search
Back to results

Fast-track Blood Test for Suspected Fever by Deficiency of a Kind of White Blood Cells As Main Defense Against Infection (FRANCiS-NF)

Primary Purpose

Neutropenic Fever

Status
Recruiting
Phase
Phase 4
Locations
Hong Kong
Study Type
Interventional
Intervention
Meropenem Injection
Levofloxacin
Amoxicillin Clavulanate
Antibiotic
Sponsored by
The University of Hong Kong
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional treatment trial for Neutropenic Fever focused on measuring febrile neutropenia, emergency department, cancer, adult, sepsis, randomized controlled trial, antibiotic stewardship, clinical laboratory services, chemotherapy, hematopoietic stem cell transplantation

Eligibility Criteria

18 Years - undefined (Adult, Older Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria:

  • Age criteria: 18 years old or above; AND
  • Body temperature criteria: Tympanic temperature ≥ 38.3 degree Celsius (100.9 degree Fahrenheit) within 24 hours before emergency department registration; AND
  • Chemotherapy timeframe criteria: Last chemotherapy or targeted therapy within 6 weeks for any solid tumor, or in any period following therapies against leukemia, lymphoma, myelodysplastic syndrome, aplastic anemia, multiple myeloma, or recipient of hematopoietic stem cell transplantation; AND
  • Modified Early Warning Score (MEWS) ≤ 4

Exclusion Criteria:

  • Unable to provide informed consent
  • Previous enrolment to this trial within 180 days, or without current resolution of the first episode
  • Enrolment to other interventional trials within 187 days
  • Sepsis or septic shock
  • Suspected central nervous system infection
  • Severe desaturation (SpO2 < 88% in room air for patients with chronic obstructive pulmonary disease, severe chest wall or spinal disease, neuromuscular disease, severe obesity, cystic fibrosis, bronchiectasis; or < 94% in room air without)
  • Currently on prophylactic antibiotic
  • Any antibiotic treatment for > 48 h within 1 week
  • Known human immunodeficiency virus infection
  • Primary humoral immunodeficiency
  • Complement deficiency
  • Asplenia
  • Vulnerable subjects (illiterate, pregnancy, mentally incapacitated, impoverished, prisoner, subordinate or students of investigators, ethnic minorities)
  • Research staff not available
  • Unable to randomize within 1 hour of emergency department registration
  • Inter-hospital transfer
  • Scheduled "clinical" admissions
  • Body temperature not documented
  • Blood sample not taken in emergency department

Sites / Locations

  • Queen Mary HospitalRecruiting

Arms of the Study

Arm 1

Arm 2

Arm Type

Experimental

Active Comparator

Arm Label

Fast-tRack Absolute Neutrophil Count (FRANC) Protocol

Standard of Care

Arm Description

Patient's blood sample will be expedited for complete blood count with differentials. Intravenous antibiotic is given depending on absolute neutrophil count. If neutropenia is present, broad-spectrum antibiotic (meropenem 1 g or levofloxacin 500 mg) will be given after septic workup within 1 hour of registration in emergency department before transfer to wards. If absent, antibiotic according to "Hospital Authority Interhospital Multi-disciplinary Programme on Antimicrobial ChemoTherapy (IMPACT)" with reference to previous bacterial sensitivity pattern, or amoxiclav 1.2 g if not specified, will be given. Other interventions are given according to clinical needs. The regimen is continued until clinicians recommend an alternative antimicrobial based on clinical grounds, or detection of other pathogens which indicate another antimicrobial.

The control group refers to the existing clinical pathway which guides management of adult patients with suspected NF in ED. Without information of absolute neutrophil count, Meropenem 1 g IV bolus (or Levofloxacin 500 mg IV infusion over 1 hour if Penicillin-allergic) will be given within 1 hour of ED registration after septic workup. Other interventions are given according to clinical needs. Subsequent treatment in wards will be determined by doctor's clinical judgement, on a personalised basis. Each patient will be assessed by a parent team member. There is no standardised antibiotic de-escalation protocol in place, but it is a usual practice to continue Meropenem or Levofloxacin injections until clinical improvement, rising ANC, and negative culture results. After that it will be replaced with an antibiotic with a narrower spectrum, such as oral Amoxiclav, before discharge.

Outcomes

Primary Outcome Measures

Antibiotic stewardship as assessed by proportion of participants receiving Meropenem
Proportion of participants in each group receiving Meropenem

Secondary Outcome Measures

Clinically and/or microbiologically documented infections
Rate and type of documented infective focus
Time to clinical improvement
Days to defervescence (body temperature less than 38 degree Celsius) Days to resolution of symptoms and signs of infection
Incidence of adverse events requiring emergency interventions
Hypotension (systolic blood pressure < 90 mmHg) Respiratory failure (partial pressure of oxygen in arterial blood < 60 mmHg, or 8 kilopascal, adjusted for hyperventilation) Altered mental state (Glasgow Coma Scale < 15) Congestive heart failure documented radiologically Acute kidney injury (serum creatinine > 2x baseline, or estimated glomerular filtration rate (eGFR) > 50 percent increase from baseline, or urine output < 0.5 mL/kg/h x 12 h) Acute liver failure (International Normalised Ratio (INR) > 1.5 in non-warfarin user, hepatic encephalopathy, total bilirubin > 85.5 µmol/L or 5 mg/dL) Rate of therapeutic failure (recurrence of fever after defervescence)
Rate of life-saving interventions
Rate of inotrope/ vasopressor use Rate of assisted / mechanical ventilation Rate of renal replacement therapy Rate of 3 or more units of blood transfusion for haemorrhage Rate of additional antimicrobial treatment Rate of Intensive Care Unit (ICU) admission
Length of hospital stay
Total in-hospital days from the time of index ED admission
Proportion of participants with changes in chemotherapy schedule
Changes in chemotherapy schedule following index admission (postponement, dose reductions, participant defaults)
Unplanned readmission rate
Rates of any readmission except for planned chemotherapy
Overall survival
Time from the day of randomisation to the date of death, all-cause or infection-related
Antibiotics administered
Type and route of antibiotics administered, from the time of randomisation to hospital discharge, or from the time of randomisation to the expected date of completion of prescribed antibiotic courses after discharge, whichever the later
Mean total dose of antibiotics used
Mean total dose of antibiotics used, in milligrams, from the time of randomisation to hospital discharge, or from the time of randomisation to the expected date of completion of prescribed antibiotic courses after discharge, whichever the later
Hospital antibiotics use as total days of antibiotic therapy (DOT)
Total days of therapy (DOT) per admission - the unit measure is defined as one day in which a patient is given a drug, regardless of dose per admission.
Hospital antibiotics use as defined daily dose (DDD) per admission
Defined daily dose (DDD) per admission is the assumed average maintenance dose, in milligrams, per day for a drug used for its main indication.
Microbiological safety as assessed by development of antibiotic resistance
Development of resistance, defined as clinical isolates resistant to antibiotics previously used in the febrile episode. Surveillance sampling will not be conducted.
Health related quality of life as assessed by Functional Assessment of Cancer Therapy - General (FACT-G)
Physical, social, emotional and function well being of participants will be evaluated using the standardised 27-item questionnaire, "Functional Assessment of Cancer Therapy - General" (FACT-G).
Health related quality of life as assessed by Functional Assessment of Cancer Therapy - Neutropenia (FACT-N)
Physical, social, emotional and function well being of participants will be evaluated using the Functional Assessment of Cancer Therapy - Neutropenia (FACT-N). It is a modified version of the Functional Assessment of Cancer Therapy - General (FACT-G) with the Neutropenia subscale, which is targeted for adult cancer patients with neutropenia.
Financial Toxicity related to cancer and its treatment as assessed by Functional Assessment of Chronic Illness Therapy - COprehensive Score for financial Toxicity (FACIT-COST)
Financial toxicity is evaluated using the Functional Assessment of Chronic Illness Therapy - COprehensive Score for financial Toxicity (FACIT-COST). The COST is a patient-reported outcome measure that describes the financial distress experienced by cancer patients. The FACIT System screens for financial toxicity and to provide a global summary item for financial toxicity.

Full Information

First Posted
December 22, 2021
Last Updated
December 5, 2022
Sponsor
The University of Hong Kong
Collaborators
Queen Mary Hospital, Hong Kong
search

1. Study Identification

Unique Protocol Identification Number
NCT05393505
Brief Title
Fast-track Blood Test for Suspected Fever by Deficiency of a Kind of White Blood Cells As Main Defense Against Infection
Acronym
FRANCiS-NF
Official Title
Fast-track Absolute Neutrophil Count in Suspected Neutropenic Fever (The FRANCiS-NF Trial): A Single-centre, Pragmatic, Open-label, Randomised, Controlled Trial
Study Type
Interventional

2. Study Status

Record Verification Date
December 2022
Overall Recruitment Status
Recruiting
Study Start Date
October 24, 2022 (Actual)
Primary Completion Date
March 14, 2025 (Anticipated)
Study Completion Date
June 30, 2025 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Sponsor
Name of the Sponsor
The University of Hong Kong
Collaborators
Queen Mary Hospital, Hong Kong

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Product Manufactured in and Exported from the U.S.
No
Data Monitoring Committee
No

5. Study Description

Brief Summary
This is a comparative study for adult participants with cancer who are suspected to have neutropenic fever (or fever with low neutrophil count) in emergency department. Neutrophil is a kind of defensive white blood cell combating against infection, especially by bacteria and fungi. Low neutrophil can be part of the disease progress or secondary to some cancer treatment. These participants are at high risk of developing infection-related complications including death. Currently a dedicated clinical pathway has been in place in emergency department for suspected neutropenic fever, which offers fast-track medical consultation, blood tests and a very strong antibiotic (meropenem) as the first choice within 1 hour of registration. However, majority of such participants' neutrophil counts are not low. Most of them have no bacterial infection in the body, and have unremarkable short hospital stays. Early administration of meropenem in the majority of cases may be unnecessary and imposes risk of developing antibiotic resistance. This study attempts to answer the question, "In adult participants with cancer presenting to emergency department with suspected neutropenic fever, when compared with conventional treatment, can a new protocol guided by fast-track neutrophil count reduces prescription of meropenem?" Agreed participants will be randomly assigned to the conventional treatment group, or the new treatment group. For those who are assigned to the new treatment group, blood will be taken and sent to the hospital laboratory for urgent analysis of neutrophil count. Participants with proven low neutrophil counts will still receive meropenem, while those without low neutrophil counts will receive less strong antibiotic according to their clinical diagnoses, such as Augmentin. They will be followed up on the first 7 days, and then on the 14th, 30th, 90th, and 180th days after recruitment. Comparisons will be made to see how much less meropenem will be prescribed, and whether more serious adverse events will happen. The study is expected to take 37 months to complete. Duration of data collection, including the day of last follow up, is estimated to be 33 months.
Detailed Description
1. Background 1.a. Burden of neutropenic fever Neutropenic fever (NF), or febrile neutropenia, is characterised by high body temperature and low absolute neutrophil count (ANC) following myelosuppressive cancer treatment.[1] It occurs in 5 - 10 percent of patients with early-stage solid tumours, 20 - 25 percent with non-leukaemic haematological cancers, 85 - 95 percent with acute leukaemia,[2] and 13 - 21 percent with metastatic solid tumours.[1] It is more common after the first cycle of chemotherapy. 7.83 per 1,000 cancer patients were hospitalised for NF annually in the United States (US).[3] With earlier cancer recognition, and more prescriptions of chemotherapeutic agents and targeted therapies, the figures are expected to rise. NF is associated with unplanned chemotherapy interruptions and relative dose intensity (RDI) reductions more than 15 percent, which undermine treatment success rates and overall survival.[2] When complicated by neutropenic sepsis, a dysregulated host response against infection, NF becomes an oncological emergency. The mortality rate is 3 - 18 percent following complications e.g. hypotension, respiratory failure, encephalopathy, cardiac failure and arrhythmia, renal failure, haemorrhage, and admission to intensive care unit (ICU).[4] Risk factors of life-threatening infections are severe neutropenia, protracted neutropenia, and splenectomy.[5] Mortality risk increases with advanced age, comorbidities, clinically documented infection, bacteraemia, leukaemia and lung cancer as underlying malignancies.[4,6] The cost of managing NF remains substantial for healthcare systems worldwide. The mean direct hospitalisation costs in the US, Germany, and Singapore were US$19,110 (1995-2000), €3,950 (2005-2006), and US$4,913 (2009-2012) respectively.[6-8] Higher costs are associated with inpatient treatment, comorbidities, discharge, deaths, male sex, and infection.[9] 1.b. Diagnostic criteria NF is defined by 1) single oral temperature ≥ 38.3 degree Celsius (101ºF), or ≥ 38.0 degree Celsius (100.4ºF) sustained over 1 hour; and 2) ANC < 1.0 x 109/L ("moderate" neutropenia). Neutropenia becomes "severe", "profound" and "protracted" if ANC < 0.5 x 109/L, < 0.1 x 109/L, and lasts for more than one week, respectively.[10] This definition applies to oncological and haematological participants only. c. Aetiology Neutrophils are recruited early during the acute phase of bacterial and fungal infections.[11] Fever may be the only manifestation of infection during neutropenia because the typical signs of inflammation are obscured. Neutropenia is usually acquired by myelosuppressive cancer treatments, and pre-engraftment phases of haematopoietic stem cell transplantation (HSCT). Bone marrow failure and defective neutrophil maturation are other possible mechanisms.[12] NF can have infectious and non-infectious causes. Fever of unknown origin, chemotherapy-related oral mucositis, tumour-related cytokine release, transfusion-related reaction, drug reaction, graft-versus-host disease, and thromboembolism are common non-infective causes.[13] 30 - 50 percent are infections by clinical presentation or microbiology,[14] whilst only 20 - 30 percent are microbiologically documented infections.[15] Bloodstream infections, bacterial translocation from respiratory tract and perianal region, and central venous catheter are major sources. 1.d. Situation in Hong Kong Local public emergency departments (EDs) have implemented clinical pathways for suspected NF, which expedite medical consultation, septic workup, and broad-spectrum antibiotics such as Meropenem or Piperacillin/Tazobactam. The target time from ED registration to antibiotic administration, or Door-To-Antibiotic (DTA) time, is within 1 hour disregarding ANC, in line with international guidelines.[16-18] DTA times are shortened after implementing clinical pathways in local ED.[19] Local epidemiology, antibiotic sensitivity patterns, and healthcare cost in managing NF are understudied. It has been shown that inadequate antibiotic regimen was more significantly associated with ICU admissions and mortality than longer DTA times. Presence of sepsis or septic shock, prior colonisation with drug resistant strains, and risk stratifying indices, are criteria to judge antibiotic adequacy.[20] e. Antibiotic stewardship for cancer participants Participants with cancer are frequently exposed to antibiotics for treatment and prophylaxis, therefore they are more vulnerable to multi-drug resistance, and are in special need for antibiotic stewardship.[21] Broad-spectrum antibiotics are often started empirically in ED for suspected NF, assuming infection by drug-resistant bacteria. However, clinicians may not proactively de-escalate subsequent antibiotics. Prolonged exposures to parenteral broad-spectrum antibiotic impose risks of nosocomial infection and injection site complications. Gram-negative bacilli are more frequent in neutropenia. Staphylococcus aureus, Acinetobacter and Enterobacter species are more frequent in non-neutropenic bloodstream infections.[22] More drug resistant (MDR) strains, such as Extended-spectrum Beta-lactamase (ESBL)-producing Enterobacteriaceae, MDR Pseudomonas aeruginosa, and MDR Acinetobacter were isolated from neutropenic patients in a survey in China.[23] Research (PICO) question In adult participants with cancer presenting to the ED with suspected NF, can an ED protocol guided by Fast-tRack Absolute Neutrophil Count (FRANC protocol) compared with conventional care guided by clinical suspicion alone improve safe antibiotic stewardship? Objective and purpose 3.a. Objectives In adult participants presenting to the ED with suspected NF: To investigate the effectiveness of the FRANC protocol to improve antibiotic stewardship by restricting meropenem use except for confirmed neutropenic or clinically unstable participants; and To investigate the safety of the FRANC protocol. 3.b. Primary hypothesis In participants presenting to ED with suspected NF, the FRANC protocol significantly reduces unnecessary use of Meropenem compared with normal Standard of Care (SoC). 3.c. Secondary hypothesis In participants presenting to ED with suspected NF, there is no significant difference between those receiving the FRANC protocol and those receiving SoC for serious adverse events including death. 4. Methods 4.a. Participants 4.a.1. Target population This trial targets to adult participants attending ED because of fever, who are at risk of neutropenia related to cancer therapies and underlying conditions. 4.a.2. Study location The trial will be conducted in the ED of Queen Mary Hospital with an average annual attendance of 125,000. The hospital is a tertiary referral centre for HSCT and oncological services which received more than 500 adults with suspected NF via the ED in 2019. 4.a.3. Recruitment and screening Alert cards are routinely issued to participants at risk of neutropenia during follow-ups in Clinical Oncology and Haematology centres. They are reminded to visit EDs as soon as possible when fever occurs. A neutropenic risk alert is set to pop up in the Clinical Management System (CMS) that is shared among all public medical facilities. It is valid for 6 weeks from the last chemotherapy against solid tumours, or lifelong for haematological malignancies, and HSCT. When febrile participants with valid alerts attend, the triage nurse will declare "1 - Critical" or "2 - Emergency" categories according to clinical state. Consultations by emergency physician will start within 15 minutes. Participants who receive cancer treatment in other medical facilities will also be included if they meet the same criteria. Participants will then be screened for eligibility by trained research staff for inclusion and exclusion criteria in the ED. Potential participants will be invited to provide informed consent in written, signed, and dated forms. They can decline at any time. 4.a.4. Sample size For antibiotic stewardship A sample size of 344 participants (172 per group) will achieve 80 percent power to detect a superiority difference between two group rates of meropenem prescription. We set the superiority margin at 10 percent and assume that the control group has Meropenem usage rate of 91.8 percent (based on preliminary data) and 71.8 percent for intervention group. The calculation is based on a one-sided Z test at the significance level of 0.05. 4.a.5. Randomisation & allocation concealment We aim to achieve balanced treatment assignments in 1:1 ratio with simple randomisation by a computer-generated code list. The code is not broken until the last participant is enrolled and has completed 180 days of follow-up. It will be implemented using independent electronic case data files to ensure allocation concealment. 4.b. Data processing and analysis 4.b.1. Data processing All data will be entered electronically by research staff to password-protected, secured, web-based system with tailor-made recording forms using tablet computers. 5 percent of all data will be checked for accuracy. All hard copies will be restricted and locked in unit cabinets. All prevailing regulations by The University of Hong Kong and the Hospital Authority will be strictly followed. An audit trail will be made to include the number of participants screened, approached, recruited, and excluded (with reasons). Participant and clinical staff responses, and data completeness will be evaluated. 4.b.2. Data analysis 4.b.2.a. Primary analysis Baseline characteristics between two groups will be assessed for potential imbalances, which will be adjusted for when comparing outcomes. Intention-to-treat (ITT) analysis will be used by imputing all non-responses at follow-up with baseline values, which yields more conservative estimates of effect sizes. The missing data for the primary outcome is expected to be < 1 percent because most data is retrievable from electronic participant records with electronic time stamps. Statistical analysis will be done using Statistical Package of Social Sciences (SPSS) version 26 (IBM SPSS Statistics, New York, US) with biostatistician support. Main effect: Intervention vs. Control on proportion of participants receiving Meropenem in 7 days using Chi-squared test. 4.b.2.b. Secondary analyses All secondary outcomes at different time points using generalised mixed effect model for multiple intra-participant and inter-participant observations. Main and interaction effects will be assessed. Subgroup analysis to primary outcome based on age, gender, type of cancer/ conditions, disease status, therapy received, time interval from last chemotherapy or HSCT to ED registration, at 30, 60, 90 days (4) Sensitivity of ITT and per-protocol analyses for pre-defined co-variates, missing data (including participants lost to follow-up), will be done. Imputation method will depend on actual pattern of missing data. If the attrition rate is more than 5 percent, risks of attribution bias and influence to statistical power will be assessed. Complication rates over time will be compared with Poisson mixed effects models. Uses of inotrope, mechanical ventilation, renal replacement therapy, and ICU are analysed against mortality using appropriate survival analyses with time to event data.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Neutropenic Fever
Keywords
febrile neutropenia, emergency department, cancer, adult, sepsis, randomized controlled trial, antibiotic stewardship, clinical laboratory services, chemotherapy, hematopoietic stem cell transplantation

7. Study Design

Primary Purpose
Treatment
Study Phase
Phase 4
Interventional Study Model
Parallel Assignment
Model Description
This is a single-center, pragmatic, open-labelled, randomized, controlled trial with 1:1 parallel-group assignment, which aims to establish superiority in antibiotic stewardship.
Masking
None (Open Label)
Allocation
Randomized
Enrollment
344 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
Fast-tRack Absolute Neutrophil Count (FRANC) Protocol
Arm Type
Experimental
Arm Description
Patient's blood sample will be expedited for complete blood count with differentials. Intravenous antibiotic is given depending on absolute neutrophil count. If neutropenia is present, broad-spectrum antibiotic (meropenem 1 g or levofloxacin 500 mg) will be given after septic workup within 1 hour of registration in emergency department before transfer to wards. If absent, antibiotic according to "Hospital Authority Interhospital Multi-disciplinary Programme on Antimicrobial ChemoTherapy (IMPACT)" with reference to previous bacterial sensitivity pattern, or amoxiclav 1.2 g if not specified, will be given. Other interventions are given according to clinical needs. The regimen is continued until clinicians recommend an alternative antimicrobial based on clinical grounds, or detection of other pathogens which indicate another antimicrobial.
Arm Title
Standard of Care
Arm Type
Active Comparator
Arm Description
The control group refers to the existing clinical pathway which guides management of adult patients with suspected NF in ED. Without information of absolute neutrophil count, Meropenem 1 g IV bolus (or Levofloxacin 500 mg IV infusion over 1 hour if Penicillin-allergic) will be given within 1 hour of ED registration after septic workup. Other interventions are given according to clinical needs. Subsequent treatment in wards will be determined by doctor's clinical judgement, on a personalised basis. Each patient will be assessed by a parent team member. There is no standardised antibiotic de-escalation protocol in place, but it is a usual practice to continue Meropenem or Levofloxacin injections until clinical improvement, rising ANC, and negative culture results. After that it will be replaced with an antibiotic with a narrower spectrum, such as oral Amoxiclav, before discharge.
Intervention Type
Drug
Intervention Name(s)
Meropenem Injection
Intervention Description
Given if patient has no known allergies at 1 g IV bolus within 1 hour of ED registration, then every 8 hours
Intervention Type
Drug
Intervention Name(s)
Levofloxacin
Intervention Description
Given if patient is allergic to beta lactam at 500 g IV in 100 mL 0.9% sodium chloride solution, infused over 1 hour started within 1 hour of ED registration, then every 24 hours. If the patient can tolerate oral drugs, 500 mg daily after the first IV dose.
Intervention Type
Drug
Intervention Name(s)
Amoxicillin Clavulanate
Other Intervention Name(s)
Augmentin
Intervention Description
Given if patient has no known allergies at 1.2 g IV bolus within 1 hour of ED registration, then every 8 hours. If the patient can tolerate oral drugs, 1 g twice daily after the first IV bolus.
Intervention Type
Drug
Intervention Name(s)
Antibiotic
Other Intervention Name(s)
IMPACT guideline
Intervention Description
Any antibiotic for empirical therapy of common infections as recommended by the fifth version of "Hospital Authority Interhospital Multi-disciplinary Programme on Antimicrobial ChemoTherapy (IMPACT)" guideline, with reference to previous bacterial sensitivity pattern
Primary Outcome Measure Information:
Title
Antibiotic stewardship as assessed by proportion of participants receiving Meropenem
Description
Proportion of participants in each group receiving Meropenem
Time Frame
Up to 7 days post-randomisation
Secondary Outcome Measure Information:
Title
Clinically and/or microbiologically documented infections
Description
Rate and type of documented infective focus
Time Frame
Up to 15 days post-randomisation
Title
Time to clinical improvement
Description
Days to defervescence (body temperature less than 38 degree Celsius) Days to resolution of symptoms and signs of infection
Time Frame
Up to 15 days post-randomisation
Title
Incidence of adverse events requiring emergency interventions
Description
Hypotension (systolic blood pressure < 90 mmHg) Respiratory failure (partial pressure of oxygen in arterial blood < 60 mmHg, or 8 kilopascal, adjusted for hyperventilation) Altered mental state (Glasgow Coma Scale < 15) Congestive heart failure documented radiologically Acute kidney injury (serum creatinine > 2x baseline, or estimated glomerular filtration rate (eGFR) > 50 percent increase from baseline, or urine output < 0.5 mL/kg/h x 12 h) Acute liver failure (International Normalised Ratio (INR) > 1.5 in non-warfarin user, hepatic encephalopathy, total bilirubin > 85.5 µmol/L or 5 mg/dL) Rate of therapeutic failure (recurrence of fever after defervescence)
Time Frame
Up to 15 days post-randomisation
Title
Rate of life-saving interventions
Description
Rate of inotrope/ vasopressor use Rate of assisted / mechanical ventilation Rate of renal replacement therapy Rate of 3 or more units of blood transfusion for haemorrhage Rate of additional antimicrobial treatment Rate of Intensive Care Unit (ICU) admission
Time Frame
Up to 15 days post-randomisation
Title
Length of hospital stay
Description
Total in-hospital days from the time of index ED admission
Time Frame
Up to 180 days post-randomisation
Title
Proportion of participants with changes in chemotherapy schedule
Description
Changes in chemotherapy schedule following index admission (postponement, dose reductions, participant defaults)
Time Frame
Up to 180 days post-randomisation
Title
Unplanned readmission rate
Description
Rates of any readmission except for planned chemotherapy
Time Frame
Up to 30 days post-randomisation
Title
Overall survival
Description
Time from the day of randomisation to the date of death, all-cause or infection-related
Time Frame
Up to 180 days post-randomisation
Title
Antibiotics administered
Description
Type and route of antibiotics administered, from the time of randomisation to hospital discharge, or from the time of randomisation to the expected date of completion of prescribed antibiotic courses after discharge, whichever the later
Time Frame
Up to 180 days post-randomisation
Title
Mean total dose of antibiotics used
Description
Mean total dose of antibiotics used, in milligrams, from the time of randomisation to hospital discharge, or from the time of randomisation to the expected date of completion of prescribed antibiotic courses after discharge, whichever the later
Time Frame
Up to 180 days post-randomisation
Title
Hospital antibiotics use as total days of antibiotic therapy (DOT)
Description
Total days of therapy (DOT) per admission - the unit measure is defined as one day in which a patient is given a drug, regardless of dose per admission.
Time Frame
Up to 180 days post-randomisation
Title
Hospital antibiotics use as defined daily dose (DDD) per admission
Description
Defined daily dose (DDD) per admission is the assumed average maintenance dose, in milligrams, per day for a drug used for its main indication.
Time Frame
Up to 180 days post-randomisation
Title
Microbiological safety as assessed by development of antibiotic resistance
Description
Development of resistance, defined as clinical isolates resistant to antibiotics previously used in the febrile episode. Surveillance sampling will not be conducted.
Time Frame
Up to 180 days post-randomisation
Title
Health related quality of life as assessed by Functional Assessment of Cancer Therapy - General (FACT-G)
Description
Physical, social, emotional and function well being of participants will be evaluated using the standardised 27-item questionnaire, "Functional Assessment of Cancer Therapy - General" (FACT-G).
Time Frame
Up to 180 days post-randomisation
Title
Health related quality of life as assessed by Functional Assessment of Cancer Therapy - Neutropenia (FACT-N)
Description
Physical, social, emotional and function well being of participants will be evaluated using the Functional Assessment of Cancer Therapy - Neutropenia (FACT-N). It is a modified version of the Functional Assessment of Cancer Therapy - General (FACT-G) with the Neutropenia subscale, which is targeted for adult cancer patients with neutropenia.
Time Frame
Up to 180 days post-randomisation
Title
Financial Toxicity related to cancer and its treatment as assessed by Functional Assessment of Chronic Illness Therapy - COprehensive Score for financial Toxicity (FACIT-COST)
Description
Financial toxicity is evaluated using the Functional Assessment of Chronic Illness Therapy - COprehensive Score for financial Toxicity (FACIT-COST). The COST is a patient-reported outcome measure that describes the financial distress experienced by cancer patients. The FACIT System screens for financial toxicity and to provide a global summary item for financial toxicity.
Time Frame
Up to 180 days post-randomisation

10. Eligibility

Sex
All
Minimum Age & Unit of Time
18 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: Age criteria: 18 years old or above; AND Body temperature criteria: Tympanic temperature ≥ 38.3 degree Celsius (100.9 degree Fahrenheit) within 24 hours before emergency department registration; AND Chemotherapy timeframe criteria: Last chemotherapy or targeted therapy within 6 weeks for any solid tumor, or in any period following therapies against leukemia, lymphoma, myelodysplastic syndrome, aplastic anemia, multiple myeloma, or recipient of hematopoietic stem cell transplantation; AND Modified Early Warning Score (MEWS) ≤ 4 Exclusion Criteria: Unable to provide informed consent Previous enrolment to this trial within 180 days, or without current resolution of the first episode Enrolment to other interventional trials within 187 days Sepsis or septic shock Suspected central nervous system infection Severe desaturation (SpO2 < 88% in room air for patients with chronic obstructive pulmonary disease, severe chest wall or spinal disease, neuromuscular disease, severe obesity, cystic fibrosis, bronchiectasis; or < 94% in room air without) Currently on prophylactic antibiotic Any antibiotic treatment for > 48 h within 1 week Known human immunodeficiency virus infection Primary humoral immunodeficiency Complement deficiency Asplenia Vulnerable subjects (illiterate, pregnancy, mentally incapacitated, impoverished, prisoner, subordinate or students of investigators, ethnic minorities) Research staff not available Unable to randomize within 1 hour of emergency department registration Inter-hospital transfer Scheduled "clinical" admissions Body temperature not documented Blood sample not taken in emergency department
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
Timothy Hudson Rainer, MBBCh; MRCP
Phone
+852-93133096
Email
thrainer@hku.hk
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Timothy Hudson Rainer, MBBCh; MRCP
Organizational Affiliation
Department of Emergency Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong
Official's Role
Principal Investigator
Facility Information:
Facility Name
Queen Mary Hospital
City
Hong Kong
Country
Hong Kong
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Timothy Hudson Rainer, MBBCh, MRCP
Phone
+852-93133096
Email
thrainer@hku.hk

12. IPD Sharing Statement

Plan to Share IPD
No
Citations:
PubMed Identifier
25491042
Citation
Weycker D, Li X, Edelsberg J, Barron R, Kartashov A, Xu H, Lyman GH. Risk and Consequences of Chemotherapy-Induced Febrile Neutropenia in Patients With Metastatic Solid Tumors. J Oncol Pract. 2015 Jan;11(1):47-54. doi: 10.1200/JOP.2014.001492. Epub 2014 Dec 9.
Results Reference
background
PubMed Identifier
24706592
Citation
Culakova E, Thota R, Poniewierski MS, Kuderer NM, Wogu AF, Dale DC, Crawford J, Lyman GH. Patterns of chemotherapy-associated toxicity and supportive care in US oncology practice: a nationwide prospective cohort study. Cancer Med. 2014 Apr;3(2):434-44. doi: 10.1002/cam4.200. Epub 2014 Feb 17.
Results Reference
background
PubMed Identifier
15751024
Citation
Caggiano V, Weiss RV, Rickert TS, Linde-Zwirble WT. Incidence, cost, and mortality of neutropenia hospitalization associated with chemotherapy. Cancer. 2005 May 1;103(9):1916-24. doi: 10.1002/cncr.20983.
Results Reference
background
PubMed Identifier
17689933
Citation
Klastersky J, Ameye L, Maertens J, Georgala A, Muanza F, Aoun M, Ferrant A, Rapoport B, Rolston K, Paesmans M. Bacteraemia in febrile neutropenic cancer patients. Int J Antimicrob Agents. 2007 Nov;30 Suppl 1:S51-9. doi: 10.1016/j.ijantimicag.2007.06.012. Epub 2007 Aug 8.
Results Reference
background
PubMed Identifier
5216294
Citation
Bodey GP, Buckley M, Sathe YS, Freireich EJ. Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann Intern Med. 1966 Feb;64(2):328-40. doi: 10.7326/0003-4819-64-2-328. No abstract available.
Results Reference
background
PubMed Identifier
16575919
Citation
Kuderer NM, Dale DC, Crawford J, Cosler LE, Lyman GH. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer. 2006 May 15;106(10):2258-66. doi: 10.1002/cncr.21847.
Results Reference
background
PubMed Identifier
21577029
Citation
Ihbe-Heffinger A, Paessens BJ, von Schilling C, Shlaen M, Gottschalk N, Berger K, Bernard R, Kiechle M, Peschel C, Jacobs VR. Management of febrile neutropenia--a German prospective hospital cost analysis in lymphoproliferative disorders, non-small cell lung cancer, and primary breast cancer. Onkologie. 2011;34(5):241-6. doi: 10.1159/000327711. Epub 2011 Apr 26.
Results Reference
background
PubMed Identifier
25252614
Citation
Wang XJ, Wong M, Hsu LY, Chan A. Costs associated with febrile neutropenia in solid tumor and lymphoma patients - an observational study in Singapore. BMC Health Serv Res. 2014 Sep 24;14:434. doi: 10.1186/1472-6963-14-434.
Results Reference
background
PubMed Identifier
25600838
Citation
Wang XJ, Lopez SE, Chan A. Economic burden of chemotherapy-induced febrile neutropenia in patients with lymphoma: a systematic review. Crit Rev Oncol Hematol. 2015 May;94(2):201-12. doi: 10.1016/j.critrevonc.2014.12.011. Epub 2014 Dec 31.
Results Reference
background
PubMed Identifier
30179565
Citation
Taplitz RA, Kennedy EB, Bow EJ, Crews J, Gleason C, Hawley DK, Langston AA, Nastoupil LJ, Rajotte M, Rolston KV, Strasfeld L, Flowers CR. Antimicrobial Prophylaxis for Adult Patients With Cancer-Related Immunosuppression: ASCO and IDSA Clinical Practice Guideline Update. J Clin Oncol. 2018 Oct 20;36(30):3043-3054. doi: 10.1200/JCO.18.00374. Epub 2018 Sep 4.
Results Reference
background
PubMed Identifier
16407783
Citation
Kobayashi SD, Voyich JM, Burlak C, DeLeo FR. Neutrophils in the innate immune response. Arch Immunol Ther Exp (Warsz). 2005 Nov-Dec;53(6):505-17.
Results Reference
background
PubMed Identifier
11957188
Citation
Boxer L, Dale DC. Neutropenia: causes and consequences. Semin Hematol. 2002 Apr;39(2):75-81. doi: 10.1053/shem.2002.31911.
Results Reference
background
PubMed Identifier
28441374
Citation
Pasikhova Y, Ludlow S, Baluch A. Fever in Patients With Cancer. Cancer Control. 2017 Apr;24(2):193-197. doi: 10.1177/107327481702400212.
Results Reference
background
Citation
Castagnola E, Mikulska M, Viscoli C. Prophylaxis and Empirical Therapy of Infection in Cancer Patients. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. 2015:3395-3413.e2. doi: 10.1016/B978-1-4557-4801-3.00310-6. Epub 2014 Oct 31. PMCID: PMC7173426.
Results Reference
background
PubMed Identifier
7078399
Citation
Pizzo PA, Robichaud KJ, Wesley R, Commers JR. Fever in the pediatric and young adult patient with cancer. A prospective study of 1001 episodes. Medicine (Baltimore). 1982 May;61(3):153-65. doi: 10.1097/00005792-198205000-00003. No abstract available.
Results Reference
background
PubMed Identifier
29461916
Citation
Taplitz RA, Kennedy EB, Bow EJ, Crews J, Gleason C, Hawley DK, Langston AA, Nastoupil LJ, Rajotte M, Rolston K, Strasfeld L, Flowers CR. Outpatient Management of Fever and Neutropenia in Adults Treated for Malignancy: American Society of Clinical Oncology and Infectious Diseases Society of America Clinical Practice Guideline Update. J Clin Oncol. 2018 May 10;36(14):1443-1453. doi: 10.1200/JCO.2017.77.6211. Epub 2018 Feb 20.
Results Reference
background
PubMed Identifier
29675566
Citation
Levy MM, Evans LE, Rhodes A. The Surviving Sepsis Campaign Bundle: 2018 update. Intensive Care Med. 2018 Jun;44(6):925-928. doi: 10.1007/s00134-018-5085-0. Epub 2018 Apr 19. No abstract available.
Results Reference
background
PubMed Identifier
25306894
Citation
Ko HF, Tsui SS, Tse JW, Kwong WY, Chan OY, Wong GC. Improving the emergency department management of post-chemotherapy sepsis in haematological malignancy patients. Hong Kong Med J. 2015 Feb;21(1):10-5. doi: 10.12809/hkmj144280. Epub 2014 Oct 10.
Results Reference
background
PubMed Identifier
32109264
Citation
Peyrony O, Gerlier C, Barla I, Ellouze S, Legay L, Azoulay E, Chevret S, Fontaine JP. Antibiotic prescribing and outcomes in cancer patients with febrile neutropenia in the emergency department. PLoS One. 2020 Feb 28;15(2):e0229828. doi: 10.1371/journal.pone.0229828. eCollection 2020.
Results Reference
background
PubMed Identifier
21258094
Citation
Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, Raad II, Rolston KV, Young JA, Wingard JR; Infectious Diseases Society of America. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2011 Feb 15;52(4):e56-93. doi: 10.1093/cid/cir073.
Results Reference
background
PubMed Identifier
16424972
Citation
Velasco E, Byington R, Martins CA, Schirmer M, Dias LM, Goncalves VM. Comparative study of clinical characteristics of neutropenic and non-neutropenic adult cancer patients with bloodstream infections. Eur J Clin Microbiol Infect Dis. 2006 Jan;25(1):1-7. doi: 10.1007/s10096-005-0077-8.
Results Reference
background
PubMed Identifier
30423039
Citation
Zhu J, Zhou K, Jiang Y, Liu H, Bai H, Jiang J, Gao Y, Cai Q, Tong Y, Song X, Wang C, Wan L. Bacterial Pathogens Differed Between Neutropenic and Non-neutropenic Patients in the Same Hematological Ward: An 8-Year Survey. Clin Infect Dis. 2018 Nov 13;67(suppl_2):S174-S178. doi: 10.1093/cid/ciy643.
Results Reference
background
PubMed Identifier
25601429
Citation
So SN, Ong CW, Wong LY, Chung JY, Graham CA. Is the Modified Early Warning Score able to enhance clinical observation to detect deteriorating patients earlier in an Accident & Emergency Department? Australas Emerg Nurs J. 2015 Feb;18(1):24-32. doi: 10.1016/j.aenj.2014.12.001. Epub 2015 Jan 15.
Results Reference
background
Links:
URL
https://www.nice.org.uk/guidance/cg151
Description
National Institute for Health and Care Excellence: Guidance. Neutropenic Sepsis: Prevention and Management of Neutropenic Sepsis in Cancer Patients
URL
https://www.chp.gov.hk/files/pdf/reducing_bacterial_resistance_with_impact.pdf
Description
Reducing bacterial resistance with IMPACT - Interhospital Multi-disciplinary Programme on. Antimicrobial ChemoTherapy (version 5.0)

Learn more about this trial

Fast-track Blood Test for Suspected Fever by Deficiency of a Kind of White Blood Cells As Main Defense Against Infection

We'll reach out to this number within 24 hrs