Results Reference
background
PubMed Identifier
21237704
Citation
Knikou M, Hajela N, Mummidisetty CK, Xiao M, Smith AC. Soleus H-reflex phase-dependent modulation is preserved during stepping within a robotic exoskeleton. Clin Neurophysiol. 2011 Jul;122(7):1396-404. doi: 10.1016/j.clinph.2010.12.044. Epub 2011 Jan 14.
Results Reference
background
PubMed Identifier
23810634
Citation
Knikou M, Hajela N, Mummidisetty CK. Corticospinal excitability during walking in humans with absent and partial body weight support. Clin Neurophysiol. 2013 Dec;124(12):2431-8. doi: 10.1016/j.clinph.2013.06.004. Epub 2013 Jun 28.
Results Reference
background
PubMed Identifier
9224852
Citation
Schubert M, Curt A, Jensen L, Dietz V. Corticospinal input in human gait: modulation of magnetically evoked motor responses. Exp Brain Res. 1997 Jun;115(2):234-46. doi: 10.1007/pl00005693.
Results Reference
background
PubMed Identifier
27023730
Citation
Nielsen JB. Human Spinal Motor Control. Annu Rev Neurosci. 2016 Jul 8;39:81-101. doi: 10.1146/annurev-neuro-070815-013913. Epub 2016 Mar 25.
Results Reference
background
PubMed Identifier
23939192
Citation
Barthelemy D, Knudsen H, Willerslev-Olsen M, Lundell H, Nielsen JB, Biering-Sorensen F. Functional implications of corticospinal tract impairment on gait after spinal cord injury. Spinal Cord. 2013 Nov;51(11):852-6. doi: 10.1038/sc.2013.84. Epub 2013 Aug 13.
Results Reference
background
PubMed Identifier
27673569
Citation
Field-Fote EC, Yang JF, Basso DM, Gorassini MA. Supraspinal Control Predicts Locomotor Function and Forecasts Responsiveness to Training after Spinal Cord Injury. J Neurotrauma. 2017 May 1;34(9):1813-1825. doi: 10.1089/neu.2016.4565. Epub 2016 Dec 20.
Results Reference
background
PubMed Identifier
25890135
Citation
Zewdie ET, Roy FD, Yang JF, Gorassini MA. Facilitation of descending excitatory and spinal inhibitory networks from training of endurance and precision walking in participants with incomplete spinal cord injury. Prog Brain Res. 2015;218:127-55. doi: 10.1016/bs.pbr.2014.12.005. Epub 2015 Mar 29.
Results Reference
background
PubMed Identifier
22460611
Citation
Petersen JA, Spiess M, Curt A, Dietz V, Schubert M; EM-SCI Study Group. Spinal cord injury: one-year evolution of motor-evoked potentials and recovery of leg motor function in 255 patients. Neurorehabil Neural Repair. 2012 Oct;26(8):939-48. doi: 10.1177/1545968312438437. Epub 2012 Mar 28.
Results Reference
background
PubMed Identifier
9065851
Citation
Harkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BH, Edgerton VR. Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol. 1997 Feb;77(2):797-811. doi: 10.1152/jn.1997.77.2.797.
Results Reference
background
PubMed Identifier
11311504
Citation
Knikou M, Conway BA. Modulation of soleus H-reflex following ipsilateral mechanical loading of the sole of the foot in normal and complete spinal cord injured humans. Neurosci Lett. 2001 May 4;303(2):107-10. doi: 10.1016/s0304-3940(01)01718-9.
Results Reference
background
PubMed Identifier
22351637
Citation
Slawinska U, Majczynski H, Dai Y, Jordan LM. The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats. J Physiol. 2012 Apr 1;590(7):1721-36. doi: 10.1113/jphysiol.2011.224931. Epub 2012 Feb 20.
Results Reference
background
PubMed Identifier
20427232
Citation
Knikou M. Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions. Clin Neurophysiol. 2010 Oct;121(10):1655-68. doi: 10.1016/j.clinph.2010.01.039. Epub 2010 Apr 27.
Results Reference
background
PubMed Identifier
16371596
Citation
Rossignol S, Dubuc R, Gossard JP. Dynamic sensorimotor interactions in locomotion. Physiol Rev. 2006 Jan;86(1):89-154. doi: 10.1152/physrev.00028.2005.
Results Reference
background
PubMed Identifier
27762657
Citation
Cote MP, Murray M, Lemay MA. Rehabilitation Strategies after Spinal Cord Injury: Inquiry into the Mechanisms of Success and Failure. J Neurotrauma. 2017 May 15;34(10):1841-1857. doi: 10.1089/neu.2016.4577. Epub 2016 Nov 21.
Results Reference
background
PubMed Identifier
7686850
Citation
Calancie B, Broton JG, Klose KJ, Traad M, Difini J, Ayyar DR. Evidence that alterations in presynaptic inhibition contribute to segmental hypo- and hyperexcitability after spinal cord injury in man. Electroencephalogr Clin Neurophysiol. 1993 Jun;89(3):177-86. doi: 10.1016/0168-5597(93)90131-8.
Results Reference
background
PubMed Identifier
16185689
Citation
Lee JK, Emch GS, Johnson CS, Wrathall JR. Effect of spinal cord injury severity on alterations of the H-reflex. Exp Neurol. 2005 Dec;196(2):430-40. doi: 10.1016/j.expneurol.2005.08.018. Epub 2005 Sep 26.
Results Reference
background
PubMed Identifier
12538415
Citation
Crone C, Johnsen LL, Biering-Sorensen F, Nielsen JB. Appearance of reciprocal facilitation of ankle extensors from ankle flexors in patients with stroke or spinal cord injury. Brain. 2003 Feb;126(Pt 2):495-507. doi: 10.1093/brain/awg036.
Results Reference
background
PubMed Identifier
16407422
Citation
Norton JA, Gorassini MA. Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury. J Neurophysiol. 2006 Apr;95(4):2580-9. doi: 10.1152/jn.01289.2005. Epub 2006 Jan 11.
Results Reference
background
PubMed Identifier
28351197
Citation
Minassian K, Hofstoetter US, Dzeladini F, Guertin PA, Ijspeert A. The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking? Neuroscientist. 2017 Dec;23(6):649-663. doi: 10.1177/1073858417699790. Epub 2017 Mar 28.
Results Reference
background
PubMed Identifier
22446009
Citation
Deliagina TG, Zelenin PV, Orlovsky GN. Physiological and circuit mechanisms of postural control. Curr Opin Neurobiol. 2012 Aug;22(4):646-52. doi: 10.1016/j.conb.2012.03.002. Epub 2012 Mar 23.
Results Reference
background
PubMed Identifier
3734861
Citation
Horak FB, Nashner LM. Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol. 1986 Jun;55(6):1369-81. doi: 10.1152/jn.1986.55.6.1369.
Results Reference
background
PubMed Identifier
28910658
Citation
Milosevic M, Gagnon DH, Gourdou P, Nakazawa K. Postural regulatory strategies during quiet sitting are affected in individuals with thoracic spinal cord injury. Gait Posture. 2017 Oct;58:446-452. doi: 10.1016/j.gaitpost.2017.08.032. Epub 2017 Aug 31.
Results Reference
background
PubMed Identifier
28734171
Citation
Milosevic M, Yokoyama H, Grangeon M, Masani K, Popovic MR, Nakazawa K, Gagnon DH. Muscle synergies reveal impaired trunk muscle coordination strategies in individuals with thoracic spinal cord injury. J Electromyogr Kinesiol. 2017 Oct;36:40-48. doi: 10.1016/j.jelekin.2017.06.007. Epub 2017 Jul 1.
Results Reference
background
PubMed Identifier
25812727
Citation
Milosevic M, Masani K, Kuipers MJ, Rahouni H, Verrier MC, McConville KM, Popovic MR. Trunk control impairment is responsible for postural instability during quiet sitting in individuals with cervical spinal cord injury. Clin Biomech (Bristol, Avon). 2015 Jun;30(5):507-12. doi: 10.1016/j.clinbiomech.2015.03.002. Epub 2015 Mar 14.
Results Reference
background
PubMed Identifier
25725378
Citation
Lemay JF, Duclos C, Nadeau S, Gagnon DH. Postural control during gait initiation and termination of adults with incomplete spinal cord injury. Hum Mov Sci. 2015 Jun;41:20-31. doi: 10.1016/j.humov.2015.02.003. Epub 2015 Feb 26.
Results Reference
background
PubMed Identifier
21211976
Citation
Chen YS, Zhou S. Soleus H-reflex and its relation to static postural control. Gait Posture. 2011 Feb;33(2):169-78. doi: 10.1016/j.gaitpost.2010.12.008. Epub 2011 Jan 5.
Results Reference
background
PubMed Identifier
26724819
Citation
Kawaishi Y, Domen K. The relationship between dynamic balancing ability and posture-related modulation of the soleus H-reflex. J Electromyogr Kinesiol. 2016 Feb;26:120-4. doi: 10.1016/j.jelekin.2015.11.010. Epub 2015 Dec 12.
Results Reference
background
PubMed Identifier
27002819
Citation
Papegaaij S, Baudry S, Negyesi J, Taube W, Hortobagyi T. Intracortical inhibition in the soleus muscle is reduced during the control of upright standing in both young and old adults. Eur J Appl Physiol. 2016 May;116(5):959-67. doi: 10.1007/s00421-016-3354-6. Epub 2016 Mar 22.
Results Reference
background
PubMed Identifier
16790603
Citation
Soto O, Valls-Sole J, Shanahan P, Rothwell J. Reduction of intracortical inhibition in soleus muscle during postural activity. J Neurophysiol. 2006 Oct;96(4):1711-7. doi: 10.1152/jn.00133.2006. Epub 2006 Jun 21.
Results Reference
background
PubMed Identifier
24433254
Citation
Baudry S, Penzer F, Duchateau J. Input-output characteristics of soleus homonymous Ia afferents and corticospinal pathways during upright standing differ between young and elderly adults. Acta Physiol (Oxf). 2014 Mar;210(3):667-77. doi: 10.1111/apha.12233.
Results Reference
background
PubMed Identifier
18774948
Citation
Tokuno CD, Taube W, Cresswell AG. An enhanced level of motor cortical excitability during the control of human standing. Acta Physiol (Oxf). 2009 Mar;195(3):385-95. doi: 10.1111/j.1748-1716.2008.01898.x. Epub 2008 Sep 4.
Results Reference
background
PubMed Identifier
29786465
Citation
Rath M, Vette AH, Ramasubramaniam S, Li K, Burdick J, Edgerton VR, Gerasimenko YP, Sayenko DG. Trunk Stability Enabled by Noninvasive Spinal Electrical Stimulation after Spinal Cord Injury. J Neurotrauma. 2018 Nov 1;35(21):2540-2553. doi: 10.1089/neu.2017.5584. Epub 2018 Jul 5.
Results Reference
background
PubMed Identifier
30362876
Citation
Sayenko DG, Rath M, Ferguson AR, Burdick JW, Havton LA, Edgerton VR, Gerasimenko YP. Self-Assisted Standing Enabled by Non-Invasive Spinal Stimulation after Spinal Cord Injury. J Neurotrauma. 2019 May 1;36(9):1435-1450. doi: 10.1089/neu.2018.5956. Epub 2018 Dec 15.
Results Reference
background
PubMed Identifier
30283341
Citation
Gerasimenko Y, Sayenko D, Gad P, Kozesnik J, Moshonkina T, Grishin A, Pukhov A, Moiseev S, Gorodnichev R, Selionov V, Kozlovskaya I, Edgerton VR. Electrical Spinal Stimulation, and Imagining of Lower Limb Movements to Modulate Brain-Spinal Connectomes That Control Locomotor-Like Behavior. Front Physiol. 2018 Sep 19;9:1196. doi: 10.3389/fphys.2018.01196. eCollection 2018.
Results Reference
background
PubMed Identifier
27469242
Citation
Kumru H, Benito-Penalva J, Valls-Sole J, Murillo N, Tormos JM, Flores C, Vidal J. Placebo-controlled study of rTMS combined with Lokomat(R) gait training for treatment in subjects with motor incomplete spinal cord injury. Exp Brain Res. 2016 Dec;234(12):3447-3455. doi: 10.1007/s00221-016-4739-9. Epub 2016 Jul 28.
Results Reference
background
PubMed Identifier
26889794
Citation
Raithatha R, Carrico C, Powell ES, Westgate PM, Chelette Ii KC, Lee K, Dunsmore L, Salles S, Sawaki L. Non-invasive brain stimulation and robot-assisted gait training after incomplete spinal cord injury: A randomized pilot study. NeuroRehabilitation. 2016;38(1):15-25. doi: 10.3233/NRE-151291.
Results Reference
background
PubMed Identifier
28217104
Citation
Estes SP, Iddings JA, Field-Fote EC. Priming Neural Circuits to Modulate Spinal Reflex Excitability. Front Neurol. 2017 Feb 3;8:17. doi: 10.3389/fneur.2017.00017. eCollection 2017.
Results Reference
background
PubMed Identifier
28265259
Citation
Murray LM, Knikou M. Remodeling Brain Activity by Repetitive Cervicothoracic Transspinal Stimulation after Human Spinal Cord Injury. Front Neurol. 2017 Feb 20;8:50. doi: 10.3389/fneur.2017.00050. eCollection 2017.
Results Reference
background
PubMed Identifier
31557238
Citation
Knikou M, Murray LM. Repeated transspinal stimulation decreases soleus H-reflex excitability and restores spinal inhibition in human spinal cord injury. PLoS One. 2019 Sep 26;14(9):e0223135. doi: 10.1371/journal.pone.0223135. eCollection 2019.
Results Reference
background
PubMed Identifier
13889056
Citation
ECCLES JC, KOSTYUK PG, SCHMIDT RF. The effect of electric polarization of the spinal cord on central afferent fibres and on their excitatory synaptic action. J Physiol. 1962 Jun;162(1):138-50. doi: 10.1113/jphysiol.1962.sp006920. No abstract available.
Results Reference
background
PubMed Identifier
24390782
Citation
Yang F, Xu Q, Cheong YK, Shechter R, Sdrulla A, He SQ, Tiwari V, Dong X, Wacnik PW, Meyer R, Raja SN, Guan Y. Comparison of intensity-dependent inhibition of spinal wide-dynamic range neurons by dorsal column and peripheral nerve stimulation in a rat model of neuropathic pain. Eur J Pain. 2014 Aug;18(7):978-88. doi: 10.1002/j.1532-2149.2013.00443.x. Epub 2014 Jan 6.
Results Reference
background
PubMed Identifier
3267153
Citation
Hounsgaard J, Hultborn H, Jespersen B, Kiehn O. Bistability of alpha-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan. J Physiol. 1988 Nov;405:345-67. doi: 10.1113/jphysiol.1988.sp017336.
Results Reference
background
PubMed Identifier
24115026
Citation
Knikou M. Neurophysiological characterization of transpinal evoked potentials in human leg muscles. Bioelectromagnetics. 2013 Dec;34(8):630-40. doi: 10.1002/bem.21808. Epub 2013 Sep 20.
Results Reference
background
PubMed Identifier
26108955
Citation
Knikou M, Dixon L, Santora D, Ibrahim MM. Transspinal constant-current long-lasting stimulation: a new method to induce cortical and corticospinal plasticity. J Neurophysiol. 2015 Sep;114(3):1486-99. doi: 10.1152/jn.00449.2015. Epub 2015 Jun 24.
Results Reference
background
PubMed Identifier
30845251
Citation
Murray LM, Knikou M. Transspinal stimulation increases motoneuron output of multiple segments in human spinal cord injury. PLoS One. 2019 Mar 7;14(3):e0213696. doi: 10.1371/journal.pone.0213696. eCollection 2019.
Results Reference
background
PubMed Identifier
9862891
Citation
Chen R, Tam A, Butefisch C, Corwell B, Ziemann U, Rothwell JC, Cohen LG. Intracortical inhibition and facilitation in different representations of the human motor cortex. J Neurophysiol. 1998 Dec;80(6):2870-81. doi: 10.1152/jn.1998.80.6.2870.
Results Reference
background
PubMed Identifier
9166922
Citation
Devanne H, Lavoie BA, Capaday C. Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res. 1997 Apr;114(2):329-38. doi: 10.1007/pl00005641.
Results Reference
background
PubMed Identifier
10639051
Citation
Bennett MR. The concept of long term potentiation of transmission at synapses. Prog Neurobiol. 2000 Feb;60(2):109-37. doi: 10.1016/s0301-0082(99)00006-4.
Results Reference
background
PubMed Identifier
20203195
Citation
Sadlaoud K, Tazerart S, Brocard C, Jean-Xavier C, Portalier P, Brocard F, Vinay L, Bras H. Differential plasticity of the GABAergic and glycinergic synaptic transmission to rat lumbar motoneurons after spinal cord injury. J Neurosci. 2010 Mar 3;30(9):3358-69. doi: 10.1523/JNEUROSCI.6310-09.2010.
Results Reference
background
PubMed Identifier
21209186
Citation
Ichiyama RM, Broman J, Roy RR, Zhong H, Edgerton VR, Havton LA. Locomotor training maintains normal inhibitory influence on both alpha- and gamma-motoneurons after neonatal spinal cord transection. J Neurosci. 2011 Jan 5;31(1):26-33. doi: 10.1523/JNEUROSCI.6433-09.2011.
Results Reference
background
PubMed Identifier
21469957
Citation
Rossignol S, Frigon A. Recovery of locomotion after spinal cord injury: some facts and mechanisms. Annu Rev Neurosci. 2011;34:413-40. doi: 10.1146/annurev-neuro-061010-113746.
Results Reference
background
PubMed Identifier
17442831
Citation
Petruska JC, Ichiyama RM, Jindrich DL, Crown ED, Tansey KE, Roy RR, Edgerton VR, Mendell LM. Changes in motoneuron properties and synaptic inputs related to step training after spinal cord transection in rats. J Neurosci. 2007 Apr 18;27(16):4460-71. doi: 10.1523/JNEUROSCI.2302-06.2007.
Results Reference
background
PubMed Identifier
21424738
Citation
Ilha J, Centenaro LA, Broetto Cunha N, de Souza DF, Jaeger M, do Nascimento PS, Kolling J, Ben J, Marcuzzo S, Wyse AT, Gottfried C, Achaval M. The beneficial effects of treadmill step training on activity-dependent synaptic and cellular plasticity markers after complete spinal cord injury. Neurochem Res. 2011 Jun;36(6):1046-55. doi: 10.1007/s11064-011-0446-x. Epub 2011 Mar 22.
Results Reference
background
PubMed Identifier
26180053
Citation
Ackerley SJ, Byblow WD, Barber PA, MacDonald H, McIntyre-Robinson A, Stinear CM. Primed Physical Therapy Enhances Recovery of Upper Limb Function in Chronic Stroke Patients. Neurorehabil Neural Repair. 2016 May;30(4):339-48. doi: 10.1177/1545968315595285. Epub 2015 Jul 15.
Results Reference
background
PubMed Identifier
29439364
Citation
Platz T, Adler-Wiebe M, Roschka S, Lotze M. Enhancement of motor learning by focal intermittent theta burst stimulation (iTBS) of either the primary motor (M1) or somatosensory area (S1) in healthy human subjects. Restor Neurol Neurosci. 2018;36(1):117-130. doi: 10.3233/RNN-170774.
Results Reference
background
PubMed Identifier
25582580
Citation
Danner SM, Hofstoetter US, Freundl B, Binder H, Mayr W, Rattay F, Minassian K. Human spinal locomotor control is based on flexibly organized burst generators. Brain. 2015 Mar;138(Pt 3):577-88. doi: 10.1093/brain/awu372. Epub 2015 Jan 12.
Results Reference
background
PubMed Identifier
30362878
Citation
Ardestani MM, Henderson CE, Salehi SH, Mahtani GB, Schmit BD, Hornby TG. Kinematic and Neuromuscular Adaptations in Incomplete Spinal Cord Injury after High- versus Low-Intensity Locomotor Training. J Neurotrauma. 2019 Jun 15;36(12):2036-2044. doi: 10.1089/neu.2018.5900. Epub 2019 Feb 1.
Results Reference
background
PubMed Identifier
29107040
Citation
Morrison SA, Lorenz D, Eskay CP, Forrest GF, Basso DM. Longitudinal Recovery and Reduced Costs After 120 Sessions of Locomotor Training for Motor Incomplete Spinal Cord Injury. Arch Phys Med Rehabil. 2018 Mar;99(3):555-562. doi: 10.1016/j.apmr.2017.10.003. Epub 2017 Oct 26.
Results Reference
background
PubMed Identifier
9744933
Citation
Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K. Stiffness control of balance in quiet standing. J Neurophysiol. 1998 Sep;80(3):1211-21. doi: 10.1152/jn.1998.80.3.1211.
Results Reference
background
PubMed Identifier
19506843
Citation
Sasagawa S, Ushiyama J, Masani K, Kouzaki M, Kanehisa H. Balance control under different passive contributions of the ankle extensors: quiet standing on inclined surfaces. Exp Brain Res. 2009 Jul;196(4):537-44. doi: 10.1007/s00221-009-1876-4. Epub 2009 Jun 9.
Results Reference
background
PubMed Identifier
22659724
Citation
Knikou M. Function of group IB inhibition during assisted stepping in human spinal cord injury. J Clin Neurophysiol. 2012 Jun;29(3):271-7. doi: 10.1097/WNP.0b013e318257c2b7.
Results Reference
background
PubMed Identifier
24094473
Citation
Desroches G, Gagnon D, Nadeau S, Popovic M. Magnitude of forward trunk flexion influences upper limb muscular efforts and dynamic postural stability requirements during sitting pivot transfers in individuals with spinal cord injury. J Electromyogr Kinesiol. 2013 Dec;23(6):1325-33. doi: 10.1016/j.jelekin.2013.09.003. Epub 2013 Sep 20.
Results Reference
background
PubMed Identifier
15672628
Citation
Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2004 Oct;21(10):1371-83. doi: 10.1089/neu.2004.21.1371.
Results Reference
background
PubMed Identifier
30382196
Citation
Formento E, Minassian K, Wagner F, Mignardot JB, Le Goff-Mignardot CG, Rowald A, Bloch J, Micera S, Capogrosso M, Courtine G. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat Neurosci. 2018 Dec;21(12):1728-1741. doi: 10.1038/s41593-018-0262-6. Epub 2018 Oct 31.
Results Reference
background
PubMed Identifier
21807105
Citation
Molnar E. Long-term potentiation in cultured hippocampal neurons. Semin Cell Dev Biol. 2011 Jul;22(5):506-13. doi: 10.1016/j.semcdb.2011.07.017. Epub 2011 Jul 22.
Results Reference
background
PubMed Identifier
12849236
Citation
Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003 Mar;2(3):145-56. doi: 10.1016/s1474-4422(03)00321-1.
Results Reference
background
PubMed Identifier
27281748
Citation
Dixon L, Ibrahim MM, Santora D, Knikou M. Paired associative transspinal and transcortical stimulation produces plasticity in human cortical and spinal neuronal circuits. J Neurophysiol. 2016 Aug 1;116(2):904-16. doi: 10.1152/jn.00259.2016. Epub 2016 Jun 8.
Results Reference
background
PubMed Identifier
25825912
Citation
Hanna-Boutros B, Sangari S, Giboin LS, El Mendili MM, Lackmy-Vallee A, Marchand-Pauvert V, Knikou M. Corticospinal and reciprocal inhibition actions on human soleus motoneuron activity during standing and walking. Physiol Rep. 2015 Feb 25;3(2):e12276. doi: 10.14814/phy2.12276.
Results Reference
background
PubMed Identifier
29263237
Citation
Hannah R, Cavanagh SE, Tremblay S, Simeoni S, Rothwell JC. Selective Suppression of Local Interneuron Circuits in Human Motor Cortex Contributes to Movement Preparation. J Neurosci. 2018 Jan 31;38(5):1264-1276. doi: 10.1523/JNEUROSCI.2869-17.2017. Epub 2017 Dec 20.
Results Reference
background
PubMed Identifier
9751291
Citation
Alexeeva N, Broton JG, Calancie B. Latency of changes in spinal motoneuron excitability evoked by transcranial magnetic brain stimulation in spinal cord injured individuals. Electroencephalogr Clin Neurophysiol. 1998 Aug;109(4):297-303. doi: 10.1016/s0924-980x(98)00021-6.
Results Reference
background
PubMed Identifier
20457734
Citation
Geertsen SS, Zuur AT, Nielsen JB. Voluntary activation of ankle muscles is accompanied by subcortical facilitation of their antagonists. J Physiol. 2010 Jul 1;588(Pt 13):2391-402. doi: 10.1113/jphysiol.2010.190678. Epub 2010 May 10.
Results Reference
background
PubMed Identifier
16505299
Citation
Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, Ditunno J, Dudley G, Elashoff R, Fugate L, Harkema S, Saulino M, Scott M; Spinal Cord Injury Locomotor Trial Group. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006 Feb 28;66(4):484-93. doi: 10.1212/01.wnl.0000202600.72018.39.
Results Reference
background
PubMed Identifier
3107749
Citation
Roby-Brami A, Bussel B. Long-latency spinal reflex in man after flexor reflex afferent stimulation. Brain. 1987 Jun;110 ( Pt 3):707-25. doi: 10.1093/brain/110.3.707.
Results Reference
background
PubMed Identifier
17932663
Citation
Grey MJ, Klinge K, Crone C, Lorentzen J, Biering-Sorensen F, Ravnborg M, Nielsen JB. Post-activation depression of soleus stretch reflexes in healthy and spastic humans. Exp Brain Res. 2008 Feb;185(2):189-97. doi: 10.1007/s00221-007-1142-6. Epub 2007 Oct 12.
Results Reference
background
PubMed Identifier
10968224
Citation
Schindler-Ivens S, Shields RK. Low frequency depression of H-reflexes in humans with acute and chronic spinal-cord injury. Exp Brain Res. 2000 Jul;133(2):233-41. doi: 10.1007/s002210000377.
Results Reference
background
PubMed Identifier
24672441
Citation
Thompson AK, Wolpaw JR. Operant conditioning of spinal reflexes: from basic science to clinical therapy. Front Integr Neurosci. 2014 Mar 18;8:25. doi: 10.3389/fnint.2014.00025. eCollection 2014.
Results Reference
background
PubMed Identifier
24636954
Citation
Thompson AK, Wolpaw JR. Restoring walking after spinal cord injury: operant conditioning of spinal reflexes can help. Neuroscientist. 2015 Apr;21(2):203-15. doi: 10.1177/1073858414527541. Epub 2014 Mar 17.
Results Reference
background
PubMed Identifier
23392666
Citation
Thompson AK, Pomerantz FR, Wolpaw JR. Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans. J Neurosci. 2013 Feb 6;33(6):2365-75. doi: 10.1523/JNEUROSCI.3968-12.2013.
Results Reference
background
PubMed Identifier
2591515
Citation
Crone C, Nielsen J. Methodological implications of the post activation depression of the soleus H-reflex in man. Exp Brain Res. 1989;78(1):28-32. doi: 10.1007/BF00230683.
Results Reference
background
PubMed Identifier
10908198
Citation
Aymard C, Katz R, Lafitte C, Lo E, Penicaud A, Pradat-Diehl P, Raoul S. Presynaptic inhibition and homosynaptic depression: a comparison between lower and upper limbs in normal human subjects and patients with hemiplegia. Brain. 2000 Aug;123 ( Pt 8):1688-702. doi: 10.1093/brain/123.8.1688.
Results Reference
background
PubMed Identifier
3681725
Citation
Crone C, Hultborn H, Jespersen B, Nielsen J. Reciprocal Ia inhibition between ankle flexors and extensors in man. J Physiol. 1987 Aug;389:163-85. doi: 10.1113/jphysiol.1987.sp016652.
Results Reference
background
PubMed Identifier
23046639
Citation
Mummidisetty CK, Smith AC, Knikou M. Modulation of reciprocal and presynaptic inhibition during robotic-assisted stepping in humans. Clin Neurophysiol. 2013 Mar;124(3):557-64. doi: 10.1016/j.clinph.2012.09.007. Epub 2012 Oct 6.
Results Reference
background
PubMed Identifier
10066917
Citation
Simonsen EB, Dyhre-Poulsen P. Amplitude of the human soleus H reflex during walking and running. J Physiol. 1999 Mar 15;515 ( Pt 3)(Pt 3):929-39. doi: 10.1111/j.1469-7793.1999.929ab.x.
Results Reference
background
PubMed Identifier
27293901
Citation
Smith AC, Knikou M. A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function. Neural Plast. 2016;2016:1216258. doi: 10.1155/2016/1216258. Epub 2016 May 11.
Results Reference
background
PubMed Identifier
18394711
Citation
Knikou M. The H-reflex as a probe: pathways and pitfalls. J Neurosci Methods. 2008 Jun 15;171(1):1-12. doi: 10.1016/j.jneumeth.2008.02.012. Epub 2008 Mar 4.
Results Reference
background
PubMed Identifier
24453700
Citation
Bethoux F, Bennett S. Evaluating walking in patients with multiple sclerosis: which assessment tools are useful in clinical practice? Int J MS Care. 2011 Spring;13(1):4-14. doi: 10.7224/1537-2073-13.1.4.
Results Reference
background
PubMed Identifier
1468055
Citation
Berg KO, Wood-Dauphinee SL, Williams JI, Maki B. Measuring balance in the elderly: validation of an instrument. Can J Public Health. 1992 Jul-Aug;83 Suppl 2:S7-11.
Results Reference
background
PubMed Identifier
22315143
Citation
Learmonth YC, Paul L, McFadyen AK, Mattison P, Miller L. Reliability and clinical significance of mobility and balance assessments in multiple sclerosis. Int J Rehabil Res. 2012 Mar;35(1):69-74. doi: 10.1097/MRR.0b013e328350b65f.
Results Reference
background
PubMed Identifier
28628595
Citation
Behrman AL, Ardolino EM, Harkema SJ. Activity-Based Therapy: From Basic Science to Clinical Application for Recovery After Spinal Cord Injury. J Neurol Phys Ther. 2017 Jul;41 Suppl 3(Suppl 3 IV STEP Spec Iss):S39-S45. doi: 10.1097/NPT.0000000000000184.
Results Reference
background
PubMed Identifier
22330108
Citation
Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, Johansen M, Jones L, Krassioukov A, Mulcahey MJ, Schmidt-Read M, Waring W. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med. 2011 Nov;34(6):535-46. doi: 10.1179/204577211X13207446293695. No abstract available.
Results Reference
background
PubMed Identifier
19645527
Citation
Zorner B, Blanckenhorn WU, Dietz V; EM-SCI Study Group; Curt A. Clinical algorithm for improved prediction of ambulation and patient stratification after incomplete spinal cord injury. J Neurotrauma. 2010 Jan;27(1):241-52. doi: 10.1089/neu.2009.0901.
Results Reference
background
PubMed Identifier
26244634
Citation
Kraemer HC. A Source of False Findings in Published Research Studies: Adjusting for Covariates. JAMA Psychiatry. 2015 Oct;72(10):961-2. doi: 10.1001/jamapsychiatry.2015.1178. No abstract available.
Results Reference
background
PubMed Identifier
19104512
Citation
van Middendorp JJ, Hosman AJ, Pouw MH; EM-SCI Study Group; Van de Meent H. ASIA impairment scale conversion in traumatic SCI: is it related with the ability to walk? A descriptive comparison with functional ambulation outcome measures in 273 patients. Spinal Cord. 2009 Jul;47(7):555-60. doi: 10.1038/sc.2008.162. Epub 2008 Dec 23.
Results Reference
background
PubMed Identifier
21377202
Citation
van Middendorp JJ, Hosman AJ, Donders AR, Pouw MH, Ditunno JF Jr, Curt A, Geurts AC, Van de Meent H; EM-SCI Study Group. A clinical prediction rule for ambulation outcomes after traumatic spinal cord injury: a longitudinal cohort study. Lancet. 2011 Mar 19;377(9770):1004-10. doi: 10.1016/S0140-6736(10)62276-3. Epub 2011 Mar 4.
Results Reference
background
PubMed Identifier
23853744
Citation
Dong Y, Peng CY. Principled missing data methods for researchers. Springerplus. 2013 May 14;2(1):222. doi: 10.1186/2193-1801-2-222. Print 2013 Dec.
Results Reference
background

Learn more about this trial

Transspinal Stimulation Plus Locomotor Training for SCI

We'll reach out to this number within 24 hrs