search
Back to results

Lutathera for Treatment of Recurrent or Progressive High-Grade CNS Tumors or Meningiomas Expressing SST2A

Primary Purpose

High Grade Glioma, Meningioma, Embryonal Tumor

Status
Recruiting
Phase
Phase 1
Locations
United States
Study Type
Interventional
Intervention
LUTATHERA® (Lutetium Lu 177 dotatate)
Sponsored by
Ralph Salloum
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional treatment trial for High Grade Glioma focused on measuring Somatostatin Receptor, DOTATATE, Lutathera

Eligibility Criteria

4 Years - undefined (Child, Adult, Older Adult)All SexesDoes not accept healthy volunteers

All subjects must meet the following inclusion and exclusion criteria. No exceptions will be given. Imaging studies to establish eligibility must be done within three weeks prior to enrollment. All other clinical evaluations to establish eligibility (except for SST2A IHC) must be done within 7 days prior to enrollment.

  1. Screening Criteria

    1.1 Diagnosis Patient must have a diagnosis of primary high-grade CNS tumor (any histopathologic diagnosis that is WHO grade III-IV) or meningioma (any histologic grade) that is recurrent, progressive, or refractory. Note that patients with DIPG (based on radiographic/clinical diagnosis) who have undergone biopsy will be eligible with histologic diagnosis of grade II-IV infiltrating glioma. All tumors must have histologic verification either at the time of diagnosis or recurrence, except for patients meningioma who have not previously undergone biopsy or resection.

    Note: Refractory disease is defined as the presence of persistent abnormality on conventional MRI imaging that is further distinguished by histology (biopsy or sample of lesion) or advanced imaging, OR as determined by the treating physician and discussed with the primary investigator prior to enrollment.

    1.2 Adequate Pre-trial Tumor Tissue Patient must have adequate pre-trial tumor material (from initial diagnosis and/or recurrence) available for SST2A IHC preparation and interpretation. Patients with meningioma who have pre-trial tumor tissue available are required to submit tissue; however, this is not required for eligibility for meningioma patients if no prior biopsy/resection has been performed.

    1.3 Prior Therapy Patients must have recurred/progressed following prior standard therapy for their tumor. Note: with meningioma, atypical meningioma, or anaplastic meningioma must have received at least surgical resection or radiation.

    1.4 Screening Consent Participant/legal guardian is willing to sign a screening consent. The screening consent is for SST2A IHC analysis and if there is evidence of SST2A expression by IHC, DOTATATE PET imaging. The screening consent is to be obtained according to institutional guidelines. Assent, when appropriate, will be obtained according to institutional guidelines.

  2. Eligibility Criteria

    • Phase I Age Patient must be ≥ 4 and < 12 years of age at the time of enrollment. Disease Status: Patients who participate in the efficacy expansion cohort must have bi-dimensionally measurable disease, defined as at least one lesion that can be accurately measured in at least two dimensions Patients with measurable extraneural disease only are also eligible.
    • Phase II Age Patient must be ≥ 12 years at the time of enrollment.
  3. Inclusion Criteria

    3.1 Screening Process

    • SST2A Expression by IHC (Step 1 of 2-Step Screening Process) Patients must have evidence of SST2A expression measured by IHC in their tumor, confirmed by central pathology review (membranous staining, >10% tumor cell immunoreactivity, and at least weak staining intensity). This is required of all patients, except patients with meningioma without pre-trial tumor tissue.
    • Uptake on DOTATATE PET (Step 2 of 2-Step Screening Process) Only patients whose tumors have positive SST2A expression by IHC (i.e., who pass Step 1 of 2-Step Screening Process) or patients with meningioma without pre-trial tumor tissue will undergo this next screening step-functional confirmation by DOTATATE PET imaging. Patients must have uptake on DOTATATE PET/CT in at least one tumor lesion (corresponding to known disease) equivalent to a Krenning score ≥2 (confirmed by central radiology review).

    3.2 Prior Therapy Patients must have recovered from the acute treatment related toxicities (defined as ≤ grade 1 if not defined in eligibility criteria) of all prior chemotherapy, immunotherapy, radiotherapy, or any other treatment modality prior to entering this study.

    3.3 Chemotherapy Patients must have received their last dose of known myelosuppressive anticancer therapy at least 21 days prior to enrollment or at least 42 days if nitrosourea.

    3.4 Investigational/Biologic Agent

    ●Biologic or investigational agent (anti-neoplastic): Patient must have recovered from any acute toxicity potentially related to the agent and received their last dose of the investigational or biologic agent ≥ 7 days prior to study enrollment.

    For agents that have known adverse events occurring beyond 7 days after administration, this period must be extended beyond the time during which adverse events are known to occur.

    ●Monoclonal Antibodies and agents with known prolonged half-lives: Patient must have recovered from any acute toxicity potentially related to the agent and received their last dose of the agent ≥ 28 days prior to study enrollment.

    3.5 Radiation

    Patients must have had their last fraction of:

    • Craniospinal irradiation or total body irradiation or radiation to > 50% of pelvis > 3 months prior to enrollment.
    • Focal irradiation > 4 weeks prior to enrollment

    3.6 Stem Cell Transplant

    Patient must be:

    • ≥ 6 months since allogeneic stem cell transplant prior to enrollment with no evidence of active graft vs. host disease
    • ≥ 3 months since autologous stem cell transplant prior to enrollment

    3.7 Growth Factors Patients must be off all colony-forming growth factor(s) for at least 1 week prior to enrollment (e.g. filgrastim, sargramostim or erythropoietin). Two weeks must have elapsed if patients received long-acting formulations.

    3.8 Somatostatin analogs Patients must be off long-acting somatostatin analogs for at least 4 weeks and off short-acting somastatin analogs (i.e., octreotide) for at least 24 hours.

    3.9 Neurologic Status

    • Patients with neurological deficits should have deficits that are stable for a minimum of 1 week prior to enrollment, documented by a detailed neurological exam.
    • Patients with seizure disorders may be enrolled if seizures are well controlled.

    3.10 Performance Status Karnofsky Performance Scale (KPS for > 16 years of age) or Lansky Performance Score (LPS for ≤ 16 years of age) assessed within two weeks of enrollment must be ≥ 50. Patients who are unable to walk because of neurologic deficits, but who are up in a wheelchair, will be considered ambulatory for the purpose of assessing the performance score

    3.11 Organ Function

    Patients must have adequate organ and marrow function, both for eligibility for enrollment, and to begin each subsequent cycle of Lutathera, as defined below:

    • Adequate Bone Marrow Function as defined as:

      • Absolute neutrophil count ≥ 1.0 x 109 cells/ L
      • Platelets ≥100 x 109 cells/ L (unsupported, defined as no platelet transfusion within 7 days)
      • Hemoglobin ≥8 g/dl (may receive transfusions)
    • Adequate Renal Function as defined as:

      • Glomerular filtration rate (GFR) estimated by cystatin C ≥ 60ml/min/1.73 m2
      • A serum creatinine based on (Schwartz et al. J. Peds, 106:522, 1985) age/gender as follows:

        1 to < 2 years: maximum serum creatinine 0.6 mg/dL for males and females. 2 to < 6 years: maximum serum creatinine 0.8 mg/dL for males and females. 6 to < 10 years: maximum serum creatinine 1.0 mg/dL for males and females. 10 to < 13 years: maximum serum creatinine 1.2 mg/dL for males and females. 13 to < 16 years: maximum serum creatinine 1.5 mg/dL for males and 1.4 mg/dL for females.

        ≥ 16 years: maximum serum creatinine 1.7 mg/dL for males and 1.4 mg/dL for females.

    • Adequate Liver Function as defined as:

      • Total bilirubin ≤ 3 times institutional upper limit of normal (ULN) for age
      • AST(SGOT)/ALT(SGPT) ≤ 3 times institutional ULN
      • Serum albumin ≥ 2g/dL
      • Coagulation parameters: INR <1.5 times ULN and aPTT <1.5 times ULN unless patients are receiving therapeutic anticoagulation which affects these parameters
    • Adequate Cardiac Function as defined as:

      • Ejection fraction of ≥ 55% by echocardiogram
      • Serum electrolytes (Sodium, Potassium, Chloride) within institutional limits of normal (patients can be on enteral supplementation)

    3.12 Corticosteroids Patients who are receiving dexamethasone must be on a stable or decreasing dose for at least 1 week prior to enrollment, with a maximum dexamethasone dose of 2.5mg/m2/day.

    3.13 Pregnancy Status Female patients of childbearing potential must have a negative serum or urine pregnancy test within 72 hours prior to receiving the first dose of study medication. If the urine test is positive or cannot be confirmed as negative, a serum pregnancy test will be required.

    3.14 Pregnancy Prevention Patients of childbearing or child fathering potential must be willing to use a medically acceptable form of birth control, which includes abstinence, while being treated on this study and for at least 7 months after drug cessation in females of childbearing potential and for at least 4 months after drug cessation in males of child fathering potential.

    3.15 Informed Consent The patient or parent/guardian is able to understand the consent and is willing to sign a written informed consent document according to institutional guidelines.

  4. Exclusion Criteria

    4.1 Confirmed bone marrow metastatic disease Patients with confirmed metastatic disease to bone marrow are ineligible.

    4.2 Presence of bulky disease Patients with bulky disease on imaging as described below are ineligible. Treating physicians are encouraged to request a rapid central imaging review to confirm fulfillment of these criteria if there are questions or concerns.

    Bulky disease is defined as:

    • Tumor with evidence of clinically significant uncal herniation or midline shift.
    • Tumor with diameter of >5cm in one dimension on T2/FLAIR.
    • Tumor that in the opinion of the site investigator shows significant mass effect in either the brain or spine.

    Note that patients with metastatic or multi-focal disease (with exception of bone marrow) are eligible as long as no sites of disease meet above criteria for bulky disease.

    4.3 Breast-feeding Nursing mothers are excluded from this study. There is an unknown but potential risk for adverse events in nursing infants secondary to treatment of the mother with Lutathera.

    4.4 Concurrent Illness

    • Patients with a history of any other malignancy, except patients with a secondary brain tumor if the patient's prior malignancy has been in remission for at least 5 years from the end of treatment.
    • Patients with any clinically significant unrelated systemic illness (serious infections or significant cardiac, pulmonary, hepatic or other organ dysfunction), that in the opinion of the investigator would compromise the patient's ability to tolerate protocol therapy, put them at additional risk for toxicity or would interfere with the study procedures or results.
    • Patients with type I diabetes.

    4.5 Concomitant Medications

    • Patients who are receiving any other anti-cancer or investigational drug therapy are ineligible.
    • Prior or current treatment with 177Lu-DOTATATE/TOC or 90Y-DOTATATE/TOC.

    4.6 Prisoners will be excluded from this study.

    4.7 Inability to participate: Patients who in the opinion of the investigator are unwilling or unable to return for required follow-up visits, obtain follow-up studies required to assess toxicity to therapy, or adhere to drug administration plan, other study procedures, and study restrictions.

  5. Inclusion of Women and Minorities Both males and females of all races and ethnic groups are eligible for this study.
  6. Criteria to Start Treatment

    • Subjects must start therapy within seven (7) days of enrollment.
    • Laboratory values must be no older than 7 days prior to the start of therapy. If a test that is repeated post enrollment and prior to the start of therapy is outside the limits for eligibility, it must be rechecked within 48 hours prior to the start of therapy. If rechecks are still outside the limits for eligibility, the patient may not receive protocol therapy and will be considered off study.

Sites / Locations

  • Children's Hospital Colorado
  • Ann & Robert H. Lurie Children's Hospital of Chicago
  • Dana-Farber Cancer Institute
  • Duke University Health System
  • Cincinnati Children's Hospital Medical Center
  • Nationwide Children's HospitalRecruiting
  • Children's Hospital of Philadelphia
  • Texas Children's Hospital
  • Seattle Children's Hospital

Arms of the Study

Arm 1

Arm Type

Experimental

Arm Label

Phase I-II

Arm Description

Pediatric patients (4 -12 years, Phase I) and adolescent and young adult patients (>12years, Phase II) with recurrent/progressive high-grade central nervous system tumors and meningiomas that express SST2A and demonstrate uptake on DOTATATE PET will receive Lutathera once every 8 weeks (1 cycle) for a total of 4 doses over 8 months Phase I starting dose will be 200 mCi*(BSA/1.73m2), corresponding to the BSA-adjusted FDA approved adult Lutathera dosing. The first cycle will be used as the DLT period. Once MTD/RP2D is established, an efficacy expansion cohort of up to 10 patients will be opened to determine the preliminary efficacy of MTD/RP2D of Lutathera in this cohort Phase II patients will receive the adult RP2D of 200 mCi every 8 weeks to determine the anti-tumor activity of Lutathera in this patient population, through evaluation of 6-month PFS as the primary efficacy endpoint. Response will be assessed on imaging (brain/spine MRI and DOTATATE PET) following every cycle.

Outcomes

Primary Outcome Measures

Estimate MTD of Lutathera in pediatric CNS patients 4-12 years
To estimate the maximum tolerated dose (MTD) of Lutathera in pediatric patients between 4 and <12 years of age with recurrent and/or progressive high-grade CNS tumors or meningiomas that express SST2A receptors and demonstrate uptake on DOTATATE PET.
Estimate RP2D of Lutathera in pediatric CNS patients 4-12 years
To estimate the recommended Phase II dose (RP2D) of Lutathera in pediatric patients between 4 and <12 years of age with recurrent and/or progressive high-grade CNS tumors or meningiomas that express SST2A receptors and demonstrate uptake on DOTATATE PET.
Calculate the incidence of treatment related adverse events as assessed by CTCAE v5.0 in pediatric (4-12 yo) CNS patients treated with Lutathera
To define and describe the toxicities of Lutathera in pediatric patients with recurrent and/or progressive high-grade CNS tumors or meningiomas that express SST2A receptors and demonstrate uptake on DOTATATE PET. This will include calculating the number of participants with Lutathera-related adverse events as assessed by CTCAE v 5.0
Assess PFS of Lutathera in CNS patients >12 years
To assess efficacy, evaluated by 6 month progression-free survival, of treatment with Lutathera in adolescent and young adult patients age ≥12 years with recurrent and/or progressive high-grade CNS tumors or meningiomas that express SST2A receptors and demonstrate uptake on DOTATATE PET

Secondary Outcome Measures

Objective Response Rate of Lutathera in CNS patients >12 years
To evaluate the objective response rate of Lutathera in adolescent and young adult patients age ≥12 years with recurrent and/or progressive high-grade CNS tumors or meningiomas that express SST2A receptors and demonstrate uptake on DOTATATE PET.
Calculate the incidence of treatment related adverse events as assessed by CTCAE v5.0 in CNS patients older than 12 yrs treated with Lutathera
To establish the safety and toxicity of Lutathera 200 mCi every 8-week dosing in adolescent and young adult patients age ≥12 years with recurrent and/or progressive high-grade CNS tumors or meningiomas that express SST2A receptors and demonstrate uptake on DOTATATE PET. This will include calculating the number of participants with, as well as severity and frequency of, Lutathera-related adverse events as assessed by CTCAE v 5.0

Full Information

First Posted
February 7, 2022
Last Updated
January 16, 2023
Sponsor
Ralph Salloum
Collaborators
Children's Hospital Medical Center, Cincinnati
search

1. Study Identification

Unique Protocol Identification Number
NCT05278208
Brief Title
Lutathera for Treatment of Recurrent or Progressive High-Grade CNS Tumors or Meningiomas Expressing SST2A
Official Title
Phase I/II Study of Lutathera in Pediatric and Young Adult Patients With Recurrent and/or Progressive High-Grade Central Nervous System Tumors and Meningiomas That Express Somatostatin Type2A Receptors and Demonstrate Uptake on DOTATATE PET
Study Type
Interventional

2. Study Status

Record Verification Date
January 2023
Overall Recruitment Status
Recruiting
Study Start Date
November 21, 2022 (Actual)
Primary Completion Date
November 2025 (Anticipated)
Study Completion Date
November 2027 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Sponsor-Investigator
Name of the Sponsor
Ralph Salloum
Collaborators
Children's Hospital Medical Center, Cincinnati

4. Oversight

Studies a U.S. FDA-regulated Drug Product
Yes
Studies a U.S. FDA-regulated Device Product
No
Data Monitoring Committee
Yes

5. Study Description

Brief Summary
This study will evaluate the safety and efficacy of Lutathera (177Lu-DOTATATE) in pediatric and young adult patients with progressive or recurrent High-Grade Central Nervous System (CNS) tumors and meningiomas (any grade) that express Somatostatin Type 2A Receptors by immunohistochemistry and demonstrate uptake on DOTATATE PET. The drug will be given intravenously once every 8 weeks for a total of up to 4 doses over 8 months in patients aged 4-12 years (Phase I) or older than 12 yrs (Phase II) to test its safety and efficacy, respectively. Funding Source - FDA OOPD (grant number FD-R-0532-01)
Detailed Description
Somatostatin receptors regulate cell growth through downstream modulation of both proliferation and apoptosis signaling pathways, and thus represent a potential therapeutic target. Lutathera (Lutetium [Lu]177 Dotatate) is a radionuclide therapy which binds type-2A somatostatin receptors (SST2A) and has recently gained FDA approval for the treatment of adult gastroenteropancreatic neuroendocrine tumors expressing SST2A. High SST2A expression has been consistently observed in medulloblastoma and other embryonal tumors (75-100% of cases) as well as in some HGGs and anaplastic ependymomas (13-80%), with corresponding uptake on radiolabeled somatostatin receptor nuclear imaging (e.g. DOTATATE PET). Emerging data has demonstrated treatment response (disease stabilization or regression) to somatostatin receptor-targeted therapy in children and young adults with relapsed medulloblastoma, HGG, meningioma, and brain metastases of neuroendocrine tumors, suggesting sufficient CNS penetration to achieve therapeutic benefit. The proposed Phase I-II study will investigate the safety and efficacy of Lutathera treatment in pediatric and young adult patients whose tumors express SST2A (measured by immunohistochemistry) and demonstrate uptake on DOTATATE PET. In both Phase cohorts, Lutathera will be administered as an intravenous infusion on day 1 of each 8-week cycle for up to 4 cycles. Phase I: (4-12 years) To determine the safety, define the dose-limiting toxicities, and establish the maximally tolerated dose (MTD)/ recommended Phase II dose (RP2D) of Lutathera in this patient population. The first cycle (first 8 weeks) will be used as the dose-limiting toxicity (DLT) observation period. The starting dose will be dose level 1, 200 mCi*(body surface area [BSA]/1.73m2), which corresponds to the BSA-adjusted FDA approved adult dosing of Lutathera (200 mCi every 8 weeks). Once the MTD/RP2D is established, an efficacy expansion cohort of up to 10 patients will be opened to determine the preliminary efficacy of the MTD/RP2D of Lutathera in this cohort. Phase II: (>12 years) Enroll patients at the recommended adult dose of 200 mCi every 8 weeks to determine the anti-tumor activity of Lutathera at this dosing in this population. Response will be assessed on imaging (brain and/or spine MRI and DOTATATE PET) following every cycle.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
High Grade Glioma, Meningioma, Embryonal Tumor, Medulloblastoma, Anaplastic Ependymoma, Recurrent Diffuse Intrinsic Pontine Glioma, Recurrent Malignant Glioma, Recurrent Medulloblastoma, Recurrent Primary Central Nervous System Neoplasm, Refractory Diffuse Intrinsic Pontine Glioma, Refractory Malignant Glioma, Refractory Medulloblastoma, Refractory Primary Central Nervous System Neoplasm
Keywords
Somatostatin Receptor, DOTATATE, Lutathera

7. Study Design

Primary Purpose
Treatment
Study Phase
Phase 1, Phase 2
Interventional Study Model
Single Group Assignment
Model Description
Phase I (4-12 yrs) Lutathera (maximum dose of 200 mCi) once every 8 weeks (one cycle) for 4 cycles. Level 0: 150 mCi*(BSA/1.73m2). Level 1#: 200 mCi*(BSA/1.73m2). Level 2: 250 mCi*(BSA/1.73m2). #starting dose Phase II (>12 yrs) RP2D 200 mCi once every 8 weeks
Masking
None (Open Label)
Allocation
N/A
Enrollment
65 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
Phase I-II
Arm Type
Experimental
Arm Description
Pediatric patients (4 -12 years, Phase I) and adolescent and young adult patients (>12years, Phase II) with recurrent/progressive high-grade central nervous system tumors and meningiomas that express SST2A and demonstrate uptake on DOTATATE PET will receive Lutathera once every 8 weeks (1 cycle) for a total of 4 doses over 8 months Phase I starting dose will be 200 mCi*(BSA/1.73m2), corresponding to the BSA-adjusted FDA approved adult Lutathera dosing. The first cycle will be used as the DLT period. Once MTD/RP2D is established, an efficacy expansion cohort of up to 10 patients will be opened to determine the preliminary efficacy of MTD/RP2D of Lutathera in this cohort Phase II patients will receive the adult RP2D of 200 mCi every 8 weeks to determine the anti-tumor activity of Lutathera in this patient population, through evaluation of 6-month PFS as the primary efficacy endpoint. Response will be assessed on imaging (brain/spine MRI and DOTATATE PET) following every cycle.
Intervention Type
Drug
Intervention Name(s)
LUTATHERA® (Lutetium Lu 177 dotatate)
Other Intervention Name(s)
Lutathera
Intervention Description
Lutathera: IV administration maximum dose of 200 mCi once every 8 weeks (one cycle) for total of 4 cycles (8 months)
Primary Outcome Measure Information:
Title
Estimate MTD of Lutathera in pediatric CNS patients 4-12 years
Description
To estimate the maximum tolerated dose (MTD) of Lutathera in pediatric patients between 4 and <12 years of age with recurrent and/or progressive high-grade CNS tumors or meningiomas that express SST2A receptors and demonstrate uptake on DOTATATE PET.
Time Frame
up to 8 months
Title
Estimate RP2D of Lutathera in pediatric CNS patients 4-12 years
Description
To estimate the recommended Phase II dose (RP2D) of Lutathera in pediatric patients between 4 and <12 years of age with recurrent and/or progressive high-grade CNS tumors or meningiomas that express SST2A receptors and demonstrate uptake on DOTATATE PET.
Time Frame
up to 8 months
Title
Calculate the incidence of treatment related adverse events as assessed by CTCAE v5.0 in pediatric (4-12 yo) CNS patients treated with Lutathera
Description
To define and describe the toxicities of Lutathera in pediatric patients with recurrent and/or progressive high-grade CNS tumors or meningiomas that express SST2A receptors and demonstrate uptake on DOTATATE PET. This will include calculating the number of participants with Lutathera-related adverse events as assessed by CTCAE v 5.0
Time Frame
up to 2 months
Title
Assess PFS of Lutathera in CNS patients >12 years
Description
To assess efficacy, evaluated by 6 month progression-free survival, of treatment with Lutathera in adolescent and young adult patients age ≥12 years with recurrent and/or progressive high-grade CNS tumors or meningiomas that express SST2A receptors and demonstrate uptake on DOTATATE PET
Time Frame
up to 6 months
Secondary Outcome Measure Information:
Title
Objective Response Rate of Lutathera in CNS patients >12 years
Description
To evaluate the objective response rate of Lutathera in adolescent and young adult patients age ≥12 years with recurrent and/or progressive high-grade CNS tumors or meningiomas that express SST2A receptors and demonstrate uptake on DOTATATE PET.
Time Frame
up to 8 months
Title
Calculate the incidence of treatment related adverse events as assessed by CTCAE v5.0 in CNS patients older than 12 yrs treated with Lutathera
Description
To establish the safety and toxicity of Lutathera 200 mCi every 8-week dosing in adolescent and young adult patients age ≥12 years with recurrent and/or progressive high-grade CNS tumors or meningiomas that express SST2A receptors and demonstrate uptake on DOTATATE PET. This will include calculating the number of participants with, as well as severity and frequency of, Lutathera-related adverse events as assessed by CTCAE v 5.0
Time Frame
up to 8 months
Other Pre-specified Outcome Measures:
Title
Anti-tumor activity of Lutathera
Description
Document anti-tumor activity of Lutathera through assessment of ORR, PFS in patients with recurrent or progressive High-Grade CNS tumors or meningiomas expressing SST2A
Time Frame
up to 8 months
Title
Prevalence of SST2A expression in patients with different high-grade CNS tumors
Description
Describe prevalence and heterogeneity of SST2A expression (IHC) in patients with recurrent or progressive High-Grade CNS tumors or meningiomas
Time Frame
up to 8 months
Title
Correlation of SST2A expression with clinical and molecular features in high-grade CNS tumor patients treated with Lutathera
Description
Assess correlation of SST2A expression with uptake on DOTATATE PET, response to Lutathera therapy, and relevant clinical and molecular features within the confines of a Phase I/II study in patients with recurrent or progressive High-Grade CNS tumors or meningiomas treated with Lutathera
Time Frame
up to 8 months

10. Eligibility

Sex
All
Minimum Age & Unit of Time
4 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
All subjects must meet the following inclusion and exclusion criteria. No exceptions will be given. Imaging studies to establish eligibility must be done within three weeks prior to enrollment. All other clinical evaluations to establish eligibility (except for SST2A IHC) must be done within 7 days prior to enrollment. Screening Criteria 1.1 Diagnosis Patient must have a diagnosis of primary high-grade CNS tumor (any histopathologic diagnosis that is WHO grade III-IV) or meningioma (any histologic grade) that is recurrent, progressive, or refractory. Note that patients with DIPG (based on radiographic/clinical diagnosis) who have undergone biopsy will be eligible with histologic diagnosis of grade II-IV infiltrating glioma. All tumors must have histologic verification either at the time of diagnosis or recurrence, except for patients meningioma who have not previously undergone biopsy or resection. Note: Refractory disease is defined as the presence of persistent abnormality on conventional MRI imaging that is further distinguished by histology (biopsy or sample of lesion) or advanced imaging, OR as determined by the treating physician and discussed with the primary investigator prior to enrollment. 1.2 Adequate Pre-trial Tumor Tissue Patient must have adequate pre-trial tumor material (from initial diagnosis and/or recurrence) available for SST2A IHC preparation and interpretation. Patients with meningioma who have pre-trial tumor tissue available are required to submit tissue; however, this is not required for eligibility for meningioma patients if no prior biopsy/resection has been performed. 1.3 Prior Therapy Patients must have recurred/progressed following prior standard therapy for their tumor. Note: with meningioma, atypical meningioma, or anaplastic meningioma must have received at least surgical resection or radiation. 1.4 Screening Consent Participant/legal guardian is willing to sign a screening consent. The screening consent is for SST2A IHC analysis and if there is evidence of SST2A expression by IHC, DOTATATE PET imaging. The screening consent is to be obtained according to institutional guidelines. Assent, when appropriate, will be obtained according to institutional guidelines. Eligibility Criteria Phase I Age Patient must be ≥ 4 and < 12 years of age at the time of enrollment. Disease Status: Patients who participate in the efficacy expansion cohort must have bi-dimensionally measurable disease, defined as at least one lesion that can be accurately measured in at least two dimensions Patients with measurable extraneural disease only are also eligible. Phase II Age Patient must be ≥ 12 years at the time of enrollment. Inclusion Criteria 3.1 Screening Process SST2A Expression by IHC (Step 1 of 2-Step Screening Process) Patients must have evidence of SST2A expression measured by IHC in their tumor, confirmed by central pathology review (membranous staining, >10% tumor cell immunoreactivity, and at least weak staining intensity). This is required of all patients, except patients with meningioma without pre-trial tumor tissue. Uptake on DOTATATE PET (Step 2 of 2-Step Screening Process) Only patients whose tumors have positive SST2A expression by IHC (i.e., who pass Step 1 of 2-Step Screening Process) or patients with meningioma without pre-trial tumor tissue will undergo this next screening step-functional confirmation by DOTATATE PET imaging. Patients must have uptake on DOTATATE PET/CT in at least one tumor lesion (corresponding to known disease) equivalent to a Krenning score ≥2 (confirmed by central radiology review). 3.2 Prior Therapy Patients must have recovered from the acute treatment related toxicities (defined as ≤ grade 1 if not defined in eligibility criteria) of all prior chemotherapy, immunotherapy, radiotherapy, or any other treatment modality prior to entering this study. 3.3 Chemotherapy Patients must have received their last dose of known myelosuppressive anticancer therapy at least 21 days prior to enrollment or at least 42 days if nitrosourea. 3.4 Investigational/Biologic Agent ●Biologic or investigational agent (anti-neoplastic): Patient must have recovered from any acute toxicity potentially related to the agent and received their last dose of the investigational or biologic agent ≥ 7 days prior to study enrollment. For agents that have known adverse events occurring beyond 7 days after administration, this period must be extended beyond the time during which adverse events are known to occur. ●Monoclonal Antibodies and agents with known prolonged half-lives: Patient must have recovered from any acute toxicity potentially related to the agent and received their last dose of the agent ≥ 28 days prior to study enrollment. 3.5 Radiation Patients must have had their last fraction of: Craniospinal irradiation or total body irradiation or radiation to > 50% of pelvis > 3 months prior to enrollment. Focal irradiation > 4 weeks prior to enrollment 3.6 Stem Cell Transplant Patient must be: ≥ 6 months since allogeneic stem cell transplant prior to enrollment with no evidence of active graft vs. host disease ≥ 3 months since autologous stem cell transplant prior to enrollment 3.7 Growth Factors Patients must be off all colony-forming growth factor(s) for at least 1 week prior to enrollment (e.g. filgrastim, sargramostim or erythropoietin). Two weeks must have elapsed if patients received long-acting formulations. 3.8 Somatostatin analogs Patients must be off long-acting somatostatin analogs for at least 4 weeks and off short-acting somastatin analogs (i.e., octreotide) for at least 24 hours. 3.9 Neurologic Status Patients with neurological deficits should have deficits that are stable for a minimum of 1 week prior to enrollment, documented by a detailed neurological exam. Patients with seizure disorders may be enrolled if seizures are well controlled. 3.10 Performance Status Karnofsky Performance Scale (KPS for > 16 years of age) or Lansky Performance Score (LPS for ≤ 16 years of age) assessed within two weeks of enrollment must be ≥ 50. Patients who are unable to walk because of neurologic deficits, but who are up in a wheelchair, will be considered ambulatory for the purpose of assessing the performance score 3.11 Organ Function Patients must have adequate organ and marrow function, both for eligibility for enrollment, and to begin each subsequent cycle of Lutathera, as defined below: Adequate Bone Marrow Function as defined as: Absolute neutrophil count ≥ 1.0 x 109 cells/ L Platelets ≥100 x 109 cells/ L (unsupported, defined as no platelet transfusion within 7 days) Hemoglobin ≥8 g/dl (may receive transfusions) Adequate Renal Function as defined as: Glomerular filtration rate (GFR) estimated by cystatin C ≥ 60ml/min/1.73 m2 A serum creatinine based on (Schwartz et al. J. Peds, 106:522, 1985) age/gender as follows: 1 to < 2 years: maximum serum creatinine 0.6 mg/dL for males and females. 2 to < 6 years: maximum serum creatinine 0.8 mg/dL for males and females. 6 to < 10 years: maximum serum creatinine 1.0 mg/dL for males and females. 10 to < 13 years: maximum serum creatinine 1.2 mg/dL for males and females. 13 to < 16 years: maximum serum creatinine 1.5 mg/dL for males and 1.4 mg/dL for females. ≥ 16 years: maximum serum creatinine 1.7 mg/dL for males and 1.4 mg/dL for females. Adequate Liver Function as defined as: Total bilirubin ≤ 3 times institutional upper limit of normal (ULN) for age AST(SGOT)/ALT(SGPT) ≤ 3 times institutional ULN Serum albumin ≥ 2g/dL Coagulation parameters: INR <1.5 times ULN and aPTT <1.5 times ULN unless patients are receiving therapeutic anticoagulation which affects these parameters Adequate Cardiac Function as defined as: Ejection fraction of ≥ 55% by echocardiogram Serum electrolytes (Sodium, Potassium, Chloride) within institutional limits of normal (patients can be on enteral supplementation) 3.12 Corticosteroids Patients who are receiving dexamethasone must be on a stable or decreasing dose for at least 1 week prior to enrollment, with a maximum dexamethasone dose of 2.5mg/m2/day. 3.13 Pregnancy Status Female patients of childbearing potential must have a negative serum or urine pregnancy test within 72 hours prior to receiving the first dose of study medication. If the urine test is positive or cannot be confirmed as negative, a serum pregnancy test will be required. 3.14 Pregnancy Prevention Patients of childbearing or child fathering potential must be willing to use a medically acceptable form of birth control, which includes abstinence, while being treated on this study and for at least 7 months after drug cessation in females of childbearing potential and for at least 4 months after drug cessation in males of child fathering potential. 3.15 Informed Consent The patient or parent/guardian is able to understand the consent and is willing to sign a written informed consent document according to institutional guidelines. Exclusion Criteria 4.1 Confirmed bone marrow metastatic disease Patients with confirmed metastatic disease to bone marrow are ineligible. 4.2 Presence of bulky disease Patients with bulky disease on imaging as described below are ineligible. Treating physicians are encouraged to request a rapid central imaging review to confirm fulfillment of these criteria if there are questions or concerns. Bulky disease is defined as: Tumor with evidence of clinically significant uncal herniation or midline shift. Tumor with diameter of >5cm in one dimension on T2/FLAIR. Tumor that in the opinion of the site investigator shows significant mass effect in either the brain or spine. Note that patients with metastatic or multi-focal disease (with exception of bone marrow) are eligible as long as no sites of disease meet above criteria for bulky disease. 4.3 Breast-feeding Nursing mothers are excluded from this study. There is an unknown but potential risk for adverse events in nursing infants secondary to treatment of the mother with Lutathera. 4.4 Concurrent Illness Patients with a history of any other malignancy, except patients with a secondary brain tumor if the patient's prior malignancy has been in remission for at least 5 years from the end of treatment. Patients with any clinically significant unrelated systemic illness (serious infections or significant cardiac, pulmonary, hepatic or other organ dysfunction), that in the opinion of the investigator would compromise the patient's ability to tolerate protocol therapy, put them at additional risk for toxicity or would interfere with the study procedures or results. Patients with type I diabetes. 4.5 Concomitant Medications Patients who are receiving any other anti-cancer or investigational drug therapy are ineligible. Prior or current treatment with 177Lu-DOTATATE/TOC or 90Y-DOTATATE/TOC. 4.6 Prisoners will be excluded from this study. 4.7 Inability to participate: Patients who in the opinion of the investigator are unwilling or unable to return for required follow-up visits, obtain follow-up studies required to assess toxicity to therapy, or adhere to drug administration plan, other study procedures, and study restrictions. Inclusion of Women and Minorities Both males and females of all races and ethnic groups are eligible for this study. Criteria to Start Treatment Subjects must start therapy within seven (7) days of enrollment. Laboratory values must be no older than 7 days prior to the start of therapy. If a test that is repeated post enrollment and prior to the start of therapy is outside the limits for eligibility, it must be rechecked within 48 hours prior to the start of therapy. If rechecks are still outside the limits for eligibility, the patient may not receive protocol therapy and will be considered off study.
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
Leonie Mikael
Phone
16147223284
Email
leonie.mikael@nationwidechildrens.org
First Name & Middle Initial & Last Name or Official Title & Degree
Dorothy Crabtree
Phone
16147228693
Email
Dorothy.Crabtree@nationwidechildrens.org
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Margot Lazow
Organizational Affiliation
Nationwide Children's Hospital
Official's Role
Principal Investigator
Facility Information:
Facility Name
Children's Hospital Colorado
City
Aurora
State/Province
Colorado
ZIP/Postal Code
80045
Country
United States
Individual Site Status
Not yet recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Kathleen Dorris, MD
Phone
720-777-8314
Email
kathleen.dorris@childrenscolorado.org
Facility Name
Ann & Robert H. Lurie Children's Hospital of Chicago
City
Chicago
State/Province
Illinois
ZIP/Postal Code
60611
Country
United States
Individual Site Status
Not yet recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Ashley Plant, MD
Phone
312-227-4090
Email
Aplant@luriechildrens.org
Facility Name
Dana-Farber Cancer Institute
City
Boston
State/Province
Massachusetts
ZIP/Postal Code
02215
Country
United States
Individual Site Status
Not yet recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Susan Chi, MD
Phone
617-632-4386
Email
Susan_chi@dfci.harvard.edu
Facility Name
Duke University Health System
City
Durham
State/Province
North Carolina
ZIP/Postal Code
27708
Country
United States
Individual Site Status
Not yet recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
David H Ashley
Phone
919-681-3824
Email
david.ashley@duke.edu
Facility Name
Cincinnati Children's Hospital Medical Center
City
Cincinnati
State/Province
Ohio
ZIP/Postal Code
45229
Country
United States
Individual Site Status
Not yet recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Peter de Blank, MD
Phone
513-517-2068
Email
Peter.deBlank@cchmc.org
Facility Name
Nationwide Children's Hospital
City
Columbus
State/Province
Ohio
ZIP/Postal Code
43235
Country
United States
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Margot Lazow, MD
Phone
614-722-3711
Email
margot.lazow@nationwidechildrens.org
Facility Name
Children's Hospital of Philadelphia
City
Philadelphia
State/Province
Pennsylvania
ZIP/Postal Code
19104
Country
United States
Individual Site Status
Not yet recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Michael J Fisher
Phone
215-590-5188
Email
fisherm@email.chop.edu
Facility Name
Texas Children's Hospital
City
Houston
State/Province
Texas
ZIP/Postal Code
77030
Country
United States
Individual Site Status
Not yet recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Patricia Baxter, MD
Phone
832-824-4681
Email
pabaxter@txch.org
Facility Name
Seattle Children's Hospital
City
Seattle
State/Province
Washington
ZIP/Postal Code
98105
Country
United States
Individual Site Status
Not yet recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Sarah Leary, MD
Phone
206-987-2106
Email
sarah.leary@seattlechildrens.org

12. IPD Sharing Statement

Plan to Share IPD
No
Citations:
PubMed Identifier
24183675
Citation
Reubi JC, Schonbrunn A. Illuminating somatostatin analog action at neuroendocrine tumor receptors. Trends Pharmacol Sci. 2013 Dec;34(12):676-88. doi: 10.1016/j.tips.2013.10.001. Epub 2013 Oct 31.
Results Reference
background
PubMed Identifier
23872332
Citation
Theodoropoulou M, Stalla GK. Somatostatin receptors: from signaling to clinical practice. Front Neuroendocrinol. 2013 Aug;34(3):228-52. doi: 10.1016/j.yfrne.2013.07.005. Epub 2013 Jul 18.
Results Reference
background
PubMed Identifier
30152518
Citation
Lehman JM, Hoeksema MD, Staub J, Qian J, Harris B, Callison JC, Miao J, Shi C, Eisenberg R, Chen H, Chen SC, Massion PP. Somatostatin receptor 2 signaling promotes growth and tumor survival in small-cell lung cancer. Int J Cancer. 2019 Mar 1;144(5):1104-1114. doi: 10.1002/ijc.31771. Epub 2018 Oct 9.
Results Reference
background
PubMed Identifier
10774879
Citation
Reubi JC, Schar JC, Waser B, Wenger S, Heppeler A, Schmitt JS, Macke HR. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000 Mar;27(3):273-82. doi: 10.1007/s002590050034.
Results Reference
background
PubMed Identifier
21243098
Citation
Vaidyanathan G, Affleck DJ, Zhao XG, Keir ST, Zalutsky MR. [Lu]-DOTA-Tyr-octreotate: A Potential Targeted Radiotherapeutic for the Treatment of Medulloblastoma. Curr Radiopharm. 2010;3(1):29-36. doi: 10.2174/1874471011003010029.
Results Reference
background
PubMed Identifier
19579083
Citation
Hauser P, Hanzely Z, Mathe D, Szabo E, Barna G, Sebestyen A, Jeney A, Schuler D, Fekete G, Garami M. Effect of somatostatin analogue octreotide in medulloblastoma in xenograft and cell culture study. Pediatr Hematol Oncol. 2009 Jul-Aug;26(5):363-74. doi: 10.1080/08880010902973293.
Results Reference
background
PubMed Identifier
7954420
Citation
Pinski J, Schally AV, Halmos G, Szepeshazi K, Groot K. Somatostatin analogues and bombesin/gastrin-releasing peptide antagonist RC-3095 inhibit the growth of human glioblastomas in vitro and in vivo. Cancer Res. 1994 Nov 15;54(22):5895-901.
Results Reference
background
PubMed Identifier
17873898
Citation
Volante M, Brizzi MP, Faggiano A, La Rosa S, Rapa I, Ferrero A, Mansueto G, Righi L, Garancini S, Capella C, De Rosa G, Dogliotti L, Colao A, Papotti M. Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol. 2007 Nov;20(11):1172-82. doi: 10.1038/modpathol.3800954. Epub 2007 Sep 14.
Results Reference
background
PubMed Identifier
10231868
Citation
Fruhwald MC, O'Dorisio MS, Pietsch T, Reubi JC. High expression of somatostatin receptor subtype 2 (sst2) in medulloblastoma: implications for diagnosis and therapy. Pediatr Res. 1999 May;45(5 Pt 1):697-708. doi: 10.1203/00006450-199905010-00016.
Results Reference
background
PubMed Identifier
23677175
Citation
Remke M, Hering E, Gerber NU, Kool M, Sturm D, Rickert CH, Gerss J, Schulz S, Hielscher T, Hasselblatt M, Jeibmann A, Hans V, Ramaswamy V, Taylor MD, Pietsch T, Rutkowski S, Korshunov A, Monoranu CM, Fruhwald MC. Somatostatin receptor subtype 2 (sst(2)) is a potential prognostic marker and a therapeutic target in medulloblastoma. Childs Nerv Syst. 2013 Aug;29(8):1253-62. doi: 10.1007/s00381-013-2142-4. Epub 2013 May 16.
Results Reference
background
PubMed Identifier
11386415
Citation
Guyotat J, Champier J, Pierre GS, Jouvet A, Bret P, Brisson C, Belin MF, Signorelli F, Montange MF. Differential expression of somatostatin receptors in medulloblastoma. J Neurooncol. 2001 Jan;51(2):93-103. doi: 10.1023/a:1010624702443.
Results Reference
background
PubMed Identifier
23455179
Citation
Johnson MD, O'Connell MJ, Silberstein H, Korones D. Differential expression of somatostatin receptors, P44/42 MAPK, and mTOR activation in medulloblastomas and primitive neuroectodermal tumors. Appl Immunohistochem Mol Morphol. 2013 Dec;21(6):532-8. doi: 10.1097/PAI.0b013e3182813724.
Results Reference
background
PubMed Identifier
9540055
Citation
Muller HL, Fruhwald MC, Scheubeck M, Rendl J, Warmuth-Metz M, Sorensen N, Kuhl J, Reubi JC. A possible role for somatostatin receptor scintigraphy in the diagnosis and follow-up of children with medulloblastoma. J Neurooncol. 1998 May;38(1):27-40. doi: 10.1023/a:1005961302340.
Results Reference
background
PubMed Identifier
15131035
Citation
Fruhwald MC, Rickert CH, O'Dorisio MS, Madsen M, Warmuth-Metz M, Khanna G, Paulus W, Kuhl J, Jurgens H, Schneider P, Muller HL. Somatostatin receptor subtype 2 is expressed by supratentorial primitive neuroectodermal tumors of childhood and can be targeted for somatostatin receptor imaging. Clin Cancer Res. 2004 May 1;10(9):2997-3006. doi: 10.1158/1078-0432.ccr-03-0083.
Results Reference
background
PubMed Identifier
7595483
Citation
Feindt J, Becker I, Blomer U, Hugo HH, Mehdorn HM, Krisch B, Mentlein R. Expression of somatostatin receptor subtypes in cultured astrocytes and gliomas. J Neurochem. 1995 Nov;65(5):1997-2005. doi: 10.1046/j.1471-4159.1995.65051997.x.
Results Reference
background
PubMed Identifier
9889335
Citation
Held-Feindt J, Krisch B, Mentlein R. Molecular analysis of the somatostatin receptor subtype 2 in human glioma cells. Brain Res Mol Brain Res. 1999 Jan 22;64(1):101-7. doi: 10.1016/s0169-328x(98)00312-x.
Results Reference
background
PubMed Identifier
28467778
Citation
Kiviniemi A, Gardberg M, Kivinen K, Posti JP, Vuorinen V, Sipila J, Rahi M, Sankinen M, Minn H. Somatostatin receptor 2A in gliomas: Association with oligodendrogliomas and favourable outcome. Oncotarget. 2017 Jul 25;8(30):49123-49132. doi: 10.18632/oncotarget.17097.
Results Reference
background
PubMed Identifier
30193580
Citation
Appay R, Tabouret E, Touat M, Carpentier C, Colin C, Ducray F, Idbaih A, Mokhtari K, Uro-Coste E, Dehais C, Figarella-Branger D; POLA network. Somatostatin receptor 2A protein expression characterizes anaplastic oligodendrogliomas with favorable outcome. Acta Neuropathol Commun. 2018 Sep 7;6(1):89. doi: 10.1186/s40478-018-0594-1.
Results Reference
background
PubMed Identifier
12047721
Citation
Cervera P, Videau C, Viollet C, Petrucci C, Lacombe J, Winsky-Sommerer R, Csaba Z, Helboe L, Daumas-Duport C, Reubi JC, Epelbaum J. Comparison of somatostatin receptor expression in human gliomas and medulloblastomas. J Neuroendocrinol. 2002 Jun;14(6):458-71. doi: 10.1046/j.1365-2826.2002.00801.x.
Results Reference
background
PubMed Identifier
25807228
Citation
Lapa C, Linsenmann T, Luckerath K, Samnick S, Herrmann K, Stoffer C, Ernestus RI, Buck AK, Lohr M, Monoranu CM. Tumor-associated macrophages in glioblastoma multiforme-a suitable target for somatostatin receptor-based imaging and therapy? PLoS One. 2015 Mar 25;10(3):e0122269. doi: 10.1371/journal.pone.0122269. eCollection 2015.
Results Reference
background
PubMed Identifier
10815909
Citation
Schulz S, Pauli SU, Schulz S, Handel M, Dietzmann K, Firsching R, Hollt V. Immunohistochemical determination of five somatostatin receptors in meningioma reveals frequent overexpression of somatostatin receptor subtype sst2A. Clin Cancer Res. 2000 May;6(5):1865-74.
Results Reference
background
PubMed Identifier
26018682
Citation
Savelli G, Muni A. Somatostatin Receptors in an Anaplastic Oligodendroglioma Relapse Evidenced By 68Ga DOTANOC PET/CT. Clin Nucl Med. 2015 Jul;40(7):e363-5. doi: 10.1097/RLU.0000000000000816.
Results Reference
background
PubMed Identifier
25500828
Citation
Collamati F, Pepe A, Bellini F, Bocci V, Chiodi G, Cremonesi M, De Lucia E, Ferrari ME, Frallicciardi PM, Grana CM, Marafini M, Mattei I, Morganti S, Patera V, Piersanti L, Recchia L, Russomando A, Sarti A, Sciubba A, Senzacqua M, Solfaroli Camillocci E, Voena C, Pinci D, Faccini R. Toward radioguided surgery with beta- decays: uptake of a somatostatin analogue, DOTATOC, in meningioma and high-grade glioma. J Nucl Med. 2015 Jan;56(1):3-8. doi: 10.2967/jnumed.114.145995. Epub 2014 Dec 11.
Results Reference
background
PubMed Identifier
17387742
Citation
Khanna G, O'Dorisio MS, Menda Y, Glasier C, Deyoung B, Smith BJ, Graham M, Juweid M. Somatostatin receptor scintigraphy in surveillance of pediatric brain malignancies. Pediatr Blood Cancer. 2008 Mar;50(3):561-6. doi: 10.1002/pbc.21194.
Results Reference
background
PubMed Identifier
25593116
Citation
Marincek N, Radojewski P, Dumont RA, Brunner P, Muller-Brand J, Maecke HR, Briel M, Walter MA. Somatostatin receptor-targeted radiopeptide therapy with 90Y-DOTATOC and 177Lu-DOTATOC in progressive meningioma: long-term results of a phase II clinical trial. J Nucl Med. 2015 Feb;56(2):171-6. doi: 10.2967/jnumed.114.147256. Epub 2015 Jan 15.
Results Reference
background
PubMed Identifier
11340564
Citation
de Jong M, Breeman WA, Bernard BF, Bakker WH, Schaar M, van Gameren A, Bugaj JE, Erion J, Schmidt M, Srinivasan A, Krenning EP. [177Lu-DOTA(0),Tyr3] octreotate for somatostatin receptor-targeted radionuclide therapy. Int J Cancer. 2001 Jun 1;92(5):628-33. doi: 10.1002/1097-0215(20010601)92:53.0.co;2-l.
Results Reference
background
PubMed Identifier
26918214
Citation
Galvis L, Gonzalez D, Bonilla C. Relapsed High-Risk Medulloblastoma: Stable Disease after Two Years of Treatment with Somatostatin Analog - Case Report. Cureus. 2016 Jan 4;8(1):e446. doi: 10.7759/cureus.446.
Results Reference
background
PubMed Identifier
17934891
Citation
Glas M, Hennemann B, Hirschmann B, Marienhagen J, Schmidt-Wolf I, Herrlinger U, Bogdahn U, Hau P. Complete response after treatment with a somatostatin analogue in an adult patient with recurrent medulloblastoma. Acta Oncol. 2008;47(3):479-80. doi: 10.1080/02841860701678795. Epub 2007 Oct 12. No abstract available.
Results Reference
background
PubMed Identifier
17981589
Citation
Florio T. Molecular mechanisms of the antiproliferative activity of somatostatin receptors (SSTRs) in neuroendocrine tumors. Front Biosci. 2008 Jan 1;13:822-40. doi: 10.2741/2722.
Results Reference
background
PubMed Identifier
20847174
Citation
Menda Y, O'Dorisio MS, Kao S, Khanna G, Michael S, Connolly M, Babich J, O'Dorisio T, Bushnell D, Madsen M. Phase I trial of 90Y-DOTATOC therapy in children and young adults with refractory solid tumors that express somatostatin receptors. J Nucl Med. 2010 Oct;51(10):1524-31. doi: 10.2967/jnumed.110.075226. Epub 2010 Sep 16.
Results Reference
background
PubMed Identifier
9610716
Citation
Dutour A, Kumar U, Panetta R, Ouafik L, Fina F, Sasi R, Patel YC. Expression of somatostatin receptor subtypes in human brain tumors. Int J Cancer. 1998 May 29;76(5):620-7. doi: 10.1002/(sici)1097-0215(19980529)76:53.0.co;2-s.
Results Reference
background
PubMed Identifier
29333565
Citation
Hosono M, Ikebuchi H, Nakamura Y, Nakamura N, Yamada T, Yanagida S, Kitaoka A, Kojima K, Sugano H, Kinuya S, Inoue T, Hatazawa J. Manual on the proper use of lutetium-177-labeled somatostatin analogue (Lu-177-DOTA-TATE) injectable in radionuclide therapy (2nd ed.). Ann Nucl Med. 2018 Apr;32(3):217-235. doi: 10.1007/s12149-018-1230-7. Epub 2018 Jan 15.
Results Reference
background
PubMed Identifier
28263217
Citation
Hamiditabar M, Ali M, Roys J, Wolin EM, O'Dorisio TM, Ranganathan D, Tworowska I, Strosberg JR, Delpassand ES. Peptide Receptor Radionuclide Therapy With 177Lu-Octreotate in Patients With Somatostatin Receptor Expressing Neuroendocrine Tumors: Six Years' Assessment. Clin Nucl Med. 2017 Jun;42(6):436-443. doi: 10.1097/RLU.0000000000001629.
Results Reference
background
PubMed Identifier
8566856
Citation
John M, Meyerhof W, Richter D, Waser B, Schaer JC, Scherubl H, Boese-Landgraf J, Neuhaus P, Ziske C, Molling K, Riecken EO, Reubi JC, Wiedenmann B. Positive somatostatin receptor scintigraphy correlates with the presence of somatostatin receptor subtype 2. Gut. 1996 Jan;38(1):33-9. doi: 10.1136/gut.38.1.33.
Results Reference
background
PubMed Identifier
25808161
Citation
Diakatou E, Alexandraki KI, Tsolakis AV, Kontogeorgos G, Chatzellis E, Leonti A, Kaltsas GA. Somatostatin and dopamine receptor expression in neuroendocrine neoplasms: correlation of immunohistochemical findings with somatostatin receptor scintigraphy visual scores. Clin Endocrinol (Oxf). 2015 Sep;83(3):420-8. doi: 10.1111/cen.12775. Epub 2015 Apr 24.
Results Reference
background
PubMed Identifier
18807033
Citation
Miederer M, Seidl S, Buck A, Scheidhauer K, Wester HJ, Schwaiger M, Perren A. Correlation of immunohistopathological expression of somatostatin receptor 2 with standardised uptake values in 68Ga-DOTATOC PET/CT. Eur J Nucl Med Mol Imaging. 2009 Jan;36(1):48-52. doi: 10.1007/s00259-008-0944-5. Epub 2008 Sep 20.
Results Reference
background
PubMed Identifier
22251942
Citation
Korner M, Waser B, Schonbrunn A, Perren A, Reubi JC. Somatostatin receptor subtype 2A immunohistochemistry using a new monoclonal antibody selects tumors suitable for in vivo somatostatin receptor targeting. Am J Surg Pathol. 2012 Feb;36(2):242-52. doi: 10.1097/PAS.0b013e31823d07f3.
Results Reference
background
PubMed Identifier
27622342
Citation
Qian ZR, Li T, Ter-Minassian M, Yang J, Chan JA, Brais LK, Masugi Y, Thiaglingam A, Brooks N, Nishihara R, Bonnemarie M, Masuda A, Inamura K, Kim SA, Mima K, Sukawa Y, Dou R, Lin X, Christiani DC, Schmidlin F, Fuchs CS, Mahmood U, Ogino S, Kulke MH. Association Between Somatostatin Receptor Expression and Clinical Outcomes in Neuroendocrine Tumors. Pancreas. 2016 Nov;45(10):1386-1393. doi: 10.1097/MPA.0000000000000700.
Results Reference
background
PubMed Identifier
10443702
Citation
Reubi JC, Laissue JA, Waser B, Steffen DL, Hipkin RW, Schonbrunn A. Immunohistochemical detection of somatostatin sst2a receptors in the lymphatic, smooth muscular, and peripheral nervous systems of the human gastrointestinal tract: facts and artifacts. J Clin Endocrinol Metab. 1999 Aug;84(8):2942-50. doi: 10.1210/jcem.84.8.5878.
Results Reference
background
PubMed Identifier
26447992
Citation
Mehta S, de Reuver PR, Gill P, Andrici J, D'Urso L, Mittal A, Pavlakis N, Clarke S, Samra JS, Gill AJ. Somatostatin Receptor SSTR-2a Expression Is a Stronger Predictor for Survival Than Ki-67 in Pancreatic Neuroendocrine Tumors. Medicine (Baltimore). 2015 Oct;94(40):e1281. doi: 10.1097/MD.0000000000001281.
Results Reference
background
PubMed Identifier
24022344
Citation
Okuwaki K, Kida M, Mikami T, Yamauchi H, Imaizumi H, Miyazawa S, Iwai T, Takezawa M, Saegusa M, Watanabe M, Koizumi W. Clinicopathologic characteristics of pancreatic neuroendocrine tumors and relation of somatostatin receptor type 2A to outcomes. Cancer. 2013 Dec 1;119(23):4094-102. doi: 10.1002/cncr.28341. Epub 2013 Sep 10. Erratum In: Cancer. 2014 Apr 15;120(8):1283-5.
Results Reference
background
PubMed Identifier
18974627
Citation
Corleto VD, Falconi M, Panzuto F, Milione M, De Luca O, Perri P, Cannizzaro R, Bordi C, Pederzoli P, Scarpa A, Delle Fave G. Somatostatin receptor subtypes 2 and 5 are associated with better survival in well-differentiated endocrine carcinomas. Neuroendocrinology. 2009;89(2):223-30. doi: 10.1159/000167796. Epub 2008 Oct 31.
Results Reference
background
PubMed Identifier
7801887
Citation
Moertel CL, Reubi JC, Scheithauer BS, Schaid DJ, Kvols LK. Expression of somatostatin receptors in childhood neuroblastoma. Am J Clin Pathol. 1994 Dec;102(6):752-6. doi: 10.1093/ajcp/102.6.752.
Results Reference
background
PubMed Identifier
20720050
Citation
Haug AR, Auernhammer CJ, Wangler B, Schmidt GP, Uebleis C, Goke B, Cumming P, Bartenstein P, Tiling R, Hacker M. 68Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J Nucl Med. 2010 Sep;51(9):1349-56. doi: 10.2967/jnumed.110.075002. Epub 2010 Aug 18.
Results Reference
background
PubMed Identifier
11965603
Citation
Kwekkeboom DJ, Krenning EP. Somatostatin receptor imaging. Semin Nucl Med. 2002 Apr;32(2):84-91. doi: 10.1053/snuc.2002.31022.
Results Reference
background
PubMed Identifier
15837990
Citation
Kwekkeboom DJ, Teunissen JJ, Bakker WH, Kooij PP, de Herder WW, Feelders RA, van Eijck CH, Esser JP, Kam BL, Krenning EP. Radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol. 2005 Apr 20;23(12):2754-62. doi: 10.1200/JCO.2005.08.066.
Results Reference
background
PubMed Identifier
25763733
Citation
Hofman MS, Lau WF, Hicks RJ. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics. 2015 Mar-Apr;35(2):500-16. doi: 10.1148/rg.352140164.
Results Reference
background

Learn more about this trial

Lutathera for Treatment of Recurrent or Progressive High-Grade CNS Tumors or Meningiomas Expressing SST2A

We'll reach out to this number within 24 hrs