search
Back to results

Brain Changes in Pediatric OSA

Primary Purpose

Pediatric Obstructive Sleep Apnea

Status
Recruiting
Phase
Not Applicable
Locations
United States
Study Type
Interventional
Intervention
Adenotonsillectomy
Sponsored by
University of California, Los Angeles
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional basic science trial for Pediatric Obstructive Sleep Apnea

Eligibility Criteria

7 Years - 12 Years (Child)All SexesAccepts Healthy Volunteers

Inclusion Criteria:

OSA

  • Pediatric OSA subjects will be in the age range 7-12 years (upper and lower age limit will be chosen to avoid developmental-related brain changes and potential requirement of anesthesia for brain MRI)
  • Have a diagnosis of at least moderate OSA (AHI>5 events/hour) via overnight polysomnography at a sleep laboratory
  • Without obesity (≥95th percentile BMI for age and sex) to avoid perioperative issues
  • No treatment for the breathing condition
  • Undergoing for adenotonsillectomy.

Control subjects

  • Healthy children
  • Age-range from 7-12 years (within ±3 months)
  • Sex- and BMI-matched (±2 kg/m2) to pediatric OSA
  • No medications for brain disorders
  • Without any diagnosed neurological condition

Exclusion Criteria:

  • Previous history of diagnosed psychiatric diseases (depression and other brain disorders that may introduce brain injury)
  • Cystic fibrosis, concussion, and presence of space-occupying brain lesions
  • Metallic or electronic implants and other MRI-specific exclusion criteria

Sites / Locations

  • UCLARecruiting

Arms of the Study

Arm 1

Arm Type

Experimental

Arm Label

35 Pediatric Obstructive Sleep Apnea

Arm Description

The investigators will also determine whether brain tissue changes, reduced CBF, and altered neural responses to cognitive challenge reverse, and cognition and mood signs improve after standard surgical procedure "adenotonsillectomy" for breathing condition at 6 months in pediatric OSA.

Outcomes

Primary Outcome Measures

Brain tissue changes between baseline and after adenotonsillectomy.
The investigators will examine whether brain tissue changes reverse after adenotonsillectomy in pediatric obstructive sleep apnea subjects. The investigators will use diffusion tensor imaging based mean diffusivity and diffusion kurtosis imaging based mean kurtosis measures to examine brain tissue changes; both procedures examine brain tissue integrity with mean diffusivity showing reduced and mean kurtosis indicating increased values in acute tissue changes, and with mean diffusivity showing increased and mean kurtosis showing reduced values in chronic tissue changes.
Regional brain cerebral blood flow changes between baseline and after adenotonsillectomy.
Using arterial spin labeling magnetic resonance imaging, the investigators will assess if regional cerebral blood flow improves after standard obstructive sleep apnea surgery in pediatric subjects. The cerebral blood flow values reduce with hypo-perfusion and increase with hyper-perfusion.
Neural response changes before and after adenotonsillectomy.
Using functional magnetic resonance imaging, the investigators will examine whether neural responses in brain cognitive control sites to arithmetic cognitive challenge will improve after adenotonsillectomy compared to baseline in pediatric obstructive sleep apnea subjects.
Cognitive symptoms examination after adenotonsillectomy surgery.
The investigators will examine cognitive symptom changes after adenotonsillectomy in pediatric obstructive sleep apnea subjects. The investigators will use the Differential Ability Scale II for cognition evaluation. The Differential Ability Scale II scores range from 30-170, with reduced values indicating impaired cognition (General Conceptual Ability score <90, abnormal; General Conceptual Ability score > 90-170, normal).
Cognition assessment after adenotonsillectomy in pediatric obstructive sleep apnea patients.
The investigators will assess cognition changes after adenotonsillectomy in pediatric obstructive sleep apnea subjects. The investigators will use the NEuroPSYchological Assessment II for cognition examination. The NEuroPSYchological Assessment II scores will be lower with impaired cognition (Scaled score <8, abnormal; Scaled score 8-19, normal).
Mood changes after adenotonsillectomy surgery.
The investigators will examine mood changes after adenotonsillectomy in pediatric obstructive sleep apnea subjects using the Child Behavior Checklist. The Child Behavior Checklist scores will be higher with mood symptoms in pediatric obstructive sleep apnea compared to control children (t-scores, 65-69 borderline; >70 clinical).

Secondary Outcome Measures

Full Information

First Posted
April 11, 2022
Last Updated
July 20, 2023
Sponsor
University of California, Los Angeles
search

1. Study Identification

Unique Protocol Identification Number
NCT05368077
Brief Title
Brain Changes in Pediatric OSA
Official Title
Brain Changes in Pediatric Obstructive Sleep Apnea
Study Type
Interventional

2. Study Status

Record Verification Date
July 2023
Overall Recruitment Status
Recruiting
Study Start Date
May 14, 2022 (Actual)
Primary Completion Date
April 30, 2024 (Anticipated)
Study Completion Date
July 31, 2024 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Principal Investigator
Name of the Sponsor
University of California, Los Angeles

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No

5. Study Description

Brief Summary
Obstructive sleep apnea (OSA) is highly prevalent in children and is often caused by overgrowth of the child's adenoids and/or tonsils. Consequently, adenotonsillectomy (removal of the tonsils and adenoids) is the most common treatment of OSA in children, although just the tonsils or adenoids may be removed depending on the case. As well, OSA in children is often associated with cognitive dysfunction and mood issues, suggesting brain changes due to the condition. However, the link between brain changes, cognitive and moods issues, and OSA in children has not been thoroughly explored. Therefore, this study aims to examine brain changes, cognition and mood in pediatric OSA subjects compared to controls as well as before and after removal of the adenoids and/or tonsils. This study hopes to enroll 70 subjects, ages 7-12 years, 35 healthy controls and 35 subjects diagnosed with OSA and scheduled for an adenoidectomy and/or tonsillectomy. Control subjects will schedule one visit to UCLA and OSA subjects will schedule two. Upon the first visit, all subjects will undergo cognitive, mood and sleep questionnaires and MRI scanning. That will be the duration of the controls' participation in the study; however, OSA subjects will return 6 months later (after their adenoidectomy and/ or tonsillectomy) to repeat the same procedures. Sleep quality, mood, cognition and brain images will be compared between OSA and controls and between OSA subjects before surgery and after surgery.
Detailed Description
Pediatric obstructive sleep apnea (OSA) is a common and progressive syndrome accompanied by severe cognition, mood, and daytime behavioral issues, as well as poor school performance, presumably stemming from compromised neural tissue, induced by intermittent hypoxia and perfusion changes. However, it is unclear whether the brain tissue injury is in acute or chronic condition, and whether myelin is preferentially affected than axons, an essential step to understand, since interventions for neural repair/recovery differ for acute vs chronic and myelin vs axonal injury. Also, it is unclear whether accompanying brain changes in pediatric OSA have functional consequences, resulting to cognitive or mood deficits. In addition, intermittent hypoxia triggers a cascade of injurious processes affecting endothelial cells, but unclear whether regional cerebral blood flow (CBF) is reduced in pediatric OSA. Treatment methods for pediatric OSA include tonsillectomy and/or adenoidectomy, and it is unclear whether brain tissue changes, regional CBF, and neural responses to cognitive challenge improve post-treatment. Using diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI)-based procedures, acute and chronic tissue changes and axonal status and myelin integrity can be assessed. Regional brain CBF can be assessed by validated arterial spin labeling (ASL) imaging, and regional neural activity to cognitive challenge can be examined with blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (MRI). Thus, using 35 treatment-naïve, pediatric OSA and 35 control children, the specific aims are to; determine the nature and types of brain tissue injury, using DTI and DKI measures, in untreated pediatric OSA over healthy controls; identify regional brain CBF, using ASL imaging, and neural responses to cognitive challenge, using BOLD functional MRI in pediatric OSA over healthy children; assess cognitive (by the differential ability scale II and NEPSY II) and emotion functions (by the child behavior checklist) in pediatric OSA compared to control children, and examine relationships between brain injury and cognitive and emotion dysfunctions in pediatric OSA; and examine whether brain tissue changes, reduced CBF, and altered neural responses to cognitive challenge reverse, and cognition and mood signs improve after adenotonsillectomy at 6 months in pediatric OSA. In summary, the nature and types of brain injury, regional CBF changes, and neural responses to cognitive challenge, and whether brain tissue changes, altered CBF, and diminished neural responses, as well as mood and cognitive functions recover after adenotonsillectomy in pediatric OSA will be examined. Evaluation of pathological characteristics is essential to assess the mechanisms of damage, and to suggest intervention strategies before and after surgery. The findings will also help guide potential treatments to rescue/restore brain tissue (e.g., nonsteroidal anti-inflammatory drugs) and improve CBF that could be implemented to benefit cognitive and mood health, and improve academic performance in pediatric OSA.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Pediatric Obstructive Sleep Apnea

7. Study Design

Primary Purpose
Basic Science
Study Phase
Not Applicable
Interventional Study Model
Single Group Assignment
Masking
None (Open Label)
Allocation
N/A
Enrollment
70 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
35 Pediatric Obstructive Sleep Apnea
Arm Type
Experimental
Arm Description
The investigators will also determine whether brain tissue changes, reduced CBF, and altered neural responses to cognitive challenge reverse, and cognition and mood signs improve after standard surgical procedure "adenotonsillectomy" for breathing condition at 6 months in pediatric OSA.
Intervention Type
Procedure
Intervention Name(s)
Adenotonsillectomy
Intervention Description
Adenotonsillectomy is a standard surgical procedure for pediatric OSA treatment, which involves removal of hypertrophied tonsils and adenoids.
Primary Outcome Measure Information:
Title
Brain tissue changes between baseline and after adenotonsillectomy.
Description
The investigators will examine whether brain tissue changes reverse after adenotonsillectomy in pediatric obstructive sleep apnea subjects. The investigators will use diffusion tensor imaging based mean diffusivity and diffusion kurtosis imaging based mean kurtosis measures to examine brain tissue changes; both procedures examine brain tissue integrity with mean diffusivity showing reduced and mean kurtosis indicating increased values in acute tissue changes, and with mean diffusivity showing increased and mean kurtosis showing reduced values in chronic tissue changes.
Time Frame
6 months
Title
Regional brain cerebral blood flow changes between baseline and after adenotonsillectomy.
Description
Using arterial spin labeling magnetic resonance imaging, the investigators will assess if regional cerebral blood flow improves after standard obstructive sleep apnea surgery in pediatric subjects. The cerebral blood flow values reduce with hypo-perfusion and increase with hyper-perfusion.
Time Frame
6 months
Title
Neural response changes before and after adenotonsillectomy.
Description
Using functional magnetic resonance imaging, the investigators will examine whether neural responses in brain cognitive control sites to arithmetic cognitive challenge will improve after adenotonsillectomy compared to baseline in pediatric obstructive sleep apnea subjects.
Time Frame
6 months
Title
Cognitive symptoms examination after adenotonsillectomy surgery.
Description
The investigators will examine cognitive symptom changes after adenotonsillectomy in pediatric obstructive sleep apnea subjects. The investigators will use the Differential Ability Scale II for cognition evaluation. The Differential Ability Scale II scores range from 30-170, with reduced values indicating impaired cognition (General Conceptual Ability score <90, abnormal; General Conceptual Ability score > 90-170, normal).
Time Frame
6 months
Title
Cognition assessment after adenotonsillectomy in pediatric obstructive sleep apnea patients.
Description
The investigators will assess cognition changes after adenotonsillectomy in pediatric obstructive sleep apnea subjects. The investigators will use the NEuroPSYchological Assessment II for cognition examination. The NEuroPSYchological Assessment II scores will be lower with impaired cognition (Scaled score <8, abnormal; Scaled score 8-19, normal).
Time Frame
6 months
Title
Mood changes after adenotonsillectomy surgery.
Description
The investigators will examine mood changes after adenotonsillectomy in pediatric obstructive sleep apnea subjects using the Child Behavior Checklist. The Child Behavior Checklist scores will be higher with mood symptoms in pediatric obstructive sleep apnea compared to control children (t-scores, 65-69 borderline; >70 clinical).
Time Frame
6 months

10. Eligibility

Sex
All
Minimum Age & Unit of Time
7 Years
Maximum Age & Unit of Time
12 Years
Accepts Healthy Volunteers
Accepts Healthy Volunteers
Eligibility Criteria
Inclusion Criteria: OSA Pediatric OSA subjects will be in the age range 7-12 years (upper and lower age limit will be chosen to avoid developmental-related brain changes and potential requirement of anesthesia for brain MRI) Have a diagnosis of at least moderate OSA (AHI>5 events/hour) via overnight polysomnography at a sleep laboratory Without obesity (≥95th percentile BMI for age and sex) to avoid perioperative issues No treatment for the breathing condition Undergoing for adenotonsillectomy. Control subjects Healthy children Age-range from 7-12 years (within ±3 months) Sex- and BMI-matched (±2 kg/m2) to pediatric OSA No medications for brain disorders Without any diagnosed neurological condition Exclusion Criteria: Previous history of diagnosed psychiatric diseases (depression and other brain disorders that may introduce brain injury) Cystic fibrosis, concussion, and presence of space-occupying brain lesions Metallic or electronic implants and other MRI-specific exclusion criteria
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
Rajesh Kumar, PhD
Phone
310-206-1679
Email
rkumar@mednet.ucla
First Name & Middle Initial & Last Name or Official Title & Degree
Bhaswati Roy, PhD
Phone
310-825-1808
Email
broy@mednet.ucla.edu
Facility Information:
Facility Name
UCLA
City
Los Angeles
State/Province
California
ZIP/Postal Code
90095
Country
United States
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Rajesh Kumar, PHD
Phone
310-825-1808
Email
rkumar@mednet.ucla.edu
First Name & Middle Initial & Last Name & Degree
Megan Carrier, MSHA
Phone
303-801-8961
Email
mcarrier@mednet.ucla.edu
First Name & Middle Initial & Last Name & Degree
Rajesh Kumar, PHD

12. IPD Sharing Statement

Plan to Share IPD
Yes
IPD Sharing Plan Description
Once the findings have been published, the MRI data (devoid of individual identifiers) will be placed on a read-only anonymous file transfer protocol (ftp) server, with access in the conventional fashion by email ID. Investigators, who request access to the data, will e-mail us with an academic e-mail address and provide a description of their proposed project/purpose. Access to the data will be given to requesting investigator, as long as project does not require personal identifiable information. Such storage represents a substantial commitment of capacity, since the data are expected to require several terabytes. The MRI data (both pre- and post-surgery at 6 months), cognition and mood scores, and OSA disease severity from the same population will be especially valuable to the field, as it is rare to have from patients with pediatric OSA.
IPD Sharing Time Frame
One year after study completion.
Citations:
PubMed Identifier
18055651
Citation
Barlow SE; Expert Committee. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007 Dec;120 Suppl 4:S164-92. doi: 10.1542/peds.2007-2329C.
Results Reference
background
PubMed Identifier
22043122
Citation
Redline S, Amin R, Beebe D, Chervin RD, Garetz SL, Giordani B, Marcus CL, Moore RH, Rosen CL, Arens R, Gozal D, Katz ES, Mitchell RB, Muzumdar H, Taylor HG, Thomas N, Ellenberg S. The Childhood Adenotonsillectomy Trial (CHAT): rationale, design, and challenges of a randomized controlled trial evaluating a standard surgical procedure in a pediatric population. Sleep. 2011 Nov 1;34(11):1509-17. doi: 10.5665/sleep.1388.
Results Reference
background
PubMed Identifier
10228121
Citation
Redline S, Tishler PV, Schluchter M, Aylor J, Clark K, Graham G. Risk factors for sleep-disordered breathing in children. Associations with obesity, race, and respiratory problems. Am J Respir Crit Care Med. 1999 May;159(5 Pt 1):1527-32. doi: 10.1164/ajrccm.159.5.9809079.
Results Reference
background
PubMed Identifier
12712055
Citation
Rosen CL, Larkin EK, Kirchner HL, Emancipator JL, Bivins SF, Surovec SA, Martin RJ, Redline S. Prevalence and risk factors for sleep-disordered breathing in 8- to 11-year-old children: association with race and prematurity. J Pediatr. 2003 Apr;142(4):383-9. doi: 10.1067/mpd.2003.28.
Results Reference
background
PubMed Identifier
22715089
Citation
Kumar R, Chavez AS, Macey PM, Woo MA, Yan-Go FL, Harper RM. Altered global and regional brain mean diffusivity in patients with obstructive sleep apnea. J Neurosci Res. 2012 Oct;90(10):2043-52. doi: 10.1002/jnr.23083. Epub 2012 Jun 20.
Results Reference
background
PubMed Identifier
24899761
Citation
Kumar R, Pham TT, Macey PM, Woo MA, Yan-Go FL, Harper RM. Abnormal myelin and axonal integrity in recently diagnosed patients with obstructive sleep apnea. Sleep. 2014 Apr 1;37(4):723-32. doi: 10.5665/sleep.3578.
Results Reference
background
PubMed Identifier
26285005
Citation
Tummala S, Palomares J, Kang DW, Park B, Woo MA, Harper RM, Kumar R. Global and Regional Brain Non-Gaussian Diffusion Changes in Newly Diagnosed Patients with Obstructive Sleep Apnea. Sleep. 2016 Jan 1;39(1):51-7. doi: 10.5665/sleep.5316.
Results Reference
background
PubMed Identifier
27801694
Citation
Tummala S, Roy B, Vig R, Park B, Kang DW, Woo MA, Aysola R, Harper RM, Kumar R. Non-Gaussian Diffusion Imaging Shows Brain Myelin and Axonal Changes in Obstructive Sleep Apnea. J Comput Assist Tomogr. 2017 Mar/Apr;41(2):181-189. doi: 10.1097/RCT.0000000000000537.
Results Reference
background
PubMed Identifier
21037021
Citation
Canessa N, Castronovo V, Cappa SF, Aloia MS, Marelli S, Falini A, Alemanno F, Ferini-Strambi L. Obstructive sleep apnea: brain structural changes and neurocognitive function before and after treatment. Am J Respir Crit Care Med. 2011 May 15;183(10):1419-26. doi: 10.1164/rccm.201005-0693OC. Epub 2010 Oct 29.
Results Reference
background
PubMed Identifier
25142557
Citation
Castronovo V, Scifo P, Castellano A, Aloia MS, Iadanza A, Marelli S, Cappa SF, Strambi LF, Falini A. White matter integrity in obstructive sleep apnea before and after treatment. Sleep. 2014 Sep 1;37(9):1465-75. doi: 10.5665/sleep.3994.
Results Reference
background
Citation
Ehlert, L., Roy, B., Sahib, A., Song, X., Singh, S., Townsley, M., Kang, D.W., Aysola, R., Wen, E., Woo, M.A., Harper, R.M. & Kumar, R. Diffusion tensor imaging shows brain tissue changes before and after positive airway pressure treatment in patients with obstructive sleep apnea. Society for Neuroscience Annual Meeting, Washington, DC, USA, 2017.
Results Reference
background
PubMed Identifier
30897457
Citation
Maresky HS, Shpirer I, Klar MM, Levitt M, Sasson E, Tal S. Continuous positive airway pressure alters brain microstructure and perfusion patterns in patients with obstructive sleep apnea. Sleep Med. 2019 May;57:61-69. doi: 10.1016/j.sleep.2018.12.027. Epub 2019 Jan 31.
Results Reference
background
PubMed Identifier
27322475
Citation
Rosenzweig I, Glasser M, Crum WR, Kempton MJ, Milosevic M, McMillan A, Leschziner GD, Kumari V, Goadsby P, Simonds AK, Williams SC, Morrell MJ. Changes in Neurocognitive Architecture in Patients with Obstructive Sleep Apnea Treated with Continuous Positive Airway Pressure. EBioMedicine. 2016 May;7:221-9. doi: 10.1016/j.ebiom.2016.03.020. Epub 2016 Mar 25.
Results Reference
background
Citation
Sahib, A., Roy, B., Song, X., Singh, S., Aysola, R., Kang, D.W., Woo, M.A. & Kumar, R. Brain axonal and myelin changes after positive airway pressure treatment in patients with obstructive sleep apnea. Joint Annual Meeting International Society for Magnetic Resonance in Medicine, Paris, France, 2018.
Results Reference
background
PubMed Identifier
28513057
Citation
Chen HL, Lin HC, Lu CH, Chen PC, Huang CC, Chou KH, Su MC, Friedman M, Chen YW, Lin WC. Systemic inflammation and alterations to cerebral blood flow in obstructive sleep apnea. J Sleep Res. 2017 Dec;26(6):789-798. doi: 10.1111/jsr.12553. Epub 2017 May 17.
Results Reference
background
PubMed Identifier
18041484
Citation
Joo EY, Tae WS, Han SJ, Cho JW, Hong SB. Reduced cerebral blood flow during wakefulness in obstructive sleep apnea-hypopnea syndrome. Sleep. 2007 Nov;30(11):1515-20. doi: 10.1093/sleep/30.11.1515.
Results Reference
background
PubMed Identifier
24076138
Citation
Yadav SK, Kumar R, Macey PM, Richardson HL, Wang DJ, Woo MA, Harper RM. Regional cerebral blood flow alterations in obstructive sleep apnea. Neurosci Lett. 2013 Oct 25;555:159-64. doi: 10.1016/j.neulet.2013.09.033. Epub 2013 Sep 26.
Results Reference
background
PubMed Identifier
18250218
Citation
Lumeng JC, Chervin RD. Epidemiology of pediatric obstructive sleep apnea. Proc Am Thorac Soc. 2008 Feb 15;5(2):242-52. doi: 10.1513/pats.200708-135MG.
Results Reference
background
PubMed Identifier
19564269
Citation
Barone JG, Hanson C, DaJusta DG, Gioia K, England SJ, Schneider D. Nocturnal enuresis and overweight are associated with obstructive sleep apnea. Pediatrics. 2009 Jul;124(1):e53-9. doi: 10.1542/peds.2008-2805.
Results Reference
background
PubMed Identifier
11927728
Citation
Nieminen P, Lopponen T, Tolonen U, Lanning P, Knip M, Lopponen H. Growth and biochemical markers of growth in children with snoring and obstructive sleep apnea. Pediatrics. 2002 Apr;109(4):e55. doi: 10.1542/peds.109.4.e55.
Results Reference
background
PubMed Identifier
17272622
Citation
Suratt PM, Barth JT, Diamond R, D'Andrea L, Nikova M, Perriello VA Jr, Carskadon MA, Rembold C. Reduced time in bed and obstructive sleep-disordered breathing in children are associated with cognitive impairment. Pediatrics. 2007 Feb;119(2):320-9. doi: 10.1542/peds.2006-1969.
Results Reference
background
PubMed Identifier
9894997
Citation
Soultan Z, Wadowski S, Rao M, Kravath RE. Effect of treating obstructive sleep apnea by tonsillectomy and/or adenoidectomy on obesity in children. Arch Pediatr Adolesc Med. 1999 Jan;153(1):33-7. doi: 10.1001/archpedi.153.1.33.
Results Reference
background
PubMed Identifier
2690208
Citation
Series F, Cormier Y, La Forge J. [Physiopathology of obstructive sleep apneas]. Rev Mal Respir. 1989;6(5):397-407. French.
Results Reference
background
PubMed Identifier
11533338
Citation
Gozal D, Wang M, Pope DW Jr. Objective sleepiness measures in pediatric obstructive sleep apnea. Pediatrics. 2001 Sep;108(3):693-7. doi: 10.1542/peds.108.3.693.
Results Reference
background
PubMed Identifier
21102986
Citation
Beebe DW, Ris MD, Kramer ME, Long E, Amin R. The association between sleep disordered breathing, academic grades, and cognitive and behavioral functioning among overweight subjects during middle to late childhood. Sleep. 2010 Nov;33(11):1447-56. doi: 10.1093/sleep/33.11.1447.
Results Reference
background
PubMed Identifier
15532207
Citation
Crabtree VM, Varni JW, Gozal D. Health-related quality of life and depressive symptoms in children with suspected sleep-disordered breathing. Sleep. 2004 Sep 15;27(6):1131-8. doi: 10.1093/sleep/27.6.1131.
Results Reference
background
PubMed Identifier
9738185
Citation
Gozal D. Sleep-disordered breathing and school performance in children. Pediatrics. 1998 Sep;102(3 Pt 1):616-20. doi: 10.1542/peds.102.3.616.
Results Reference
background
PubMed Identifier
16764612
Citation
Kheirandish L, Gozal D. Neurocognitive dysfunction in children with sleep disorders. Dev Sci. 2006 Jul;9(4):388-99. doi: 10.1111/j.1467-7687.2006.00504.x.
Results Reference
background
PubMed Identifier
15175097
Citation
O'Brien LM, Mervis CB, Holbrook CR, Bruner JL, Smith NH, McNally N, McClimment MC, Gozal D. Neurobehavioral correlates of sleep-disordered breathing in children. J Sleep Res. 2004 Jun;13(2):165-72. doi: 10.1111/j.1365-2869.2004.00395.x.
Results Reference
background
PubMed Identifier
28320844
Citation
Cha J, Zea-Hernandez JA, Sin S, Graw-Panzer K, Shifteh K, Isasi CR, Wagshul ME, Moran EE, Posner J, Zimmerman ME, Arens R. The Effects of Obstructive Sleep Apnea Syndrome on the Dentate Gyrus and Learning and Memory in Children. J Neurosci. 2017 Apr 19;37(16):4280-4288. doi: 10.1523/JNEUROSCI.3583-16.2017. Epub 2017 Mar 20.
Results Reference
background
PubMed Identifier
16933960
Citation
Halbower AC, Degaonkar M, Barker PB, Earley CJ, Marcus CL, Smith PL, Prahme MC, Mahone EM. Childhood obstructive sleep apnea associates with neuropsychological deficits and neuronal brain injury. PLoS Med. 2006 Aug;3(8):e301. doi: 10.1371/journal.pmed.0030301.
Results Reference
background
PubMed Identifier
29267958
Citation
Horne RSC, Roy B, Walter LM, Biggs SN, Tamanyan K, Weichard A, Nixon GM, Davey MJ, Ditchfield M, Harper RM, Kumar R. Regional brain tissue changes and associations with disease severity in children with sleep-disordered breathing. Sleep. 2018 Feb 1;41(2):zsx203. doi: 10.1093/sleep/zsx203.
Results Reference
background
PubMed Identifier
29883682
Citation
Kheirandish-Gozal L, Sahib AK, Macey PM, Philby MF, Gozal D, Kumar R. Regional brain tissue integrity in pediatric obstructive sleep apnea. Neurosci Lett. 2018 Aug 24;682:118-123. doi: 10.1016/j.neulet.2018.06.002. Epub 2018 Jun 5.
Results Reference
background
PubMed Identifier
24587582
Citation
Kheirandish-Gozal L, Yoder K, Kulkarni R, Gozal D, Decety J. Preliminary functional MRI neural correlates of executive functioning and empathy in children with obstructive sleep apnea. Sleep. 2014 Mar 1;37(3):587-92. doi: 10.5665/sleep.3504.
Results Reference
background
PubMed Identifier
29403430
Citation
Macey PM, Kheirandish-Gozal L, Prasad JP, Ma RA, Kumar R, Philby MF, Gozal D. Altered Regional Brain Cortical Thickness in Pediatric Obstructive Sleep Apnea. Front Neurol. 2018 Jan 22;9:4. doi: 10.3389/fneur.2018.00004. eCollection 2018.
Results Reference
background
PubMed Identifier
28303917
Citation
Philby MF, Macey PM, Ma RA, Kumar R, Gozal D, Kheirandish-Gozal L. Reduced Regional Grey Matter Volumes in Pediatric Obstructive Sleep Apnea. Sci Rep. 2017 Mar 17;7:44566. doi: 10.1038/srep44566.
Results Reference
background
PubMed Identifier
26448201
Citation
Chopra S, Polotsky VY, Jun JC. Sleep Apnea Research in Animals. Past, Present, and Future. Am J Respir Cell Mol Biol. 2016 Mar;54(3):299-305. doi: 10.1165/rcmb.2015-0218TR.
Results Reference
background
PubMed Identifier
14622195
Citation
Gozal D, Row BW, Gozal E, Kheirandish L, Neville JJ, Brittian KR, Sachleben LR Jr, Guo SZ. Temporal aspects of spatial task performance during intermittent hypoxia in the rat: evidence for neurogenesis. Eur J Neurosci. 2003 Oct;18(8):2335-42. doi: 10.1046/j.1460-9568.2003.02947.x.
Results Reference
background
PubMed Identifier
11403939
Citation
Gozal E, Row BW, Schurr A, Gozal D. Developmental differences in cortical and hippocampal vulnerability to intermittent hypoxia in the rat. Neurosci Lett. 2001 Jun 15;305(3):197-201. doi: 10.1016/s0304-3940(01)01853-5.
Results Reference
background
PubMed Identifier
15207349
Citation
Xu W, Chi L, Row BW, Xu R, Ke Y, Xu B, Luo C, Kheirandish L, Gozal D, Liu R. Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience. 2004;126(2):313-23. doi: 10.1016/j.neuroscience.2004.03.055.
Results Reference
background
PubMed Identifier
24470697
Citation
Huang YS, Guilleminault C, Lee LA, Lin CH, Hwang FM. Treatment outcomes of adenotonsillectomy for children with obstructive sleep apnea: a prospective longitudinal study. Sleep. 2014 Jan 1;37(1):71-6. doi: 10.5665/sleep.3310.
Results Reference
background
PubMed Identifier
8019776
Citation
Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994 Mar;103(3):247-54. doi: 10.1006/jmrb.1994.1037.
Results Reference
background
PubMed Identifier
8939209
Citation
Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996 Dec;201(3):637-48. doi: 10.1148/radiology.201.3.8939209.
Results Reference
background
PubMed Identifier
20960579
Citation
Jensen JH, Falangola MF, Hu C, Tabesh A, Rapalino O, Lo C, Helpern JA. Preliminary observations of increased diffusional kurtosis in human brain following recent cerebral infarction. NMR Biomed. 2011 Jun;24(5):452-7. doi: 10.1002/nbm.1610. Epub 2010 Oct 19.
Results Reference
background
PubMed Identifier
19150655
Citation
Cheung MM, Hui ES, Chan KC, Helpern JA, Qi L, Wu EX. Does diffusion kurtosis imaging lead to better neural tissue characterization? A rodent brain maturation study. Neuroimage. 2009 Apr 1;45(2):386-92. doi: 10.1016/j.neuroimage.2008.12.018. Epub 2008 Dec 25.
Results Reference
background
PubMed Identifier
18524628
Citation
Hui ES, Cheung MM, Qi L, Wu EX. Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis. Neuroimage. 2008 Aug 1;42(1):122-34. doi: 10.1016/j.neuroimage.2008.04.237. Epub 2008 Apr 30.
Results Reference
background
PubMed Identifier
16950152
Citation
Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 2006 Sep 7;51(5):527-39. doi: 10.1016/j.neuron.2006.08.012.
Results Reference
background
PubMed Identifier
16023870
Citation
Nair G, Tanahashi Y, Low HP, Billings-Gagliardi S, Schwartz WJ, Duong TQ. Myelination and long diffusion times alter diffusion-tensor-imaging contrast in myelin-deficient shiverer mice. Neuroimage. 2005 Oct 15;28(1):165-74. doi: 10.1016/j.neuroimage.2005.05.049. Epub 2005 Jul 14.
Results Reference
background
PubMed Identifier
12414282
Citation
Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage. 2002 Nov;17(3):1429-36. doi: 10.1006/nimg.2002.1267.
Results Reference
background
PubMed Identifier
16242968
Citation
Trip SA, Wheeler-Kingshott C, Jones SJ, Li WY, Barker GJ, Thompson AJ, Plant GT, Miller DH. Optic nerve diffusion tensor imaging in optic neuritis. Neuroimage. 2006 Apr 1;30(2):498-505. doi: 10.1016/j.neuroimage.2005.09.024. Epub 2005 Oct 20.
Results Reference
background
PubMed Identifier
18765547
Citation
de Bazelaire C, Alsop DC, George D, Pedrosa I, Wang Y, Michaelson MD, Rofsky NM. Magnetic resonance imaging-measured blood flow change after antiangiogenic therapy with PTK787/ZK 222584 correlates with clinical outcome in metastatic renal cell carcinoma. Clin Cancer Res. 2008 Sep 1;14(17):5548-54. doi: 10.1158/1078-0432.CCR-08-0417.
Results Reference
background
PubMed Identifier
20819999
Citation
Hu WT, Wang Z, Lee VM, Trojanowski JQ, Detre JA, Grossman M. Distinct cerebral perfusion patterns in FTLD and AD. Neurology. 2010 Sep 7;75(10):881-8. doi: 10.1212/WNL.0b013e3181f11e35.
Results Reference
background
PubMed Identifier
15110037
Citation
Feng CM, Narayana S, Lancaster JL, Jerabek PA, Arnow TL, Zhu F, Tan LH, Fox PT, Gao JH. CBF changes during brain activation: fMRI vs. PET. Neuroimage. 2004 May;22(1):443-6. doi: 10.1016/j.neuroimage.2004.01.017.
Results Reference
background
PubMed Identifier
10975898
Citation
Ye FQ, Berman KF, Ellmore T, Esposito G, van Horn JD, Yang Y, Duyn J, Smith AM, Frank JA, Weinberger DR, McLaughlin AC. H(2)(15)O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans. Magn Reson Med. 2000 Sep;44(3):450-6. doi: 10.1002/1522-2594(200009)44:33.0.co;2-0.
Results Reference
background
PubMed Identifier
21448961
Citation
Chen Y, Wang DJ, Detre JA. Test-retest reliability of arterial spin labeling with common labeling strategies. J Magn Reson Imaging. 2011 Apr;33(4):940-9. doi: 10.1002/jmri.22345.
Results Reference
background
PubMed Identifier
14635149
Citation
Floyd TF, Ratcliffe SJ, Wang J, Resch B, Detre JA. Precision of the CASL-perfusion MRI technique for the measurement of cerebral blood flow in whole brain and vascular territories. J Magn Reson Imaging. 2003 Dec;18(6):649-55. doi: 10.1002/jmri.10416.
Results Reference
background
PubMed Identifier
12704760
Citation
Wang J, Aguirre GK, Kimberg DY, Roc AC, Li L, Detre JA. Arterial spin labeling perfusion fMRI with very low task frequency. Magn Reson Med. 2003 May;49(5):796-802. doi: 10.1002/mrm.10437.
Results Reference
background
PubMed Identifier
27046278
Citation
Canivez GL, McGill RJ. Factor structure of the Differential Ability Scales-Second Edition: Exploratory and hierarchical factor analyses with the core subtests. Psychol Assess. 2016 Nov;28(11):1475-1488. doi: 10.1037/pas0000279. Epub 2016 Jan 25.
Results Reference
background
Citation
Keith, T.Z., Low, J.A., Reynolds, M.R., Patel, P.G. & Ridley, K.P. Higher-order factor structure of the differential ability scales-II: consistency across ages 4 to 17. Psychology in the Schools 47: 676-697, 2010.
Results Reference
background
Citation
Achenbach, T.M. The child behavior checklist and related instruments. In: The use of psychological testing for treatment planning and outcomes assessment, 2nd ed, edited by. Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers, 1999, p. 429-466.
Results Reference
background
PubMed Identifier
10922023
Citation
Achenbach TM, Ruffle TM. The Child Behavior Checklist and related forms for assessing behavioral/emotional problems and competencies. Pediatr Rev. 2000 Aug;21(8):265-71. doi: 10.1542/pir.21-8-265. No abstract available.
Results Reference
background
Citation
Ellis, E.M., Zarndt, R., Ho, B., Hopkins, S. & Powell, F.L. Effects of non-steroid anti-inflammatory drugs on the human hypoxic ventilatory response and acclimatization. The FASEB Journal 26: 1150.1152- 1150.1152, 2012.
Results Reference
background
PubMed Identifier
26894935
Citation
Goswami AR, Dutta G, Ghosh T. Naproxen, a Nonsteroidal Anti-Inflammatory Drug, Can Affect Daily Hypobaric Hypoxia-Induced Alterations of Monoamine Levels in Different Areas of the Brain in Male Rats. High Alt Med Biol. 2016 Jun;17(2):133-40. doi: 10.1089/ham.2015.0052. Epub 2016 Feb 19.
Results Reference
background
PubMed Identifier
24900965
Citation
Ishiguro H, Kawahara T. Nonsteroidal anti-inflammatory drugs and prostatic diseases. Biomed Res Int. 2014;2014:436123. doi: 10.1155/2014/436123. Epub 2014 May 12.
Results Reference
background
PubMed Identifier
2066768
Citation
Daniel DG, Weinberger DR, Jones DW, Zigun JR, Coppola R, Handel S, Bigelow LB, Goldberg TE, Berman KF, Kleinman JE. The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. J Neurosci. 1991 Jul;11(7):1907-17. doi: 10.1523/JNEUROSCI.11-07-01907.1991.
Results Reference
background
PubMed Identifier
9890490
Citation
Dormehl IC, Jordaan B, Oliver DW, Croft S. SPECT monitoring of improved cerebral blood flow during long-term treatment of elderly patients with nootropic drugs. Clin Nucl Med. 1999 Jan;24(1):29-34. doi: 10.1097/00003072-199901000-00007.
Results Reference
background
PubMed Identifier
15655124
Citation
Lipsitz LA, Gagnon M, Vyas M, Iloputaife I, Kiely DK, Sorond F, Serrador J, Cheng DM, Babikian V, Cupples LA. Antihypertensive therapy increases cerebral blood flow and carotid distensibility in hypertensive elderly subjects. Hypertension. 2005 Feb;45(2):216-21. doi: 10.1161/01.HYP.0000153094.09615.11. Epub 2005 Jan 17.
Results Reference
background
PubMed Identifier
28373858
Citation
Serrador JM, Freeman R. Enhanced Cholinergic Activity Improves Cerebral Blood Flow during Orthostatic Stress. Front Neurol. 2017 Mar 20;8:103. doi: 10.3389/fneur.2017.00103. eCollection 2017.
Results Reference
background
PubMed Identifier
9709144
Citation
Warwick JP, Mason DG. Obstructive sleep apnoea syndrome in children. Anaesthesia. 1998 Jun;53(6):571-9. doi: 10.1046/j.1365-2044.1998.00370.x.
Results Reference
background
PubMed Identifier
20075057
Citation
Kheirandish-Gozal L, De Jong MR, Spruyt K, Chamuleau SA, Gozal D. Obstructive sleep apnoea is associated with impaired pictorial memory task acquisition and retention in children. Eur Respir J. 2010 Jul;36(1):164-9. doi: 10.1183/09031936.00114209. Epub 2010 Jan 14.
Results Reference
background
PubMed Identifier
24109201
Citation
Tan HL, Gozal D, Kheirandish-Gozal L. Obstructive sleep apnea in children: a critical update. Nat Sci Sleep. 2013 Sep 25;5:109-23. doi: 10.2147/NSS.S51907.
Results Reference
background
PubMed Identifier
15342857
Citation
Bass JL, Corwin M, Gozal D, Moore C, Nishida H, Parker S, Schonwald A, Wilker RE, Stehle S, Kinane TB. The effect of chronic or intermittent hypoxia on cognition in childhood: a review of the evidence. Pediatrics. 2004 Sep;114(3):805-16. doi: 10.1542/peds.2004-0227.
Results Reference
background
PubMed Identifier
16488632
Citation
Blunden SL, Beebe DW. The contribution of intermittent hypoxia, sleep debt and sleep disruption to daytime performance deficits in children: consideration of respiratory and non-respiratory sleep disorders. Sleep Med Rev. 2006 Apr;10(2):109-18. doi: 10.1016/j.smrv.2005.11.003. Epub 2006 Feb 20.
Results Reference
background
PubMed Identifier
12773324
Citation
Urschitz MS, Guenther A, Eggebrecht E, Wolff J, Urschitz-Duprat PM, Schlaud M, Poets CF. Snoring, intermittent hypoxia and academic performance in primary school children. Am J Respir Crit Care Med. 2003 Aug 15;168(4):464-8. doi: 10.1164/rccm.200212-1397OC. Epub 2003 May 28.
Results Reference
background
PubMed Identifier
29194375
Citation
Trosman I, Trosman SJ. Cognitive and Behavioral Consequences of Sleep Disordered Breathing in Children. Med Sci (Basel). 2017 Dec 1;5(4):30. doi: 10.3390/medsci5040030.
Results Reference
background
PubMed Identifier
1779033
Citation
Bedard MA, Montplaisir J, Richer F, Rouleau I, Malo J. Obstructive sleep apnea syndrome: pathogenesis of neuropsychological deficits. J Clin Exp Neuropsychol. 1991 Nov;13(6):950-64. doi: 10.1080/01688639108405110.
Results Reference
background
PubMed Identifier
15310490
Citation
Engleman H, Joffe D. Neuropsychological function in obstructive sleep apnoea. Sleep Med Rev. 1999 Mar;3(1):59-78. doi: 10.1016/s1087-0792(99)90014-x.
Results Reference
background
PubMed Identifier
11868122
Citation
Owens J, Spirito A, Marcotte A, McGuinn M, Berkelhammer L. Neuropsychological and Behavioral Correlates of Obstructive Sleep Apnea Syndrome in Children: A Preliminary Study. Sleep Breath. 2000;4(2):67-78. doi: 10.1007/BF03045026.
Results Reference
background
PubMed Identifier
30036785
Citation
Zhao J, Han S, Zhang J, Wang G, Wang H, Xu Z, Tai J, Peng X, Guo Y, Liu H, Tian J, Jin X, Zheng L, Zhang J, Ni X. Association between mild or moderate obstructive sleep apnea-hypopnea syndrome and cognitive dysfunction in children. Sleep Med. 2018 Oct;50:132-136. doi: 10.1016/j.sleep.2018.04.009. Epub 2018 Jun 9.
Results Reference
background
PubMed Identifier
22926173
Citation
Marcus CL, Brooks LJ, Draper KA, Gozal D, Halbower AC, Jones J, Schechter MS, Sheldon SH, Spruyt K, Ward SD, Lehmann C, Shiffman RN; American Academy of Pediatrics. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics. 2012 Sep;130(3):576-84. doi: 10.1542/peds.2012-1671. Epub 2012 Aug 27.
Results Reference
background
PubMed Identifier
14746381
Citation
Friedman BC, Hendeles-Amitai A, Kozminsky E, Leiberman A, Friger M, Tarasiuk A, Tal A. Adenotonsillectomy improves neurocognitive function in children with obstructive sleep apnea syndrome. Sleep. 2003 Dec 15;26(8):999-1005. doi: 10.1093/sleep/26.8.999.
Results Reference
background
PubMed Identifier
10772303
Citation
Goldstein NA, Post JC, Rosenfeld RM, Campbell TF. Impact of tonsillectomy and adenoidectomy on child behavior. Arch Otolaryngol Head Neck Surg. 2000 Apr;126(4):494-8. doi: 10.1001/archotol.126.4.494.
Results Reference
background
PubMed Identifier
23692173
Citation
Marcus CL, Moore RH, Rosen CL, Giordani B, Garetz SL, Taylor HG, Mitchell RB, Amin R, Katz ES, Arens R, Paruthi S, Muzumdar H, Gozal D, Thomas NH, Ware J, Beebe D, Snyder K, Elden L, Sprecher RC, Willging P, Jones D, Bent JP, Hoban T, Chervin RD, Ellenberg SS, Redline S; Childhood Adenotonsillectomy Trial (CHAT). A randomized trial of adenotonsillectomy for childhood sleep apnea. N Engl J Med. 2013 Jun 20;368(25):2366-76. doi: 10.1056/NEJMoa1215881. Epub 2013 May 21.
Results Reference
background
PubMed Identifier
28514706
Citation
Murata E, Mohri I, Kato-Nishimura K, Iimura J, Ogawa M, Tachibana M, Ohno Y, Taniike M. Evaluation of behavioral change after adenotonsillectomy for obstructive sleep apnea in children with autism spectrum disorder. Res Dev Disabil. 2017 Jun;65:127-139. doi: 10.1016/j.ridd.2017.04.012. Epub 2017 May 14.
Results Reference
background
PubMed Identifier
27464674
Citation
Taylor HG, Bowen SR, Beebe DW, Hodges E, Amin R, Arens R, Chervin RD, Garetz SL, Katz ES, Moore RH, Morales KH, Muzumdar H, Paruthi S, Rosen CL, Sadhwani A, Thomas NH, Ware J, Marcus CL, Ellenberg SS, Redline S, Giordani B. Cognitive Effects of Adenotonsillectomy for Obstructive Sleep Apnea. Pediatrics. 2016 Aug;138(2):e20154458. doi: 10.1542/peds.2015-4458.
Results Reference
background
PubMed Identifier
29178907
Citation
Torretta S, Rosazza C, Pace ME, Iofrida E, Marchisio P. Impact of adenotonsillectomy on pediatric quality of life: review of the literature. Ital J Pediatr. 2017 Nov 25;43(1):107. doi: 10.1186/s13052-017-0424-2.
Results Reference
background
PubMed Identifier
11264318
Citation
Gozal D, Daniel JM, Dohanich GP. Behavioral and anatomical correlates of chronic episodic hypoxia during sleep in the rat. J Neurosci. 2001 Apr 1;21(7):2442-50. doi: 10.1523/JNEUROSCI.21-07-02442.2001.
Results Reference
background
PubMed Identifier
15670654
Citation
Pae EK, Chien P, Harper RM. Intermittent hypoxia damages cerebellar cortex and deep nuclei. Neurosci Lett. 2005 Feb 28;375(2):123-8. doi: 10.1016/j.neulet.2004.10.091. Epub 2004 Dec 2.
Results Reference
background
PubMed Identifier
15124711
Citation
Veasey SC, Davis CW, Fenik P, Zhan G, Hsu YJ, Pratico D, Gow A. Long-term intermittent hypoxia in mice: protracted hypersomnolence with oxidative injury to sleep-wake brain regions. Sleep. 2004 Mar 15;27(2):194-201. doi: 10.1093/sleep/27.2.194.
Results Reference
background
PubMed Identifier
20554036
Citation
Zhang JH, Fung SJ, Xi M, Sampogna S, Chase MH. Apnea produces neuronal degeneration in the pons and medulla of guinea pigs. Neurobiol Dis. 2010 Oct;40(1):251-64. doi: 10.1016/j.nbd.2010.05.032. Epub 2010 Jun 8.
Results Reference
background
PubMed Identifier
10441299
Citation
Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999 Sep;22(9):391-7. doi: 10.1016/s0166-2236(99)01401-0.
Results Reference
background
PubMed Identifier
5567067
Citation
Hossmann KA. Cortical steady potential, impedance and excitability changes during and after total ischemia of cat brain. Exp Neurol. 1971 Aug;32(2):163-75. doi: 10.1016/0014-4886(71)90060-4. No abstract available.
Results Reference
background
PubMed Identifier
14114842
Citation
LOWRY OH, PASSONNEAU JV, HASSELBERGER FX, SCHULZ DW. EFFECT OF ISCHEMIA ON KNOWN SUBSTRATES AND COFACTORS OF THE GLYCOLYTIC PATHWAY IN BRAIN. J Biol Chem. 1964 Jan;239:18-30. No abstract available.
Results Reference
background
PubMed Identifier
7518615
Citation
O'Dell TJ, Huang PL, Dawson TM, Dinerman JL, Snyder SH, Kandel ER, Fishman MC. Endothelial NOS and the blockade of LTP by NOS inhibitors in mice lacking neuronal NOS. Science. 1994 Jul 22;265(5171):542-6. doi: 10.1126/science.7518615.
Results Reference
background
PubMed Identifier
11307856
Citation
Oehmichen M, Ochs U, Meissner C. Regional potassium distribution in the brain in forensic relevant types of intoxication preliminary morphometric evaluation using a histochemical method. Neurotoxicology. 2001 Feb;22(1):99-107. doi: 10.1016/s0161-813x(00)00005-x.
Results Reference
background
PubMed Identifier
8113328
Citation
Mintorovitch J, Yang GY, Shimizu H, Kucharczyk J, Chan PH, Weinstein PR. Diffusion-weighted magnetic resonance imaging of acute focal cerebral ischemia: comparison of signal intensity with changes in brain water and Na+,K(+)-ATPase activity. J Cereb Blood Flow Metab. 1994 Mar;14(2):332-6. doi: 10.1038/jcbfm.1994.40.
Results Reference
background
PubMed Identifier
6149259
Citation
Benveniste H, Drejer J, Schousboe A, Diemer NH. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem. 1984 Nov;43(5):1369-74. doi: 10.1111/j.1471-4159.1984.tb05396.x.
Results Reference
background
PubMed Identifier
4030918
Citation
Hagberg H, Lehmann A, Sandberg M, Nystrom B, Jacobson I, Hamberger A. Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments. J Cereb Blood Flow Metab. 1985 Sep;5(3):413-9. doi: 10.1038/jcbfm.1985.56.
Results Reference
background
PubMed Identifier
18451704
Citation
Kassmann CM, Nave KA. Oligodendroglial impact on axonal function and survival - a hypothesis. Curr Opin Neurol. 2008 Jun;21(3):235-41. doi: 10.1097/WCO.0b013e328300c71f.
Results Reference
background
PubMed Identifier
3674796
Citation
Nukada H, Dyck PJ. Acute ischemia causes axonal stasis, swelling, attenuation, and secondary demyelination. Ann Neurol. 1987 Sep;22(3):311-8. doi: 10.1002/ana.410220306.
Results Reference
background
PubMed Identifier
21139628
Citation
Shereen A, Nemkul N, Yang D, Adhami F, Dunn RS, Hazen ML, Nakafuku M, Ning G, Lindquist DM, Kuan CY. Ex vivo diffusion tensor imaging and neuropathological correlation in a murine model of hypoxia-ischemia-induced thrombotic stroke. J Cereb Blood Flow Metab. 2011 Apr;31(4):1155-69. doi: 10.1038/jcbfm.2010.212. Epub 2010 Dec 8.
Results Reference
background
PubMed Identifier
7639135
Citation
Matsumoto K, Lo EH, Pierce AR, Wei H, Garrido L, Kowall NW. Role of vasogenic edema and tissue cavitation in ischemic evolution on diffusion-weighted imaging: comparison with multiparameter MR and immunohistochemistry. AJNR Am J Neuroradiol. 1995 May;16(5):1107-15.
Results Reference
background
PubMed Identifier
10356095
Citation
Kidwell CS, Alger JR, Di Salle F, Starkman S, Villablanca P, Bentson J, Saver JL. Diffusion MRI in patients with transient ischemic attacks. Stroke. 1999 Jun;30(6):1174-80. doi: 10.1161/01.str.30.6.1174.
Results Reference
background
PubMed Identifier
10102438
Citation
Lecouvet FE, Duprez TP, Raymackers JM, Peeters A, Cosnard G. Resolution of early diffusion-weighted and FLAIR MRI abnormalities in a patient with TIA. Neurology. 1999 Mar 23;52(5):1085-7. doi: 10.1212/wnl.52.5.1085.
Results Reference
background
PubMed Identifier
8661285
Citation
Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996 Jun;111(3):209-19. doi: 10.1006/jmrb.1996.0086.
Results Reference
background
PubMed Identifier
8130344
Citation
Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994 Jan;66(1):259-67. doi: 10.1016/S0006-3495(94)80775-1.
Results Reference
background
PubMed Identifier
11276097
Citation
Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001 Apr;13(4):534-46. doi: 10.1002/jmri.1076.
Results Reference
background
PubMed Identifier
9621916
Citation
Basser PJ, Pierpaoli C. A simplified method to measure the diffusion tensor from seven MR images. Magn Reson Med. 1998 Jun;39(6):928-34. doi: 10.1002/mrm.1910390610.
Results Reference
background
PubMed Identifier
12195489
Citation
Ahlhelm F, Schneider G, Backens M, Reith W, Hagen T. Time course of the apparent diffusion coefficient after cerebral infarction. Eur Radiol. 2002 Sep;12(9):2322-9. doi: 10.1007/s00330-001-1291-0. Epub 2002 Mar 19.
Results Reference
background
PubMed Identifier
8063868
Citation
Hossmann KA, Fischer M, Bockhorst K, Hoehn-Berlage M. NMR imaging of the apparent diffusion coefficient (ADC) for the evaluation of metabolic suppression and recovery after prolonged cerebral ischemia. J Cereb Blood Flow Metab. 1994 Sep;14(5):723-31. doi: 10.1038/jcbfm.1994.93.
Results Reference
background
PubMed Identifier
9040700
Citation
Loubinoux I, Volk A, Borredon J, Guirimand S, Tiffon B, Seylaz J, Meric P. Spreading of vasogenic edema and cytotoxic edema assessed by quantitative diffusion and T2 magnetic resonance imaging. Stroke. 1997 Feb;28(2):419-26; discussion 426-7. doi: 10.1161/01.str.28.2.419.
Results Reference
background
PubMed Identifier
19505567
Citation
Chan KC, Khong PL, Lau HF, Cheung PT, Wu EX. Late measures of microstructural alterations in severe neonatal hypoxic-ischemic encephalopathy by MR diffusion tensor imaging. Int J Dev Neurosci. 2009 Oct;27(6):607-15. doi: 10.1016/j.ijdevneu.2009.05.012. Epub 2009 Jun 6.
Results Reference
background
PubMed Identifier
11294929
Citation
Kelly PJ, Hedley-Whyte ET, Primavera J, He J, Gonzalez RG. Diffusion MRI in ischemic stroke compared to pathologically verified infarction. Neurology. 2001 Apr 10;56(7):914-20. doi: 10.1212/wnl.56.7.914.
Results Reference
background
PubMed Identifier
8685940
Citation
Warach S, Mosley M, Sorensen AG, Koroshetz W. Time course of diffusion imaging abnormalities in human stroke. Stroke. 1996 Jul;27(7):1254-6. No abstract available.
Results Reference
background
PubMed Identifier
17676452
Citation
Newcombe VF, Williams GB, Nortje J, Bradley PG, Harding SG, Smielewski P, Coles JP, Maiya B, Gillard JH, Hutchinson PJ, Pickard JD, Carpenter TA, Menon DK. Analysis of acute traumatic axonal injury using diffusion tensor imaging. Br J Neurosurg. 2007 Aug;21(4):340-8. doi: 10.1080/02688690701400882.
Results Reference
background
PubMed Identifier
18440747
Citation
Bhagat YA, Hussain MS, Stobbe RW, Butcher KS, Emery DJ, Shuaib A, Siddiqui MM, Maheshwari P, Al-Hussain F, Beaulieu C. Elevations of diffusion anisotropy are associated with hyper-acute stroke: a serial imaging study. Magn Reson Imaging. 2008 Jun;26(5):683-93. doi: 10.1016/j.mri.2008.01.015. Epub 2008 Apr 28.
Results Reference
background
PubMed Identifier
10548675
Citation
Yang Q, Tress BM, Barber PA, Desmond PM, Darby DG, Gerraty RP, Li T, Davis SM. Serial study of apparent diffusion coefficient and anisotropy in patients with acute stroke. Stroke. 1999 Nov;30(11):2382-90. doi: 10.1161/01.str.30.11.2382.
Results Reference
background
PubMed Identifier
16452356
Citation
Counsell SJ, Shen Y, Boardman JP, Larkman DJ, Kapellou O, Ward P, Allsop JM, Cowan FM, Hajnal JV, Edwards AD, Rutherford MA. Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics. 2006 Feb;117(2):376-86. doi: 10.1542/peds.2005-0820.
Results Reference
background
PubMed Identifier
16798013
Citation
Lowe MJ, Horenstein C, Hirsch JG, Marrie RA, Stone L, Bhattacharyya PK, Gass A, Phillips MD. Functional pathway-defined MRI diffusion measures reveal increased transverse diffusivity of water in multiple sclerosis. Neuroimage. 2006 Sep;32(3):1127-33. doi: 10.1016/j.neuroimage.2006.04.208. Epub 2006 Jun 23.
Results Reference
background
PubMed Identifier
11352623
Citation
Pierpaoli C, Barnett A, Pajevic S, Chen R, Penix LR, Virta A, Basser P. Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage. 2001 Jun;13(6 Pt 1):1174-85. doi: 10.1006/nimg.2001.0765.
Results Reference
background
PubMed Identifier
15906300
Citation
Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005 Jun;53(6):1432-40. doi: 10.1002/mrm.20508.
Results Reference
background
PubMed Identifier
16521095
Citation
Lu H, Jensen JH, Ramani A, Helpern JA. Three-dimensional characterization of non-gaussian water diffusion in humans using diffusion kurtosis imaging. NMR Biomed. 2006 Apr;19(2):236-47. doi: 10.1002/nbm.1020.
Results Reference
background
PubMed Identifier
21337412
Citation
Tabesh A, Jensen JH, Ardekani BA, Helpern JA. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med. 2011 Mar;65(3):823-36. doi: 10.1002/mrm.22655. Epub 2010 Oct 28. Erratum In: Magn Reson Med. 2011 May;65(5):1507.
Results Reference
background
PubMed Identifier
21699989
Citation
Fieremans E, Jensen JH, Helpern JA. White matter characterization with diffusional kurtosis imaging. Neuroimage. 2011 Sep 1;58(1):177-88. doi: 10.1016/j.neuroimage.2011.06.006. Epub 2011 Jun 13.
Results Reference
background
PubMed Identifier
18816827
Citation
Lazar M, Jensen JH, Xuan L, Helpern JA. Estimation of the orientation distribution function from diffusional kurtosis imaging. Magn Reson Med. 2008 Oct;60(4):774-81. doi: 10.1002/mrm.21725.
Results Reference
background
PubMed Identifier
21317356
Citation
Wang DJ, Chen Y, Fernandez-Seara MA, Detre JA. Potentials and challenges for arterial spin labeling in pharmacological magnetic resonance imaging. J Pharmacol Exp Ther. 2011 May;337(2):359-66. doi: 10.1124/jpet.110.172577. Epub 2011 Feb 11.
Results Reference
background
PubMed Identifier
10025621
Citation
Buckley DL, Bui JD, Phillips MI, Zelles T, Inglis BA, Plant HD, Blackband SJ. The effect of ouabain on water diffusion in the rat hippocampal slice measured by high resolution NMR imaging. Magn Reson Med. 1999 Jan;41(1):137-42. doi: 10.1002/(sici)1522-2594(199901)41:13.0.co;2-y.
Results Reference
background
PubMed Identifier
10918329
Citation
Mulkern RV, Zengingonul HP, Robertson RL, Bogner P, Zou KH, Gudbjartsson H, Guttmann CR, Holtzman D, Kyriakos W, Jolesz FA, Maier SE. Multi-component apparent diffusion coefficients in human brain: relationship to spin-lattice relaxation. Magn Reson Med. 2000 Aug;44(2):292-300. doi: 10.1002/1522-2594(200008)44:23.0.co;2-q.
Results Reference
background
PubMed Identifier
17685422
Citation
Vestergaard-Poulsen P, Hansen B, Ostergaard L, Jakobsen R. Microstructural changes in ischemic cortical gray matter predicted by a model of diffusion-weighted MRI. J Magn Reson Imaging. 2007 Sep;26(3):529-40. doi: 10.1002/jmri.21030.
Results Reference
background
PubMed Identifier
17695343
Citation
Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007 May;39(2):175-91. doi: 10.3758/bf03193146.
Results Reference
background
PubMed Identifier
20304429
Citation
Goodwin JL, Vasquez MM, Silva GE, Quan SF. Incidence and remission of sleep-disordered breathing and related symptoms in 6- to 17-year old children--the Tucson Children's Assessment of Sleep Apnea Study. J Pediatr. 2010 Jul;157(1):57-61. doi: 10.1016/j.jpeds.2010.01.033. Epub 2010 Mar 20.
Results Reference
background
PubMed Identifier
20965935
Citation
Li AM, So HK, Au CT, Ho C, Lau J, Ng SK, Abdullah VJ, Fok TF, Wing YK. Epidemiology of obstructive sleep apnoea syndrome in Chinese children: a two-phase community study. Thorax. 2010 Nov;65(11):991-7. doi: 10.1136/thx.2010.134858.
Results Reference
background
Citation
Ehlert, L., Roy, B., Sahib, A.K., Song, X., Singh, S., Townsley, M., Kang, D.W., Aysola, R., Wen, E., Woo, M.A., Harper, R.M. & Kumar, R. Diffusion tensor imaging shows brain tissue changes before and after positive airway pressure treatment in patients with obstructive sleep apnea. Society for Neuroscience Annual Meeting, Washington, D.C., 2017.
Results Reference
background
PubMed Identifier
26503297
Citation
Kim H, Joo E, Suh S, Kim JH, Kim ST, Hong SB. Effects of long-term treatment on brain volume in patients with obstructive sleep apnea syndrome. Hum Brain Mapp. 2016 Jan;37(1):395-409. doi: 10.1002/hbm.23038. Epub 2015 Oct 27.
Results Reference
background
PubMed Identifier
20933351
Citation
Kumar R, Delshad S, Macey PM, Woo MA, Harper RM. Development of T2-relaxation values in regional brain sites during adolescence. Magn Reson Imaging. 2011 Feb;29(2):185-93. doi: 10.1016/j.mri.2010.08.006. Epub 2010 Oct 8.
Results Reference
background
PubMed Identifier
21987489
Citation
Kumar R, Delshad S, Woo MA, Macey PM, Harper RM. Age-related regional brain T2-relaxation changes in healthy adults. J Magn Reson Imaging. 2012 Feb;35(2):300-8. doi: 10.1002/jmri.22831. Epub 2011 Oct 10.
Results Reference
background
PubMed Identifier
18458651
Citation
Kumar R, Macey PM, Woo MA, Alger JR, Harper RM. Diffusion tensor imaging demonstrates brainstem and cerebellar abnormalities in congenital central hypoventilation syndrome. Pediatr Res. 2008 Sep;64(3):275-80. doi: 10.1203/PDR.0b013e31817da10a.
Results Reference
background
PubMed Identifier
17075838
Citation
Kumar R, Macey PM, Woo MA, Alger JR, Harper RM. Elevated mean diffusivity in widespread brain regions in congenital central hypoventilation syndrome. J Magn Reson Imaging. 2006 Dec;24(6):1252-8. doi: 10.1002/jmri.20759.
Results Reference
background
PubMed Identifier
15906312
Citation
Kumar R, Macey PM, Woo MA, Alger JR, Keens TG, Harper RM. Neuroanatomic deficits in congenital central hypoventilation syndrome. J Comp Neurol. 2005 Jul 11;487(4):361-71. doi: 10.1002/cne.20565.
Results Reference
background
PubMed Identifier
19822189
Citation
Kumar R, Nguyen HD, Macey PM, Woo MA, Harper RM. Dilated basilar arteries in patients with congenital central hypoventilation syndrome. Neurosci Lett. 2009 Dec 25;467(2):139-43. doi: 10.1016/j.neulet.2009.10.024. Epub 2009 Oct 12.
Results Reference
background
PubMed Identifier
21938736
Citation
Kumar R, Nguyen HD, Macey PM, Woo MA, Harper RM. Regional brain axial and radial diffusivity changes during development. J Neurosci Res. 2012 Feb;90(2):346-55. doi: 10.1002/jnr.22757. Epub 2011 Sep 21.
Results Reference
background
PubMed Identifier
14637309
Citation
Macey PM, Alger JR, Kumar R, Macey KE, Woo MA, Harper RM. Global BOLD MRI changes to ventilatory challenges in congenital central hypoventilation syndrome. Respir Physiol Neurobiol. 2003 Dec 16;139(1):41-50. doi: 10.1016/j.resp.2003.09.006.
Results Reference
background
PubMed Identifier
24346178
Citation
American Society of Anesthesiologists Task Force on Perioperative Management of patients with obstructive sleep apnea. Practice guidelines for the perioperative management of patients with obstructive sleep apnea: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Management of patients with obstructive sleep apnea. Anesthesiology. 2014 Feb;120(2):268-86. doi: 10.1097/ALN.0000000000000053. No abstract available.
Results Reference
background
PubMed Identifier
26904263
Citation
Dehlink E, Tan HL. Update on paediatric obstructive sleep apnoea. J Thorac Dis. 2016 Feb;8(2):224-35. doi: 10.3978/j.issn.2072-1439.2015.12.04.
Results Reference
background
Citation
Paruthi, S. Evaluation of suspected obstructive sleep apnea in children. Edited by A.G. Hoppin, 2019.
Results Reference
background
Citation
Rubinstein, B.J. & Baldassari, C.M. An Update on the management of pediatric obstructive sleep apnea. Curr Treat Options Pediatr 1: 211-223, 2015.
Results Reference
background
PubMed Identifier
26957384
Citation
Wolfe RM, Pomerantz J, Miller DE, Weiss-Coleman R, Solomonides T. Obstructive Sleep Apnea: Preoperative Screening and Postoperative Care. J Am Board Fam Med. 2016 Mar-Apr;29(2):263-75. doi: 10.3122/jabfm.2016.02.150085.
Results Reference
background
Citation
Elliott, C.D. Differential Ability Scales : introductory and technical handbook. San Antonio: Psychological Corp: Harcourt Brace Jovanovich, 1990.
Results Reference
background
Citation
Achenbach TM, R.L. Manual for the ASEBA school-based forms and profiles. Burlington: University of Vermont, Research Center for Children , Youth and Families, 2001.
Results Reference
background
Citation
Barmpoutis, A. & Jiachen, Z. Diffusion kurtosis imaging: robust estimation from DW-MRI using homogeneous polynomials. 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, IL: 262-265, 2011.
Results Reference
background
PubMed Identifier
21594011
Citation
Barmpoutis A, Vemuri BC. A UNIFIED FRAMEWORK FOR ESTIMATING DIFFUSION TENSORS OF ANY ORDER WITH SYMMETRIC POSITIVE-DEFINITE CONSTRAINTS. Proc IEEE Int Symp Biomed Imaging. 2010 Apr 14:1385-1388. doi: 10.1109/ISBI.2010.5490256.
Results Reference
background
PubMed Identifier
15955494
Citation
Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005 Jul 1;26(3):839-51. doi: 10.1016/j.neuroimage.2005.02.018. Epub 2005 Apr 1.
Results Reference
background
PubMed Identifier
25502071
Citation
Woo MA, Palomares JA, Macey PM, Fonarow GC, Harper RM, Kumar R. Global and regional brain mean diffusivity changes in patients with heart failure. J Neurosci Res. 2015 Apr;93(4):678-85. doi: 10.1002/jnr.23525. Epub 2014 Dec 13.
Results Reference
background
PubMed Identifier
15716390
Citation
Wang J, Zhang Y, Wolf RL, Roc AC, Alsop DC, Detre JA. Amplitude-modulated continuous arterial spin-labeling 3.0-T perfusion MR imaging with a single coil: feasibility study. Radiology. 2005 Apr;235(1):218-28. doi: 10.1148/radiol.2351031663. Epub 2005 Feb 16.
Results Reference
background
PubMed Identifier
20211704
Citation
Ogren JA, Macey PM, Kumar R, Woo MA, Harper RM. Central autonomic regulation in congenital central hypoventilation syndrome. Neuroscience. 2010 Jun 2;167(4):1249-56. doi: 10.1016/j.neuroscience.2010.02.078. Epub 2010 Mar 6.
Results Reference
background
PubMed Identifier
18603449
Citation
Chumbley JR, Friston KJ. False discovery rate revisited: FDR and topological inference using Gaussian random fields. Neuroimage. 2009 Jan 1;44(1):62-70. doi: 10.1016/j.neuroimage.2008.05.021. Epub 2008 May 23.
Results Reference
background
PubMed Identifier
17509463
Citation
Bender HA, Marks BC, Brown ER, Zach L, Zaroff CM. Neuropsychologic performance of children with epilepsy on the NEPSY. Pediatr Neurol. 2007 May;36(5):312-7. doi: 10.1016/j.pediatrneurol.2007.01.011.
Results Reference
background
PubMed Identifier
29322860
Citation
Leviton A, Joseph RM, Allred EN, O'Shea TM, Taylor HG, Kuban KKC. Antenatal and Neonatal Antecedents of Executive Dysfunctions in Extremely Preterm Children. J Child Neurol. 2018 Mar;33(3):198-208. doi: 10.1177/0883073817750499. Epub 2018 Jan 11.
Results Reference
background
PubMed Identifier
21166668
Citation
Lind A, Korkman M, Lehtonen L, Lapinleimu H, Parkkola R, Matomaki J, Haataja L; PIPARI Study Group. Cognitive and neuropsychological outcomes at 5 years of age in preterm children born in the 2000s. Dev Med Child Neurol. 2011 Mar;53(3):256-62. doi: 10.1111/j.1469-8749.2010.03828.x. Epub 2010 Dec 17.
Results Reference
background
PubMed Identifier
25896835
Citation
Spencer-Smith MM, Spittle AJ, Lee KJ, Doyle LW, Anderson PJ. Bayley-III Cognitive and Language Scales in Preterm Children. Pediatrics. 2015 May;135(5):e1258-65. doi: 10.1542/peds.2014-3039. Epub 2015 Apr 20.
Results Reference
background
Links:
URL
https://www.cdc.gov/healthyweight/assessing/bmi/childrens_bmi/about_childrens_bmi.html#HowIsBMICalculated.
Description
Centers for Disease Control and Prevention. About Child & Teen BMI

Learn more about this trial

Brain Changes in Pediatric OSA

We'll reach out to this number within 24 hrs