search
Back to results

Measured vs Navigated Techniques in Total Hip Arthroplasty

Primary Purpose

Osteoarthritis, Hip

Status
Not yet recruiting
Phase
Not Applicable
Locations
Study Type
Interventional
Intervention
Measured Technique
Navigated Technique
Sponsored by
Ottawa Hospital Research Institute
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional treatment trial for Osteoarthritis, Hip

Eligibility Criteria

undefined - undefined (Child, Adult, Older Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria:

  • Patients who are signed for a THA for primary or secondary osteoarthritis without overt deformity that would require revision type implants and with good enough bone quality to be listed for uncemented component implantation.

Exclusion Criteria:

  • Secondary OA due to Dysplasia (Hartofilakidis >1)
  • Avascular necrosis of the hip with destruction of joint structure
  • Sequelae of Pediatric deformity with abnormal anatomy
  • Cemented fixation of femur or acetabulum
  • Previous arthroplasty-type procedure
  • Previous septic arthritis of the hip

Sites / Locations

    Arms of the Study

    Arm 1

    Arm 2

    Arm Type

    Experimental

    Experimental

    Arm Label

    Measured Technique

    Navigated Technique

    Arm Description

    Patients in this group will have pre-operative planning done using the measured technique.

    Patients in this group will have pre-operative planning done using the navigated technique.

    Outcomes

    Primary Outcome Measures

    Change in Pain Assessment - Oxford Hip Score
    The Oxford Hip Score will be given to patients to assess subjective measures of hip pain. Scores for each question from 0 to 4 with 4 being the best outcome. This method, when summed, produces overall scores running from 0 to 48 with 48 being the best outcome
    Change in mobility, self-care, usual activities, pain/discomfort and anxiety/depression- EuroQol
    the EuroQol (EQ-5D-5L) will be given to patients to assess subjective measures mobility, self-care, usual activities, pain/discomfort and anxiety/depression. Each dimension in the EQ-5D-5L has five response levels: no problems (Level 1); slight; moderate; severe; and extreme problems (Level 5). The maximum score of 1 indicates the best health state, by contrast with the scores of individual questions, where higher scores indicate more severe or frequent problems.
    Change in physical, mental, and social health- PROMIS Global-10
    the PROMIS Global-10 will be given to patients to assess subjective measures of physical, mental and social health. It is a 10-item patient-reported questionnaire in which the response options are presented as 5-point (as well as a single 11-point) rating scales. The results of the questions are used to calculate two summary scores: a Global Physical Health Score and a Global Mental Health score. Higher scores indicate worse physical and mental health
    Adverse Events
    Serious adverse events will be monitored. This includes: Wound complication Dislocation Fracture Infection Re-operation Revision surgery

    Secondary Outcome Measures

    Accuracy of reconstruction (in mm)
    A measure (in mm) of how close the planned to actual reconstruction using the aforementioned reconstruction parameters. This will be assessed using: Acetabular component orientation Accuracy of acetabular component orientation o Accuracy of femoral version restoration Combined version of arthroplasty in degrees Accuracy of combined version restoration Femoral Offset in mm o Accuracy of achieving femoral offset Acetabular offset in mm o Accuracy of achieving acetabular offset Total offset in mm o Accuracy of achieving total offset Leg Length in mm o Accuracy of achieving leg length
    Comparison of margin of error
    This outcome will measure what the margin of error is between intra-operatively measured values and those determined from the post-operative CT scan. This will be done using statistical analysis of data for patients in both study arms.
    Accuracy of reconstruction on outcome
    This outcome measure will assess the accuracy of reconstruction correlate with outcome (adverse events and PROMs). This will be done by analyzing accuracy as depicted by the variables in outcome measure 5, and how these measures of accuracy correlate to patient reported outcome measure scores and rates of adverse events
    Accuracy of reconstruction (in degrees)
    A measure (in degrees) of how close the planned to actual reconstruction using the aforementioned reconstruction parameters. This will be assessed using: Acetabular component orientation (Radiographic inclination/anteversion in degrees as per Murray) Accuracy of acetabular component orientation (i.e. deviation from target - aim for deviation of < ±5˚) ● Femoral Component Version in degrees Accuracy of femoral version restoration (aim for version difference to be less than ±5˚ from pre-operative plan) ● Combined version of arthroplasty in degrees Accuracy of combined version restoration (sum of acetabular and femoral version; aim for combined version to be less than ±10˚ from pre-operative plan)

    Full Information

    First Posted
    December 10, 2021
    Last Updated
    May 25, 2022
    Sponsor
    Ottawa Hospital Research Institute
    Collaborators
    FormusLab
    search

    1. Study Identification

    Unique Protocol Identification Number
    NCT05393778
    Brief Title
    Measured vs Navigated Techniques in Total Hip Arthroplasty
    Official Title
    Accuracy in aChieving Optimum reconstrUction: Measured- vs. Navigation- Techniques in Hip Arthroplasty
    Study Type
    Interventional

    2. Study Status

    Record Verification Date
    May 2022
    Overall Recruitment Status
    Not yet recruiting
    Study Start Date
    July 1, 2022 (Anticipated)
    Primary Completion Date
    July 1, 2024 (Anticipated)
    Study Completion Date
    September 1, 2024 (Anticipated)

    3. Sponsor/Collaborators

    Responsible Party, by Official Title
    Sponsor
    Name of the Sponsor
    Ottawa Hospital Research Institute
    Collaborators
    FormusLab

    4. Oversight

    Studies a U.S. FDA-regulated Drug Product
    No
    Studies a U.S. FDA-regulated Device Product
    No
    Data Monitoring Committee
    Yes

    5. Study Description

    Brief Summary
    Accurate reconstruction of the native hip parameters following total hip arthroplasty is associated with improved outcome. In order to improve ability for optimum reconstruction, 3-D templating software can be utilized that provide detailed information regarding native anatomy. In order to achieve reconstruction within acceptable parameters as per pre-operative plan, some surgeons propose the use of intra-operative devices that measure component orientation and joint reconstruction ("Measured-THA"), whilst others propose the use of navigation tools ("Navigation-THA). Both techniques have shown superiority compared to the most commonly used "freehand" technique, but no prior study has assessed for superiority between these 2 techniques. Furthermore, to-date assessment of post-operative reconstruction has not been tested in detail as post-THA assessments are based on radiographs which provide incomplete, 2-dimensional, assessments and are lacking the important axial plane reconstruction parameters. The aims of this prospective, randomized, trial are to 1. appraise the ability to achieve the pre-operative 3-D plan (as per FormusLab) through a comparison of pre-op plan to post-operative reconstruction; 2. compare ability to accurately reconstruct hip following THA between "navigated-" (IntelliJoint®) and "measured-" techniques; and in doing so it will also 3. assess the accuracy of the intra-operative assessments of reconstruction through a comparison of objective (i.e. measured) intra-operative assessments with the post-operative reconstructions achieved.

    6. Conditions and Keywords

    Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
    Osteoarthritis, Hip

    7. Study Design

    Primary Purpose
    Treatment
    Study Phase
    Not Applicable
    Interventional Study Model
    Parallel Assignment
    Masking
    Participant
    Allocation
    Randomized
    Enrollment
    100 (Anticipated)

    8. Arms, Groups, and Interventions

    Arm Title
    Measured Technique
    Arm Type
    Experimental
    Arm Description
    Patients in this group will have pre-operative planning done using the measured technique.
    Arm Title
    Navigated Technique
    Arm Type
    Experimental
    Arm Description
    Patients in this group will have pre-operative planning done using the navigated technique.
    Intervention Type
    Procedure
    Intervention Name(s)
    Measured Technique
    Intervention Description
    Manual intra-operative checks and tools are used to aid in component placement during surgery.
    Intervention Type
    Procedure
    Intervention Name(s)
    Navigated Technique
    Intervention Description
    IntelliJoint® navigation is an imageless-based navigation system that utilizes a miniature infrared camera and microelectronics to measure hip center of rotation, acetabular inclination and version, leg length, and offset. The device provides accurate real-time data on implant positioning to aid in placement of the components during surgery.
    Primary Outcome Measure Information:
    Title
    Change in Pain Assessment - Oxford Hip Score
    Description
    The Oxford Hip Score will be given to patients to assess subjective measures of hip pain. Scores for each question from 0 to 4 with 4 being the best outcome. This method, when summed, produces overall scores running from 0 to 48 with 48 being the best outcome
    Time Frame
    once pre-operatively and once one-year post-operatively
    Title
    Change in mobility, self-care, usual activities, pain/discomfort and anxiety/depression- EuroQol
    Description
    the EuroQol (EQ-5D-5L) will be given to patients to assess subjective measures mobility, self-care, usual activities, pain/discomfort and anxiety/depression. Each dimension in the EQ-5D-5L has five response levels: no problems (Level 1); slight; moderate; severe; and extreme problems (Level 5). The maximum score of 1 indicates the best health state, by contrast with the scores of individual questions, where higher scores indicate more severe or frequent problems.
    Time Frame
    once pre-operatively and once one-year post-operatively
    Title
    Change in physical, mental, and social health- PROMIS Global-10
    Description
    the PROMIS Global-10 will be given to patients to assess subjective measures of physical, mental and social health. It is a 10-item patient-reported questionnaire in which the response options are presented as 5-point (as well as a single 11-point) rating scales. The results of the questions are used to calculate two summary scores: a Global Physical Health Score and a Global Mental Health score. Higher scores indicate worse physical and mental health
    Time Frame
    once pre-operatively and once one-year post-operatively
    Title
    Adverse Events
    Description
    Serious adverse events will be monitored. This includes: Wound complication Dislocation Fracture Infection Re-operation Revision surgery
    Time Frame
    90 days post-operatively
    Secondary Outcome Measure Information:
    Title
    Accuracy of reconstruction (in mm)
    Description
    A measure (in mm) of how close the planned to actual reconstruction using the aforementioned reconstruction parameters. This will be assessed using: Acetabular component orientation Accuracy of acetabular component orientation o Accuracy of femoral version restoration Combined version of arthroplasty in degrees Accuracy of combined version restoration Femoral Offset in mm o Accuracy of achieving femoral offset Acetabular offset in mm o Accuracy of achieving acetabular offset Total offset in mm o Accuracy of achieving total offset Leg Length in mm o Accuracy of achieving leg length
    Time Frame
    post-operatively (within one week post-operatively)
    Title
    Comparison of margin of error
    Description
    This outcome will measure what the margin of error is between intra-operatively measured values and those determined from the post-operative CT scan. This will be done using statistical analysis of data for patients in both study arms.
    Time Frame
    Through study completion, an average of 1 year
    Title
    Accuracy of reconstruction on outcome
    Description
    This outcome measure will assess the accuracy of reconstruction correlate with outcome (adverse events and PROMs). This will be done by analyzing accuracy as depicted by the variables in outcome measure 5, and how these measures of accuracy correlate to patient reported outcome measure scores and rates of adverse events
    Time Frame
    Through study completion, an average of 1 year
    Title
    Accuracy of reconstruction (in degrees)
    Description
    A measure (in degrees) of how close the planned to actual reconstruction using the aforementioned reconstruction parameters. This will be assessed using: Acetabular component orientation (Radiographic inclination/anteversion in degrees as per Murray) Accuracy of acetabular component orientation (i.e. deviation from target - aim for deviation of < ±5˚) ● Femoral Component Version in degrees Accuracy of femoral version restoration (aim for version difference to be less than ±5˚ from pre-operative plan) ● Combined version of arthroplasty in degrees Accuracy of combined version restoration (sum of acetabular and femoral version; aim for combined version to be less than ±10˚ from pre-operative plan)
    Time Frame
    post-operatively (within one week post-operatively)

    10. Eligibility

    Sex
    All
    Accepts Healthy Volunteers
    No
    Eligibility Criteria
    Inclusion Criteria: Patients who are signed for a THA for primary or secondary osteoarthritis without overt deformity that would require revision type implants and with good enough bone quality to be listed for uncemented component implantation. Exclusion Criteria: Secondary OA due to Dysplasia (Hartofilakidis >1) Avascular necrosis of the hip with destruction of joint structure Sequelae of Pediatric deformity with abnormal anatomy Cemented fixation of femur or acetabulum Previous arthroplasty-type procedure Previous septic arthritis of the hip
    Central Contact Person:
    First Name & Middle Initial & Last Name or Official Title & Degree
    Isabel Horton
    Phone
    613-737-8899
    Ext
    73032
    Email
    ihorton@ohri.ca
    Overall Study Officials:
    First Name & Middle Initial & Last Name & Degree
    George Grammatopoulos, MD
    Organizational Affiliation
    The Ottawa Hospital
    Official's Role
    Principal Investigator

    12. IPD Sharing Statement

    Citations:
    PubMed Identifier
    33840537
    Citation
    Fang CJ, Shaker JM, Ward DM, Jawa A, Mattingly DA, Smith EL. Financial Burden of Revision Hip and Knee Arthroplasty at an Orthopedic Specialty Hospital: Higher Costs and Unequal Reimbursements. J Arthroplasty. 2021 Aug;36(8):2680-2684. doi: 10.1016/j.arth.2021.03.044. Epub 2021 Mar 23.
    Results Reference
    background
    PubMed Identifier
    33869155
    Citation
    Hu X, Zheng N, Chen Y, Dai K, Dimitriou D, Li H, Tsai TY. Optimizing the Femoral Offset for Restoring Physiological Hip Muscle Function in Patients With Total Hip Arthroplasty. Front Bioeng Biotechnol. 2021 Mar 30;9:645019. doi: 10.3389/fbioe.2021.645019. eCollection 2021.
    Results Reference
    background
    PubMed Identifier
    25628277
    Citation
    Grammatopoulos G, Thomas GE, Pandit H, Beard DJ, Gill HS, Murray DW. The effect of orientation of the acetabular component on outcome following total hip arthroplasty with small diameter hard-on-soft bearings. Bone Joint J. 2015 Feb;97-B(2):164-72. doi: 10.1302/0301-620X.97B2.34294.
    Results Reference
    background
    PubMed Identifier
    34143758
    Citation
    Agarwal S, Eckhard L, Walter WL, Peng A, Hatton A, Donnelly B, de Steiger R. The Use of Computer Navigation in Total Hip Arthroplasty Is Associated with a Reduced Rate of Revision for Dislocation: A Study of 6,912 Navigated THA Procedures from the Australian Orthopaedic Association National Joint Replacement Registry. J Bone Joint Surg Am. 2021 Oct 20;103(20):1900-1905. doi: 10.2106/JBJS.20.00950.
    Results Reference
    background
    PubMed Identifier
    16124957
    Citation
    Shon WY, Baldini T, Peterson MG, Wright TM, Salvati EA. Impingement in total hip arthroplasty a study of retrieved acetabular components. J Arthroplasty. 2005 Jun;20(4):427-35. doi: 10.1016/j.arth.2004.09.058.
    Results Reference
    background
    PubMed Identifier
    24088968
    Citation
    Barrack RL, Krempec JA, Clohisy JC, McDonald DJ, Ricci WM, Ruh EL, Nunley RM. Accuracy of acetabular component position in hip arthroplasty. J Bone Joint Surg Am. 2013 Oct 2;95(19):1760-8. doi: 10.2106/JBJS.L.01704.
    Results Reference
    background
    PubMed Identifier
    20717858
    Citation
    Callanan MC, Jarrett B, Bragdon CR, Zurakowski D, Rubash HE, Freiberg AA, Malchau H. The John Charnley Award: risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital. Clin Orthop Relat Res. 2011 Feb;469(2):319-29. doi: 10.1007/s11999-010-1487-1.
    Results Reference
    background
    PubMed Identifier
    17297597
    Citation
    Bosker BH, Verheyen CC, Horstmann WG, Tulp NJ. Poor accuracy of freehand cup positioning during total hip arthroplasty. Arch Orthop Trauma Surg. 2007 Jul;127(5):375-9. doi: 10.1007/s00402-007-0294-y. Epub 2007 Feb 13.
    Results Reference
    background
    PubMed Identifier
    28559196
    Citation
    Schwarzkopf R, Muir JM, Paprosky WG, Seymour S, Cross MB, Vigdorchik JM. Quantifying Pelvic Motion During Total Hip Arthroplasty Using a New Surgical Navigation Device. J Arthroplasty. 2017 Oct;32(10):3056-3060. doi: 10.1016/j.arth.2017.04.046. Epub 2017 May 4.
    Results Reference
    background
    PubMed Identifier
    30798733
    Citation
    Pongkunakorn A, Chatmaitri S, Diewwattanawiwat K. Use of smartphone to improve acetabular component positioning in total hip athroplasty: A comparative clinical study. J Orthop Surg (Hong Kong). 2019 Jan-Apr;27(1):2309499019825578. doi: 10.1177/2309499019825578. Erratum In: J Orthop Surg (Hong Kong). 2019 Jan-Apr;27(1):2309499019834501.
    Results Reference
    background
    PubMed Identifier
    30905998
    Citation
    Gupta R, Pathak P, Singh R, Majumdar KP. Double-Stitch Technique: A Simple and Effective Method to Minimize Limb Length Discrepancy after Total Hip Arthroplasty. Indian J Orthop. 2019 Jan-Feb;53(1):169-173. doi: 10.4103/ortho.IJOrtho_188_18.
    Results Reference
    background
    PubMed Identifier
    32075628
    Citation
    Mitsutake R, Tanino H, Nishida Y, Higa M, Ito H. A simple angle-measuring instrument for measuring cemented stem anteversion during total hip arthroplasty. BMC Musculoskelet Disord. 2020 Feb 19;21(1):113. doi: 10.1186/s12891-020-3142-7.
    Results Reference
    background
    PubMed Identifier
    20852974
    Citation
    Steppacher SD, Kowal JH, Murphy SB. Improving cup positioning using a mechanical navigation instrument. Clin Orthop Relat Res. 2011 Feb;469(2):423-8. doi: 10.1007/s11999-010-1553-8.
    Results Reference
    background
    PubMed Identifier
    24589784
    Citation
    Meermans G, Van Doorn WJ, Koenraadt K, Kats J. The use of the transverse acetabular ligament for determining the orientation of the components in total hip replacement: a randomised controlled trial. Bone Joint J. 2014 Mar;96-B(3):312-8. doi: 10.1302/0301-620X.96B3.32989.
    Results Reference
    background
    PubMed Identifier
    27920583
    Citation
    Paprosky WG, Muir JM. Intellijoint HIP(R): a 3D mini-optical navigation tool for improving intraoperative accuracy during total hip arthroplasty. Med Devices (Auckl). 2016 Nov 18;9:401-408. doi: 10.2147/MDER.S119161. eCollection 2016.
    Results Reference
    background
    PubMed Identifier
    29606894
    Citation
    Parvizi J, Benson JR, Muir JM. A new mini-navigation tool allows accurate component placement during anterior total hip arthroplasty. Med Devices (Auckl). 2018 Mar 22;11:95-104. doi: 10.2147/MDER.S151835. eCollection 2018.
    Results Reference
    background
    PubMed Identifier
    31506002
    Citation
    Kievit AJ, Dobbe JGG, Mallee WH, Blankevoort L, Streekstra GJ, Schafroth MU. Accuracy of cup placement in total hip arthroplasty by means of a mechanical positioning device: a comprehensive cadaveric 3d analysis of 16 specimens. Hip Int. 2021 Jan;31(1):58-65. doi: 10.1177/1120700019874822. Epub 2019 Sep 11.
    Results Reference
    background
    PubMed Identifier
    28556582
    Citation
    Snijders T, van Gaalen SM, de Gast A. Precision and accuracy of imageless navigation versus freehand implantation of total hip arthroplasty: A systematic review and meta-analysis. Int J Med Robot. 2017 Dec;13(4). doi: 10.1002/rcs.1843. Epub 2017 May 29.
    Results Reference
    background
    PubMed Identifier
    33773864
    Citation
    Singh V, Realyvasquez J, Simcox T, Rozell JC, Schwarzkopf R, Davidovitch RI. Robotics Versus Navigation Versus Conventional Total Hip Arthroplasty: Does the Use of Technology Yield Superior Outcomes? J Arthroplasty. 2021 Aug;36(8):2801-2807. doi: 10.1016/j.arth.2021.02.074. Epub 2021 Mar 5.
    Results Reference
    background
    PubMed Identifier
    31651318
    Citation
    Koper MC, Reijman M, van Es EM, Waarsing JH, Koot HWJ, Keizer SB, Jansen I, van Biezen FC, Verhaar JAN, Bos PK. No added value for Computer-Assisted surgery to improve femoral component positioning and Patient Reported Outcomes in Hip Resurfacing Arthroplasty; a multi-center randomized controlled trial. BMC Musculoskelet Disord. 2019 Oct 25;20(1):473. doi: 10.1186/s12891-019-2883-7.
    Results Reference
    background
    PubMed Identifier
    28887022
    Citation
    Innmann MM, Maier MW, Streit MR, Grammatopoulos G, Bruckner T, Gotterbarm T, Merle C. Additive Influence of Hip Offset and Leg Length Reconstruction on Postoperative Improvement in Clinical Outcome After Total Hip Arthroplasty. J Arthroplasty. 2018 Jan;33(1):156-161. doi: 10.1016/j.arth.2017.08.007. Epub 2017 Aug 12.
    Results Reference
    background
    PubMed Identifier
    29781288
    Citation
    Schiffner E, Latz D, Jungbluth P, Grassmann JP, Tanner S, Karbowski A, Windolf J, Schneppendahl J. Is computerised 3D templating more accurate than 2D templating to predict size of components in primary total hip arthroplasty? Hip Int. 2019 May;29(3):270-275. doi: 10.1177/1120700018776311. Epub 2018 May 20.
    Results Reference
    background
    PubMed Identifier
    19837559
    Citation
    Minoda Y, Ohzono K, Aihara M, Umeda N, Tomita M, Hayakawa K. Are acetabular component alignment guides for total hip arthroplasty accurate? J Arthroplasty. 2010 Sep;25(6):986-9. doi: 10.1016/j.arth.2009.07.016. Epub 2009 Oct 17.
    Results Reference
    background
    PubMed Identifier
    26733639
    Citation
    Beverland DE, O'Neill CK, Rutherford M, Molloy D, Hill JC. Placement of the acetabular component. Bone Joint J. 2016 Jan;98-B(1 Suppl A):37-43. doi: 10.1302/0301-620X.98B1.36343.
    Results Reference
    background
    PubMed Identifier
    22865253
    Citation
    Bonnin MP, Archbold PH, Basiglini L, Fessy MH, Beverland DE. Do we medialise the hip centre of rotation in total hip arthroplasty? Influence of acetabular offset and surgical technique. Hip Int. 2012 Jul-Aug;22(4):371-8. doi: 10.5301/HIP.2012.9350.
    Results Reference
    background
    PubMed Identifier
    31122846
    Citation
    Merle C, Innmann MM, Waldstein W, Pegg EC, Aldinger PR, Gill HS, Murray DW, Grammatopoulos G. High Variability of Acetabular Offset in Primary Hip Osteoarthritis Influences Acetabular Reaming-A Computed Tomography-Based Anatomic Study. J Arthroplasty. 2019 Aug;34(8):1808-1814. doi: 10.1016/j.arth.2019.03.065. Epub 2019 Apr 1.
    Results Reference
    background
    PubMed Identifier
    25922452
    Citation
    Meermans G, Goetheer-Smits I, Lim RF, Van Doorn WJ, Kats J. The difference between the radiographic and the operative angle of inclination of the acetabular component in total hip arthroplasty: use of a digital protractor and the circumference of the hip to improve orientation. Bone Joint J. 2015 May;97-B(5):603-10. doi: 10.1302/0301-620X.97B5.34781.
    Results Reference
    background
    PubMed Identifier
    29458202
    Citation
    Lee YK, Kim JW, Kim TY, Ha YC, Koo KH. Validity of the intra-operative measurement of stem anteversion and factors for the erroneous estimation in cementless total hip arthroplasty using postero-lateral approach. Orthop Traumatol Surg Res. 2018 May;104(3):341-346. doi: 10.1016/j.otsr.2017.11.023. Epub 2018 Feb 16.
    Results Reference
    background
    PubMed Identifier
    19884433
    Citation
    Dorr LD, Wan Z, Malik A, Zhu J, Dastane M, Deshmane P. A comparison of surgeon estimation and computed tomographic measurement of femoral component anteversion in cementless total hip arthroplasty. J Bone Joint Surg Am. 2009 Nov;91(11):2598-604. doi: 10.2106/JBJS.H.01225.
    Results Reference
    background
    PubMed Identifier
    28497375
    Citation
    Blumenfeld TJ. Pearls: Clinical Application of Ranawat's Sign. Clin Orthop Relat Res. 2017 Jul;475(7):1789-1790. doi: 10.1007/s11999-017-5376-8. Epub 2017 May 11. No abstract available.
    Results Reference
    background
    PubMed Identifier
    18979146
    Citation
    Dorr LD, Malik A, Dastane M, Wan Z. Combined anteversion technique for total hip arthroplasty. Clin Orthop Relat Res. 2009 Jan;467(1):119-27. doi: 10.1007/s11999-008-0598-4. Epub 2008 Nov 1.
    Results Reference
    background
    PubMed Identifier
    18534533
    Citation
    Amuwa C, Dorr LD. The combined anteversion technique for acetabular component anteversion. J Arthroplasty. 2008 Oct;23(7):1068-70. doi: 10.1016/j.arth.2008.04.025. Epub 2008 Jun 4.
    Results Reference
    background
    PubMed Identifier
    29589084
    Citation
    Ogawa T, Takao M, Hamada H, Sakai T, Sugano N. Soft tissue tension is four times lower in the unstable primary total hip arthroplasty. Int Orthop. 2018 Sep;42(9):2059-2065. doi: 10.1007/s00264-018-3908-9. Epub 2018 Mar 27.
    Results Reference
    background
    PubMed Identifier
    23109624
    Citation
    Hill JC, Archbold HA, Diamond OJ, Orr JF, Jaramaz B, Beverland DE. Using a calliper to restore the centre of the femoral head during total hip replacement. J Bone Joint Surg Br. 2012 Nov;94(11):1468-74. doi: 10.1302/0301-620X.94B11.29144.
    Results Reference
    background
    PubMed Identifier
    16089064
    Citation
    Dorr LD, Hishiki Y, Wan Z, Newton D, Yun A. Development of imageless computer navigation for acetabular component position in total hip replacement. Iowa Orthop J. 2005;25:1-9.
    Results Reference
    background
    PubMed Identifier
    31965312
    Citation
    Jacob I, Benson J, Shanaghan K, Gonzalez Della Valle A. Acetabular positioning is more consistent with the use of a novel miniature computer-assisted device. Int Orthop. 2020 Mar;44(3):429-435. doi: 10.1007/s00264-020-04484-2. Epub 2020 Jan 22.
    Results Reference
    background
    PubMed Identifier
    30416609
    Citation
    Christ A, Ponzio D, Pitta M, Carroll K, Muir JM, Sculco PK. Minimal Increase in Total Hip Arthroplasty Surgical Procedural Time with the Use of a Novel Surgical Navigation Tool. Open Orthop J. 2018 Sep 28;12:389-395. doi: 10.2174/1874325001812010389. eCollection 2018.
    Results Reference
    background
    PubMed Identifier
    8444942
    Citation
    Murray DW. The definition and measurement of acetabular orientation. J Bone Joint Surg Br. 1993 Mar;75(2):228-32. doi: 10.1302/0301-620X.75B2.8444942.
    Results Reference
    background
    Citation
    Gross AE, Safir OA, Kuzyk PRT, Sculco PK, Wolfstadt J, Girardi BL, et al. Optimizing leg length and cup position: A surgical navigation tool. Seminars in Arthroplasty. 2018;29(3):157-60.
    Results Reference
    background

    Learn more about this trial

    Measured vs Navigated Techniques in Total Hip Arthroplasty

    We'll reach out to this number within 24 hrs