search
Back to results

The Impact of Focused Ultrasound Thalamotomy of the Anterior Nucleus for Focal-Onset Epilepsy on Anxiety

Primary Purpose

Anxiety, Medication-refractory Focal-onset Epilepsy

Status
Not yet recruiting
Phase
Phase 1
Locations
United States
Study Type
Interventional
Intervention
Magnetic Resonance Imaging-guided Focused Ultrasound Ablation (MRgFUSA)
Sponsored by
Ohio State University
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional other trial for Anxiety

Eligibility Criteria

18 Years - 65 Years (Adult, Older Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria:

  • Disabling, medically refractory epilepsy (≥2 anti-epileptic drug failures).
  • Focal onset seizures with secondary generalization; with or without primary generalized seizures.
  • Previous seizure work-up within 12 months of enrollment date to include:

A. Home EEG or EMU video EEG or intracranial EEG. B. High definition MRI imaging/PET imaging. C. Baseline neuropsychological assessment, which includes the Wechsler Advanced Clinical Solutions - Test of Premorbid Functioning (TOPF).

  • ≥ 3 seizures/month on average within 3 months of enrollment.
  • Stable medication (including anti-epileptic and psychotropic/psychoactive medications) dosage for 3 months before enrollment.
  • Moderate-severe anxiety as measured by the Hamilton Anxiety Rating Scale (HAM-A) score > 17.
  • Anterior Nucleus (AN) identifiable on MRI (structural T1 and T2 images).
  • Willing to maintain seizure diary (3 months before & 3 months after).
  • Involved care provider.
  • Written informed consent to participate.
  • Ability to comply with all testing, follow-ups, and study appointments and protocols.

Exclusion Criteria:

  • Low seizure frequency (<3 seizures/month).
  • Generalized epilepsy (Lennox Gastaut, drop attacks).
  • Post infectious epilepsy (post herpetic).
  • Unable or unwilling to maintain anti-epilepsy drug dosage for 3 months post treatment.
  • Active (current in past 12 months), uncontrolled DSM-5 psychiatric disorder, except for anxiety disorders.
  • Recent (past 12 months) history of drugs or alcohol abuse as evidenced by diagnosis of Substance Use Disorder.
  • Active suicidal ideation current and past 30 days.
  • Clinically significant neurological disorder, except for epilepsy.
  • Presence of any neurodegenerative disease suspected on neurological examination. These include but are not limited to: Multisystem atrophy; Progressive supranuclear palsy; Dementia with Lewy bodies; Alzheimer's disease; Parkinson's disease.
  • Cerebrovascular disease (multiple CVA or CVA within six months).
  • Significant structural brain abnormalities.
  • Surgical lesion identifiable on imaging.
  • Symptoms and signs of increased intracranial pressure.
  • Patients with any types of brain tumors, including metastases.
  • Previous vagal nerve stimulator.
  • Previous corpus callosotomy.
  • Patients who have had deep brain stimulation.
  • Prior stereotactic ablation.
  • Positive urine drug screen at study entry or any follow-up testing session. For cannabis, exclusion includes positive drug screen with self-report of cannabis use in the past 48 hours.
  • Known allergic reaction and/or hypersensitivity to IV dye and/or IV contrasting agent(s).
  • Patients with standard contraindications for MR imaging such as non-MRI compatible implanted metallic devices including cardiac pacemakers, size limitations, etc.
  • History of claustrophobia.
  • Unstable cardiac status including: Unstable angina pectoris on medication; documented myocardial infarction within last 40 days to protocol entry; Congestive heart failure; Severe hypertension (diastolic BP> 100 on medication).
  • Patients receiving dialysis;
  • Patients with risk factors for intraoperative or postoperative bleeding: Platelet count less than 100,000 per cubic millimeter; PT> 14PTT > 40; INR > 1.43.
  • History of abnormal bleeding and/or coagulopathy.
  • Receiving anticoagulant (e.g., Warfarin) or antiplatelet (e.g., aspirin) therapy within one week of focused ultrasound procedure or drugs known to increase risk of hemorrhage (e.g., Avastin) within one month of scheduled focused ultrasound procedure.
  • History of intracranial hemorrhage.
  • Active or suspected, acute or chronic uncontrolled infection or known life-threatening systemic disease;
  • History of immunocompromised status, including patients who are HIV positive.
  • Subjects with remarkable atrophy and poor healing capacity of the scalp.
  • Evidence for calcifications that might interfere with treatment safety (per CT).
  • Skull Density Ratio (SDR) <0.4.
  • Pregnancy or lactation or planning to become pregnant during the time-period of the study.
  • Any illness that in the investigators' opinion preclude participation in this study.
  • Individuals who are not able or willing to tolerate the required prolonged stationary supine position during treatment (can be up to 4 hrs of total table time);
  • IQ score of <70 on the Wechsler Advanced Clinical Solutions - Test of Premorbid Functioning (TOPF), measured as part of screening neuropsychological assessment.
  • Presence of significant cognitive impairment as determined with a score ≤24 on the Mini Mental Status Examination (MMSE).
  • Patients unable to communicate with the investigator and staff.
  • Legal incapacity or limited legal capacity.

Sites / Locations

  • The Ohio State University

Arms of the Study

Arm 1

Arm Type

Experimental

Arm Label

Intervention

Arm Description

Unilateral Magnetic Resonance Imaging-guided Focused Ultrasound Ablation (MRgFUSA) of the anterior nucleus of the thalamus (ATN)

Outcomes

Primary Outcome Measures

Incidence of Treatment-Emergent Adverse Events
Safety will be determined by an evaluation of the incidence and severity of MRgFUSA-ATN and other research procedures related adverse events from the 1st study visit through the 12-month post-treatment time point. Post-procedural imaging will be evaluated for evidence of swelling, hemorrhage, and the evolution of the ATN lesion. Emergence of complications will be monitored by neurological examination at day 1, day 7, month 1, month 3, month 6 and month 12 post-procedure. A comprehensive battery of neuropsychological assessments will be conducted by board-certified neuropsychologists at study screening, 3-month and 12-month postoperative time points. All events that are not procedure related will also be captured and recorded.
Target
Feasibility will be determined by ability to create the desired lesion within the anterior nucleus of the thalamus as assessed by neuroimaging
Change in Anxiety symptoms
Change in anxiety symptoms will be measured using clinician-administered HAM-A scale before the procedure and at various time points after the procedure. HAM-A is the scale of reference used in clinical trials to rate the severity of symptoms of anxiety in patients. It will be collected before and after the procedure at day 1, 7, months 1, 3, 6 and 12 to determine any effect and its change overtime.
Effect on Threat Reactivity
Change in Threat reactivity measured by fMRI task just before and after MRgFUSA

Secondary Outcome Measures

Change in seizure frequency
Change in seizure frequency between before the procedure and after will be assessed by online or hard copy seizure diary
Ability to perform the threat reactivity fMRI task just before and after MRgFUSA
Ability to perform the fMRI task before and after MRgFUSA will be assessed by recording any delay or inability to perform the assessment
Change in self-reported anxiety symptoms
Change in Self-report symptoms of anxiety using the Beck Anxiety Inventory from before the procedure up to 12 months post-procedure.
Change in self-reported anxiety symptoms
Change in Self-report symptoms on the Anxiety, Depression, Stress scale from before the procedure up to 12 months post-procedure
Change in quality of life
Change in quality of life between before and after the procedure will be measured using the Quality of Life in Epilepsy Inventory before and up to 12 months after the procedure
Rate of Patient Accrual
Feasibility will be assessed by measuring the rate of patient accrual over the 4 years of the study

Full Information

First Posted
August 21, 2021
Last Updated
October 5, 2023
Sponsor
Ohio State University
search

1. Study Identification

Unique Protocol Identification Number
NCT05032105
Brief Title
The Impact of Focused Ultrasound Thalamotomy of the Anterior Nucleus for Focal-Onset Epilepsy on Anxiety
Official Title
Magnetic Resonance-guided Focused Ultrasound Ablation of the Anterior Thalamus as a Novel Treatment Paradigm for Anxiety
Study Type
Interventional

2. Study Status

Record Verification Date
October 2023
Overall Recruitment Status
Not yet recruiting
Study Start Date
October 15, 2023 (Anticipated)
Primary Completion Date
December 2025 (Anticipated)
Study Completion Date
December 2025 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Principal Investigator
Name of the Sponsor
Ohio State University

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
Yes
Data Monitoring Committee
Yes

5. Study Description

Brief Summary
The purpose of this study is to evaluate the feasibility, safety, and effects on anxiety of high intensity focused ultrasound ablation (FUSA) in patients suffering from treatment-refractory focal epilepsy and anxiety. FUSA is a non-invasive neurosurgical procedure that uses ultrasound waves, sent directly through the scalp and skull, to precisely target small abnormal areas of the brain. For this study, the targeted area of the brain is the anterior nucleus of the thalamus. This brain region may cause seizures and may also be involved in anxiety. The study will test if FUSA is safe and tolerated, and if it reduces anxiety and brain response to threat in patients with anxiety receiving the procedure for partial-onset epilepsy that is resistant to medications.
Detailed Description
This is an open-label, Phase 1 prospective intervention study. Ten (10) adults with refractory, partial-onset epilepsy with moderate-severe anxiety and able to provide informed consent will be enrolled. Patients, eligible for Magnetic Resonance Imaging-guided Focused Ultrasound Ablation (MRgFUSA) of the anterior nucleus of the thalamus (ATN) for treatment-refractory epilepsy and who present moderate-severe anxiety will be enrolled. In addition to the diagnosis of medically refractory epilepsy, patients will need to present moderate to severe anxiety (as measured by the Hamilton Anxiety Rating Scale, HAM-A; HAMA score > 17) and other protocol specific inclusion and exclusion criteria. Medication-refractory partial or focal-onset epilepsy is often associated with enhanced fear behaviors and clinical anxiety. Exaggerated amygdala reactivity to threat is a cardinal neural phenotype of fear and anxiety disorders. The study will determine if MRgFUSA-ATN is feasible and safe and its effects on anxiety, using neuroimaging and neurological, neurocognitive/neuropsychological, psychiatric assessments before, and 1 day, 1 week, 1 month, 3 months, 6 months and 12 months post MRgFUSA. Feasibility is defined as the ability to create the desired lesion within the anterior nucleus of the thalamus and perform fMRI to measure threat reactivity. Safety will be measured by recording and analyzing any adverse effects that may occur from before surgery through 12 months following the surgery. These will include any new onset of neurological deficits, or performance deterioration on neuropsychological testing. Effects on anxiety will be measured using amygdala reactivity to threat by fMRI and patient- and clinician-reported measures of anxiety symptoms before and after MRgFUSA-ATN up to 12 months.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Anxiety, Medication-refractory Focal-onset Epilepsy

7. Study Design

Primary Purpose
Other
Study Phase
Phase 1
Interventional Study Model
Single Group Assignment
Model Description
Single arm, open-label, prospective intervention study of MRgFUSA for adults with refractory, partial-onset epilepsy with moderate-severe anxiety
Masking
None (Open Label)
Allocation
N/A
Enrollment
10 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
Intervention
Arm Type
Experimental
Arm Description
Unilateral Magnetic Resonance Imaging-guided Focused Ultrasound Ablation (MRgFUSA) of the anterior nucleus of the thalamus (ATN)
Intervention Type
Device
Intervention Name(s)
Magnetic Resonance Imaging-guided Focused Ultrasound Ablation (MRgFUSA)
Intervention Description
Unilateral Magnetic Resonance Imaging-guided Focused Ultrasound Ablation (MRgFUSA) of the anterior nucleus of the thalamus (ATN)
Primary Outcome Measure Information:
Title
Incidence of Treatment-Emergent Adverse Events
Description
Safety will be determined by an evaluation of the incidence and severity of MRgFUSA-ATN and other research procedures related adverse events from the 1st study visit through the 12-month post-treatment time point. Post-procedural imaging will be evaluated for evidence of swelling, hemorrhage, and the evolution of the ATN lesion. Emergence of complications will be monitored by neurological examination at day 1, day 7, month 1, month 3, month 6 and month 12 post-procedure. A comprehensive battery of neuropsychological assessments will be conducted by board-certified neuropsychologists at study screening, 3-month and 12-month postoperative time points. All events that are not procedure related will also be captured and recorded.
Time Frame
12 months
Title
Target
Description
Feasibility will be determined by ability to create the desired lesion within the anterior nucleus of the thalamus as assessed by neuroimaging
Time Frame
1 month
Title
Change in Anxiety symptoms
Description
Change in anxiety symptoms will be measured using clinician-administered HAM-A scale before the procedure and at various time points after the procedure. HAM-A is the scale of reference used in clinical trials to rate the severity of symptoms of anxiety in patients. It will be collected before and after the procedure at day 1, 7, months 1, 3, 6 and 12 to determine any effect and its change overtime.
Time Frame
12 months
Title
Effect on Threat Reactivity
Description
Change in Threat reactivity measured by fMRI task just before and after MRgFUSA
Time Frame
1 day
Secondary Outcome Measure Information:
Title
Change in seizure frequency
Description
Change in seizure frequency between before the procedure and after will be assessed by online or hard copy seizure diary
Time Frame
12 months
Title
Ability to perform the threat reactivity fMRI task just before and after MRgFUSA
Description
Ability to perform the fMRI task before and after MRgFUSA will be assessed by recording any delay or inability to perform the assessment
Time Frame
4 years
Title
Change in self-reported anxiety symptoms
Description
Change in Self-report symptoms of anxiety using the Beck Anxiety Inventory from before the procedure up to 12 months post-procedure.
Time Frame
12 months
Title
Change in self-reported anxiety symptoms
Description
Change in Self-report symptoms on the Anxiety, Depression, Stress scale from before the procedure up to 12 months post-procedure
Time Frame
12 months
Title
Change in quality of life
Description
Change in quality of life between before and after the procedure will be measured using the Quality of Life in Epilepsy Inventory before and up to 12 months after the procedure
Time Frame
12 months
Title
Rate of Patient Accrual
Description
Feasibility will be assessed by measuring the rate of patient accrual over the 4 years of the study
Time Frame
4 years

10. Eligibility

Sex
All
Minimum Age & Unit of Time
18 Years
Maximum Age & Unit of Time
65 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: Disabling, medically refractory epilepsy (≥2 anti-epileptic drug failures). Focal onset seizures with secondary generalization; with or without primary generalized seizures. Previous seizure work-up within 12 months of enrollment date to include: A. Home EEG or EMU video EEG or intracranial EEG. B. High definition MRI imaging/PET imaging. C. Baseline neuropsychological assessment, which includes the Wechsler Advanced Clinical Solutions - Test of Premorbid Functioning (TOPF). ≥ 3 seizures/month on average within 3 months of enrollment. Stable medication (including anti-epileptic and psychotropic/psychoactive medications) dosage for 3 months before enrollment. Moderate-severe anxiety as measured by the Hamilton Anxiety Rating Scale (HAM-A) score > 17. Anterior Nucleus (AN) identifiable on MRI (structural T1 and T2 images). Willing to maintain seizure diary (3 months before & 3 months after). Involved care provider. Written informed consent to participate. Ability to comply with all testing, follow-ups, and study appointments and protocols. Exclusion Criteria: Low seizure frequency (<3 seizures/month). Generalized epilepsy (Lennox Gastaut, drop attacks). Post infectious epilepsy (post herpetic). Unable or unwilling to maintain anti-epilepsy drug dosage for 3 months post treatment. Active (current in past 12 months), uncontrolled DSM-5 psychiatric disorder, except for anxiety disorders. Recent (past 12 months) history of drugs or alcohol abuse as evidenced by diagnosis of Substance Use Disorder. Active suicidal ideation current and past 30 days. Clinically significant neurological disorder, except for epilepsy. Presence of any neurodegenerative disease suspected on neurological examination. These include but are not limited to: Multisystem atrophy; Progressive supranuclear palsy; Dementia with Lewy bodies; Alzheimer's disease; Parkinson's disease. Cerebrovascular disease (multiple CVA or CVA within six months). Significant structural brain abnormalities. Surgical lesion identifiable on imaging. Symptoms and signs of increased intracranial pressure. Patients with any types of brain tumors, including metastases. Previous vagal nerve stimulator. Previous corpus callosotomy. Patients who have had deep brain stimulation. Prior stereotactic ablation. Positive urine drug screen at study entry or any follow-up testing session. For cannabis, exclusion includes positive drug screen with self-report of cannabis use in the past 48 hours. Known allergic reaction and/or hypersensitivity to IV dye and/or IV contrasting agent(s). Patients with standard contraindications for MR imaging such as non-MRI compatible implanted metallic devices including cardiac pacemakers, size limitations, etc. History of claustrophobia. Unstable cardiac status including: Unstable angina pectoris on medication; documented myocardial infarction within last 40 days to protocol entry; Congestive heart failure; Severe hypertension (diastolic BP> 100 on medication). Patients receiving dialysis; Patients with risk factors for intraoperative or postoperative bleeding: Platelet count less than 100,000 per cubic millimeter; PT> 14PTT > 40; INR > 1.43. History of abnormal bleeding and/or coagulopathy. Receiving anticoagulant (e.g., Warfarin) or antiplatelet (e.g., aspirin) therapy within one week of focused ultrasound procedure or drugs known to increase risk of hemorrhage (e.g., Avastin) within one month of scheduled focused ultrasound procedure. History of intracranial hemorrhage. Active or suspected, acute or chronic uncontrolled infection or known life-threatening systemic disease; History of immunocompromised status, including patients who are HIV positive. Subjects with remarkable atrophy and poor healing capacity of the scalp. Evidence for calcifications that might interfere with treatment safety (per CT). Skull Density Ratio (SDR) <0.4. Pregnancy or lactation or planning to become pregnant during the time-period of the study. Any illness that in the investigators' opinion preclude participation in this study. Individuals who are not able or willing to tolerate the required prolonged stationary supine position during treatment (can be up to 4 hrs of total table time); IQ score of <70 on the Wechsler Advanced Clinical Solutions - Test of Premorbid Functioning (TOPF), measured as part of screening neuropsychological assessment. Presence of significant cognitive impairment as determined with a score ≤24 on the Mini Mental Status Examination (MMSE). Patients unable to communicate with the investigator and staff. Legal incapacity or limited legal capacity.
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
Anne-Marie Duchemin
Phone
614-293-5517
Email
anne-marie.duchemin@osumc.edu
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Kinh Luan Phan, MD
Organizational Affiliation
Ohio State University
Official's Role
Principal Investigator
First Name & Middle Initial & Last Name & Degree
Timothy Lucas, MD
Organizational Affiliation
Ohio State University
Official's Role
Principal Investigator
Facility Information:
Facility Name
The Ohio State University
City
Columbus
State/Province
Ohio
ZIP/Postal Code
43210
Country
United States
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Anne-Marie Duchemin
Phone
614-293-5517
Email
anne-marie.duchemin@osumc.edu
First Name & Middle Initial & Last Name & Degree
Josh Bolender
Phone
614-685-8622
Email
joshua.bolender@osumc.edu

12. IPD Sharing Statement

Plan to Share IPD
No
IPD Sharing Plan Description
Data will be shared via the NIMH Data Archive, in compliance with NIH policy
Citations:
PubMed Identifier
33058769
Citation
Rabut C, Yoo S, Hurt RC, Jin Z, Li H, Guo H, Ling B, Shapiro MG. Ultrasound Technologies for Imaging and Modulating Neural Activity. Neuron. 2020 Oct 14;108(1):93-110. doi: 10.1016/j.neuron.2020.09.003.
Results Reference
background
PubMed Identifier
29228074
Citation
Krishna V, Sammartino F, Rezai A. A Review of the Current Therapies, Challenges, and Future Directions of Transcranial Focused Ultrasound Technology: Advances in Diagnosis and Treatment. JAMA Neurol. 2018 Feb 1;75(2):246-254. doi: 10.1001/jamaneurol.2017.3129.
Results Reference
background
PubMed Identifier
28601192
Citation
Kim M, Kim CH, Jung HH, Kim SJ, Chang JW. Treatment of Major Depressive Disorder via Magnetic Resonance-Guided Focused Ultrasound Surgery. Biol Psychiatry. 2018 Jan 1;83(1):e17-e18. doi: 10.1016/j.biopsych.2017.05.008. Epub 2017 May 12. No abstract available.
Results Reference
background
PubMed Identifier
25421403
Citation
Jung HH, Kim SJ, Roh D, Chang JG, Chang WS, Kweon EJ, Kim CH, Chang JW. Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder: a proof-of-concept study. Mol Psychiatry. 2015 Oct;20(10):1205-11. doi: 10.1038/mp.2014.154. Epub 2014 Nov 25.
Results Reference
background
PubMed Identifier
32404942
Citation
Davidson B, Hamani C, Rabin JS, Goubran M, Meng Y, Huang Y, Baskaran A, Sharma S, Ozzoude M, Richter MA, Levitt A, Giacobbe P, Hynynen K, Lipsman N. Magnetic resonance-guided focused ultrasound capsulotomy for refractory obsessive compulsive disorder and major depressive disorder: clinical and imaging results from two phase I trials. Mol Psychiatry. 2020 Sep;25(9):1946-1957. doi: 10.1038/s41380-020-0737-1. Epub 2020 May 14.
Results Reference
background
PubMed Identifier
23523144
Citation
Lipsman N, Schwartz ML, Huang Y, Lee L, Sankar T, Chapman M, Hynynen K, Lozano AM. MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol. 2013 May;12(5):462-8. doi: 10.1016/S1474-4422(13)70048-6. Epub 2013 Mar 21.
Results Reference
background
PubMed Identifier
31037466
Citation
Hingray C, McGonigal A, Kotwas I, Micoulaud-Franchi JA. The Relationship Between Epilepsy and Anxiety Disorders. Curr Psychiatry Rep. 2019 Apr 29;21(6):40. doi: 10.1007/s11920-019-1029-9.
Results Reference
background
PubMed Identifier
15718221
Citation
Jackson MJ, Turkington D. Depression and anxiety in epilepsy. J Neurol Neurosurg Psychiatry. 2005 Mar;76 Suppl 1(Suppl 1):i45-47. doi: 10.1136/jnnp.2004.060467. No abstract available.
Results Reference
background
PubMed Identifier
31664439
Citation
Janiri D, Moser DA, Doucet GE, Luber MJ, Rasgon A, Lee WH, Murrough JW, Sani G, Eickhoff SB, Frangou S. Shared Neural Phenotypes for Mood and Anxiety Disorders: A Meta-analysis of 226 Task-Related Functional Imaging Studies. JAMA Psychiatry. 2020 Feb 1;77(2):172-179. doi: 10.1001/jamapsychiatry.2019.3351.
Results Reference
background
PubMed Identifier
17898336
Citation
Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry. 2007 Oct;164(10):1476-88. doi: 10.1176/appi.ajp.2007.07030504.
Results Reference
background
PubMed Identifier
31060042
Citation
Gorka SM, Young CB, Klumpp H, Kennedy AE, Francis J, Ajilore O, Langenecker SA, Shankman SA, Craske MG, Stein MB, Phan KL. Emotion-based brain mechanisms and predictors for SSRI and CBT treatment of anxiety and depression: a randomized trial. Neuropsychopharmacology. 2019 Aug;44(9):1639-1648. doi: 10.1038/s41386-019-0407-7. Epub 2019 May 6.
Results Reference
background
PubMed Identifier
23164370
Citation
Phan KL, Coccaro EF, Angstadt M, Kreger KJ, Mayberg HS, Liberzon I, Stein MB. Corticolimbic brain reactivity to social signals of threat before and after sertraline treatment in generalized social phobia. Biol Psychiatry. 2013 Feb 15;73(4):329-36. doi: 10.1016/j.biopsych.2012.10.003. Epub 2012 Nov 17.
Results Reference
background
PubMed Identifier
21122818
Citation
Sripada CS, Angstadt M, McNamara P, King AC, Phan KL. Effects of alcohol on brain responses to social signals of threat in humans. Neuroimage. 2011 Mar 1;55(1):371-80. doi: 10.1016/j.neuroimage.2010.11.062. Epub 2010 Nov 29.
Results Reference
background
PubMed Identifier
15753241
Citation
Paulus MP, Feinstein JS, Castillo G, Simmons AN, Stein MB. Dose-dependent decrease of activation in bilateral amygdala and insula by lorazepam during emotion processing. Arch Gen Psychiatry. 2005 Mar;62(3):282-8. doi: 10.1001/archpsyc.62.3.282.
Results Reference
background
PubMed Identifier
25663221
Citation
Salanova V, Witt T, Worth R, Henry TR, Gross RE, Nazzaro JM, Labar D, Sperling MR, Sharan A, Sandok E, Handforth A, Stern JM, Chung S, Henderson JM, French J, Baltuch G, Rosenfeld WE, Garcia P, Barbaro NM, Fountain NB, Elias WJ, Goodman RR, Pollard JR, Troster AI, Irwin CP, Lambrecht K, Graves N, Fisher R; SANTE Study Group. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology. 2015 Mar 10;84(10):1017-25. doi: 10.1212/WNL.0000000000001334. Epub 2015 Feb 6.
Results Reference
background
PubMed Identifier
31232614
Citation
Ranjan M, Boutet A, Bhatia S, Wilfong A, Hader W, Lee MR, Rezai AR, Adelson PD. Neuromodulation beyond neurostimulation for epilepsy: scope for focused ultrasound. Expert Rev Neurother. 2019 Oct;19(10):937-943. doi: 10.1080/14737175.2019.1635013. Epub 2019 Jul 2.
Results Reference
background
PubMed Identifier
27715438
Citation
So RQ, Krishna V, King NKK, Yang H, Zhang Z, Sammartino F, Lozano AM, Wennberg RA, Guan C. Prediction and detection of seizures from simultaneous thalamic and scalp electroencephalography recordings. J Neurosurg. 2017 Jun;126(6):2036-2044. doi: 10.3171/2016.7.JNS161282. Epub 2016 Oct 7.
Results Reference
background
PubMed Identifier
11160466
Citation
Biraben A, Taussig D, Thomas P, Even C, Vignal JP, Scarabin JM, Chauvel P. Fear as the main feature of epileptic seizures. J Neurol Neurosurg Psychiatry. 2001 Feb;70(2):186-91. doi: 10.1136/jnnp.70.2.186.
Results Reference
background
PubMed Identifier
31690945
Citation
Krishna V, Sammartino F, Cosgrove R, Ghanouni P, Schwartz M, Gwinn R, Eisenberg H, Fishman P, Chang JW, Taira T, Kaplitt M, Rezai A, Rumia J, Gedroyc W, Igase K, Kishima H, Yamada K, Ohnishi H, Halpern C. Predictors of Outcomes After Focused Ultrasound Thalamotomy. Neurosurgery. 2020 Aug 1;87(2):229-237. doi: 10.1093/neuros/nyz417. Erratum In: Neurosurgery. 2020 Apr 1;86(4):604.
Results Reference
background
PubMed Identifier
26235301
Citation
Boulogne S, Catenoix H, Ryvlin P, Rheims S. Long-lasting seizure-related anxiety in patients with temporal lobe epilepsy and comorbid psychiatric disorders. Epileptic Disord. 2015 Sep;17(3):340-4. doi: 10.1684/epd.2015.0757.
Results Reference
background
PubMed Identifier
26813858
Citation
Krishna V, King NK, Sammartino F, Strauss I, Andrade DM, Wennberg RA, Lozano AM. Anterior Nucleus Deep Brain Stimulation for Refractory Epilepsy: Insights Into Patterns of Seizure Control and Efficacious Target. Neurosurgery. 2016 Jun;78(6):802-11. doi: 10.1227/NEU.0000000000001197.
Results Reference
background
PubMed Identifier
30921612
Citation
Sammartino F, Yeh FC, Krishna V. Longitudinal analysis of structural changes following unilateral focused ultrasound thalamotomy. Neuroimage Clin. 2019;22:101754. doi: 10.1016/j.nicl.2019.101754. Epub 2019 Mar 12.
Results Reference
background

Learn more about this trial

The Impact of Focused Ultrasound Thalamotomy of the Anterior Nucleus for Focal-Onset Epilepsy on Anxiety

We'll reach out to this number within 24 hrs