search
Back to results

Effect of Tahini in Oxidative Stress and Endothelial Function in Diabetes

Primary Purpose

Oxidative Stress, Endothelial Function, Blood Pressure

Status
Recruiting
Phase
Not Applicable
Locations
Greece
Study Type
Interventional
Intervention
tahini and bread
margarine, cheese and bread
Sponsored by
Harokopio University
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional prevention trial for Oxidative Stress focused on measuring tahini, sesame, antioxidants, postprandial

Eligibility Criteria

40 Years - 70 Years (Adult, Older Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria:

  • minimum period from diagnosis three years
  • good glycemic control (HbA1c <7%)
  • taking a stable anti-diabetic treatment for the last 3 months (anti-diabetic tablets only)

Exclusion Criteria:

-

Sites / Locations

  • Panagiotis KanellosRecruiting

Arms of the Study

Arm 1

Arm 2

Arm Type

Experimental

Experimental

Arm Label

Tahini and bread

Margarine, cheese and bread

Arm Description

After an overnight fast (10-12 h), participants will come tο the lab and, after a 10-min resting period in the supine position in a quiet room with temperature a constant 20-25 °C, assessment of blood pressure, pulse rate, hemodynamic parameters, and endothelial function will be performed. Then, an intravenous cannula will be inserted into a forearm vein and a baseline blood sample will be collected (time 0) as well as urine sample will be also collected. Afterward, each patient will consume 2 slices of white bread with 50 g of tahini and collection of the blood and urine sample will be repeated 1,2, 3 and 4 h postprandially. Assessment of blood pressure, pulse rate, hemodynamic parameters, and endothelial function will be also repeated at the end of the trial. During the trial, patients will not be allowed to eat or drink anything apart from water.

After an overnight fast (10-12 h), participants will come tο the lab and, after a 10-min resting period in the supine position in a quiet room with temperature a constant 20-25 °C, assessment of blood pressure, pulse rate, hemodynamic parameters, and endothelial function will be performed. Then, an intravenous cannula will be inserted into a forearm vein and a baseline blood sample will be collected (time 0) as well as urine sample will be also collected. Afterward, each patient will consume 2 slices of white bread with 46 g of margarine and 38 g of lowfat cheese and collection of the blood and urine sample will be repeated 1,2, 3 and 4 h postprandially. Assessment of blood pressure, pulse rate, hemodynamic parameters, and endothelial function will be also repeated at the end of the trial. During the trial, patients will not be allowed to eat or drink anything apart from water.

Outcomes

Primary Outcome Measures

Concentration of urinary 8-iso-prostaglandin F2a
We will measure the concentration of urinary 8-iso-prostaglandin F2a by using Elisa kit
Assessment of Flow-Mediated Dilatation
We will assess the FMD by high-resolution ultrasound imaging

Secondary Outcome Measures

Full Information

First Posted
May 19, 2022
Last Updated
March 17, 2023
Sponsor
Harokopio University
Collaborators
National and Kapodistrian University of Athens
search

1. Study Identification

Unique Protocol Identification Number
NCT05396079
Brief Title
Effect of Tahini in Oxidative Stress and Endothelial Function in Diabetes
Official Title
Effect of Tahini Consumption on Oxidative Stress and Inflammation Markers as Well as Endothelial Function and Arterial Stiffness in Patients With Type 2 Diabetes
Study Type
Interventional

2. Study Status

Record Verification Date
March 2023
Overall Recruitment Status
Recruiting
Study Start Date
March 28, 2023 (Anticipated)
Primary Completion Date
June 15, 2023 (Anticipated)
Study Completion Date
June 15, 2023 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Principal Investigator
Name of the Sponsor
Harokopio University
Collaborators
National and Kapodistrian University of Athens

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Data Monitoring Committee
No

5. Study Description

Brief Summary
Cardiovascular disease (CVD), a cluster of disorders that affect heart and blood vessels, is the leading cause of morbidity and mortality around the world and is responsible for 17.9 million deaths annually worldwide. CVD risk factors can be modifiable (nutrition, physical activity, obesity, smoking, hyperlipidemia, hypertension and diabetes) and non-modifiable (age, gender, ethnicity, family history and socioeconomic status). Chronic exposure to CVD risk factors induces oxidative stress and promotes inflammation. In addition, endothelial cells in response to the inflammatory reaction secrete growth factors, leading to the destruction of vascular endothelium and promoting atherogenesis. Oxidative stress refers to the imbalance between anti-oxidant and pro-oxidant compounds, with predominance of the pro-oxidant ones. Reactive Oxygen Species overproduction has been implicated in pathogenesis and complications of numerous diseases including diabetes, cardiovascular diseases, cancer, neurodegenerative diseases and chronic kidney disease. Moreover, endothelium consists of a single layer of endothelial cells; it is the natural barrier between blood and tissues and also an endocrine organ. It plays a key role in vascular homeostasis by maintaining a balance between vasodilation and vasoconstriction and is responsible for fluid filtration, blood vessel tone, hormone trafficking, hemostasis, regulation of blood flow and growth of blood vessels. Thus, reductions in endothelial function are detrimental and predict and precede the development of overt CVD. Sesame belongs to Pedaliaceae family and can be consumed in different forms such as seeds, oil or tahini, i.e., a 100 % peeled, ground and roasted sesame paste. Tahini is rich in polyunsaturated fatty acids, proteins, vitamin E and lignans, such as sesamin, sesamolin and sesamol. Recent studies have indicated that tahini consumption can lower blood pressure and pulse rate and improve endothelial function and glycemic response in healthy males postprandially. However, only two studies are available in the current literature concerning the effect on diabetes, one of them in patients with type 2 diabetes and one in diabetic animal model. Thus, the aim of the present study is to investigate the effect of tahini consumption on oxidative stress, blood pressure, endothelial function and arterial stiffness in patients with type 2 diabetes postprandially.
Detailed Description
Cardiovascular disease (CVD), a cluster of disorders that affect heart and blood vessels, is the leading cause of morbidity and mortality around the world and is responsible for 17.9 million deaths annually worldwide. CVD includes coronary heart disease, peripheral arterial disease, cerebrovascular disease, rheumatic heart disease, congenital heart disease, deep vein thrombosis and pulmonary embolism. CVD risk factors can be modifiable (nutrition, physical activity, obesity, smoking, hyperlipidemia, hypertension and diabetes) and non-modifiable (age, gender, ethnicity, family history and socioeconomic status). Chronic exposure to CVD risk factors induces oxidative stress and promotes inflammation. In addition, endothelial cells in response to the inflammatory reaction secrete growth factors, leading to the destruction of vascular endothelium and promoting atherogenesis. Oxidative stress refers to the imbalance between anti-oxidant and pro-oxidant compounds, with predominance of the pro-oxidant ones. These compounds are also called Reactive Oxygen Species (ROS) or free radicals and are unstable atoms or molecules. Their generation, as products of normal cellular metabolism, occurs naturally by endogenous sources (e.g. mitochondria, peroxisomes and endoplasmic reticulum) through enzymatic and non-enzymatic reactions. Furthermore, exogenous sources implicated in free radical production are air pollution, alcohol consumption, tobacco smoking, ultraviolet light exposure, industrial solvents and others. Free radical production is regulated by the well-organized human endogenous enzymatic and non-enzymatic antioxidant system, along with the exogenous antioxidants found in food. However, in some cases antioxidant system fails to eliminate ROS overproduction and can consequently induce serious damage to important for life biomolecules (DNA, lipids, proteins), leading to cell injury and death. Thus, ROS overproduction has been implicated in pathogenesis and complications of numerous diseases including diabetes, cardiovascular diseases, cancer, neurodegenerative diseases and chronic kidney disease. Moreover, endothelium consists of a single layer of endothelial cells; it is the natural barrier between blood and tissues and also an endocrine organ. It plays a key role in vascular homeostasis by maintaining a balance between vasodilation and vasoconstriction. Moreover, vascular endothelium is responsible for fluid filtration, blood vessel tone, hormone trafficking, hemostasis, regulation of blood flow and growth of blood vessels. Thus, reductions in endothelial function are detrimental and predict and precede the development of overt CVD. Sesame belongs to Pedaliaceae family and can be consumed in different forms such as seeds, oil or tahini, i.e., a 100 % peeled, ground and roasted sesame paste. Sesame seeds are rich in polyunsaturated fatty acids (PUFAs), proteins, vitamin E and lignans, such as sesamin, sesamolin and sesamol. Recent studies have highlighted the antioxidant, antihypertensive, hypolipidemic and appetite control properties of sesame seeds and sesame oil. Moreover, few studies have investigated the effect of sesame consumption on blood pressure, endothelial function and arterial stiffness in human population. According to a metanalysis, sesame consumed in form of seed, oil, capsule or bar decreased both systolic blood pressure (SBP) and diastolic blood pressure (DBP), while sesame oil consumption was found to improve endothelial function both in the postprandial state and after long term consumption in hypertensive men. Regarding the consumption of tahini and its effect on human health, only a few studies are available in the current literature. The most recent of them have indicated that tahini consumption can lower blood pressure and pulse rate and improve endothelial function and glycemic response in healthy males postprandially. However, only two studies are available in the current literature concerning the effect on diabetes, one of them in patients with type 2 diabetes and one in diabetic animal model. Thus, the aim of the present study is to investigate the effect of tahini consumption on oxidative stress, blood pressure, endothelial function and arterial stiffness in patients with type 2 diabetes postprandially.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Oxidative Stress, Endothelial Function, Blood Pressure, Arterial Stiffness, Blood Glucose, Diabetes Mellitus, Type 2
Keywords
tahini, sesame, antioxidants, postprandial

7. Study Design

Primary Purpose
Prevention
Study Phase
Not Applicable
Interventional Study Model
Crossover Assignment
Masking
None (Open Label)
Allocation
Randomized
Enrollment
20 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
Tahini and bread
Arm Type
Experimental
Arm Description
After an overnight fast (10-12 h), participants will come tο the lab and, after a 10-min resting period in the supine position in a quiet room with temperature a constant 20-25 °C, assessment of blood pressure, pulse rate, hemodynamic parameters, and endothelial function will be performed. Then, an intravenous cannula will be inserted into a forearm vein and a baseline blood sample will be collected (time 0) as well as urine sample will be also collected. Afterward, each patient will consume 2 slices of white bread with 50 g of tahini and collection of the blood and urine sample will be repeated 1,2, 3 and 4 h postprandially. Assessment of blood pressure, pulse rate, hemodynamic parameters, and endothelial function will be also repeated at the end of the trial. During the trial, patients will not be allowed to eat or drink anything apart from water.
Arm Title
Margarine, cheese and bread
Arm Type
Experimental
Arm Description
After an overnight fast (10-12 h), participants will come tο the lab and, after a 10-min resting period in the supine position in a quiet room with temperature a constant 20-25 °C, assessment of blood pressure, pulse rate, hemodynamic parameters, and endothelial function will be performed. Then, an intravenous cannula will be inserted into a forearm vein and a baseline blood sample will be collected (time 0) as well as urine sample will be also collected. Afterward, each patient will consume 2 slices of white bread with 46 g of margarine and 38 g of lowfat cheese and collection of the blood and urine sample will be repeated 1,2, 3 and 4 h postprandially. Assessment of blood pressure, pulse rate, hemodynamic parameters, and endothelial function will be also repeated at the end of the trial. During the trial, patients will not be allowed to eat or drink anything apart from water.
Intervention Type
Other
Intervention Name(s)
tahini and bread
Intervention Description
Fifthy grams of tahini with 2 slices of white bread
Intervention Type
Other
Intervention Name(s)
margarine, cheese and bread
Intervention Description
46 g of margarine and 38 g of cheese with 2 slices of white bread
Primary Outcome Measure Information:
Title
Concentration of urinary 8-iso-prostaglandin F2a
Description
We will measure the concentration of urinary 8-iso-prostaglandin F2a by using Elisa kit
Time Frame
Four hours after consumption of both meals
Title
Assessment of Flow-Mediated Dilatation
Description
We will assess the FMD by high-resolution ultrasound imaging
Time Frame
Four hours after consumption of both meals

10. Eligibility

Sex
All
Minimum Age & Unit of Time
40 Years
Maximum Age & Unit of Time
70 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: minimum period from diagnosis three years good glycemic control (HbA1c <7%) taking a stable anti-diabetic treatment for the last 3 months (anti-diabetic tablets only) Exclusion Criteria: -
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
PANAGIOTIS T KANELLOS, Dr
Phone
6973648840
Ext
0030
Email
pankanell@gmail.com
First Name & Middle Initial & Last Name or Official Title & Degree
VAIOS T KARATHANOS, PROF
Phone
2109549224
Ext
0030
Email
vkarath@hua.gr
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
NIKOLAOS K TENTOLOURIS, PROF
Organizational Affiliation
Diabetes Center, Medical School, National and Kapodistrian University of Athens
Official's Role
Study Director
Facility Information:
Facility Name
Panagiotis Kanellos
City
Athens
Country
Greece
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
PANAGIOTIS T KANELLOS, Dr
Phone
6973648840
Ext
0030
Email
pankanell@gmail.com

12. IPD Sharing Statement

Plan to Share IPD
No
Citations:
PubMed Identifier
25588755
Citation
Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180-3. doi: 10.1016/j.redox.2015.01.002. Epub 2015 Jan 3.
Results Reference
background
Citation
Kumar, S., & Pandey, A. (2015). Free Radicals: Health Implications and their Mitigation by Herbals. British Journal Of Medicine And Medical Research, 7(6), 438-457. doi: 10.9734/bjmmr/2015/16284
Results Reference
background
PubMed Identifier
25646037
Citation
Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015 Jan;30(1):11-26. doi: 10.1007/s12291-014-0446-0. Epub 2014 Jul 15.
Results Reference
background
PubMed Identifier
23268465
Citation
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012 Jan;5(1):9-19. doi: 10.1097/WOX.0b013e3182439613. Epub 2012 Jan 13.
Results Reference
background
PubMed Identifier
15462130
Citation
Willcox JK, Ash SL, Catignani GL. Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr. 2004;44(4):275-95. doi: 10.1080/10408690490468489.
Results Reference
background
PubMed Identifier
30172705
Citation
Ravarotto V, Simioni F, Pagnin E, Davis PA, Calo LA. Oxidative stress - chronic kidney disease - cardiovascular disease: A vicious circle. Life Sci. 2018 Oct 1;210:125-131. doi: 10.1016/j.lfs.2018.08.067. Epub 2018 Aug 31.
Results Reference
background
Citation
Zoumpoulakis, P., Sinanoglou, V., Batrinou, A., Strati, I., Miniadis-Meimaroglou, S., & Sflomos, K. (2012). A combined methodology to detect γ-irradiated white sesame seeds and evaluate the effects on fat content, physicochemical properties and protein allergenicity. Food Chemistry, 131(2), 713-721. doi: 10.1016/j.foodchem.2011.09.049
Results Reference
background
PubMed Identifier
17943496
Citation
Namiki M. Nutraceutical functions of sesame: a review. Crit Rev Food Sci Nutr. 2007;47(7):651-73. doi: 10.1080/10408390600919114.
Results Reference
background
Citation
Raeisi-Dehkordi, H., Mohammadi, M., Moghtaderi, F., & Salehi-Abargouei, A. (2018). Do sesame seed and its products affect body weight and composition? A systematic review and meta-analysis of controlled clinical trials. Journal Of Functional Foods, 49, 324-332. doi: 10.1016/j.jff.2018.08.036
Results Reference
background
PubMed Identifier
25125886
Citation
Pathak N, Rai AK, Kumari R, Bhat KV. Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacogn Rev. 2014 Jul;8(16):147-55. doi: 10.4103/0973-7847.134249.
Results Reference
background
PubMed Identifier
27074618
Citation
Gouveia Lde A, Cardoso CA, de Oliveira GM, Rosa G, Moreira AS. Effects of the Intake of Sesame Seeds (Sesamum indicum L.) and Derivatives on Oxidative Stress: A Systematic Review. J Med Food. 2016 Apr;19(4):337-45. doi: 10.1089/jmf.2015.0075.
Results Reference
background
PubMed Identifier
31992061
Citation
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Shay CM, Spartano NL, Stokes A, Tirschwell DL, VanWagner LB, Tsao CW; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation. 2020 Mar 3;141(9):e139-e596. doi: 10.1161/CIR.0000000000000757. Epub 2020 Jan 29.
Results Reference
background
PubMed Identifier
26339159
Citation
Park KH, Park WJ. Endothelial Dysfunction: Clinical Implications in Cardiovascular Disease and Therapeutic Approaches. J Korean Med Sci. 2015 Sep;30(9):1213-25. doi: 10.3346/jkms.2015.30.9.1213. Epub 2015 Aug 13.
Results Reference
background
PubMed Identifier
31500313
Citation
Kruger-Genge A, Blocki A, Franke RP, Jung F. Vascular Endothelial Cell Biology: An Update. Int J Mol Sci. 2019 Sep 7;20(18):4411. doi: 10.3390/ijms20184411.
Results Reference
background
PubMed Identifier
24250251
Citation
Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I. The vascular endothelium and human diseases. Int J Biol Sci. 2013 Nov 9;9(10):1057-69. doi: 10.7150/ijbs.7502. eCollection 2013.
Results Reference
background
PubMed Identifier
22263599
Citation
Alipoor B, Haghighian MK, Sadat BE, Asghari M. Effect of sesame seed on lipid profile and redox status in hyperlipidemic patients. Int J Food Sci Nutr. 2012 Sep;63(6):674-8. doi: 10.3109/09637486.2011.652077. Epub 2012 Jan 23.
Results Reference
background
PubMed Identifier
28387047
Citation
Khosravi-Boroujeni H, Nikbakht E, Natanelov E, Khalesi S. Can sesame consumption improve blood pressure? A systematic review and meta-analysis of controlled trials. J Sci Food Agric. 2017 Aug;97(10):3087-3094. doi: 10.1002/jsfa.8361. Epub 2017 May 12.
Results Reference
background
PubMed Identifier
10858028
Citation
Kamal-Eldin A, Frank J, Razdan A, Tengblad S, Basu S, Vessby B. Effects of dietary phenolic compounds on tocopherol, cholesterol, and fatty acids in rats. Lipids. 2000 Apr;35(4):427-35. doi: 10.1007/s11745-000-541-y.
Results Reference
background
PubMed Identifier
16614415
Citation
Wu WH, Kang YP, Wang NH, Jou HJ, Wang TA. Sesame ingestion affects sex hormones, antioxidant status, and blood lipids in postmenopausal women. J Nutr. 2006 May;136(5):1270-5. doi: 10.1093/jn/136.5.1270.
Results Reference
background
PubMed Identifier
26758593
Citation
Khalesi S, Paukste E, Nikbakht E, Khosravi-Boroujeni H. Sesame fractions and lipid profiles: a systematic review and meta-analysis of controlled trials. Br J Nutr. 2016 Mar 14;115(5):764-73. doi: 10.1017/S0007114515005012. Epub 2016 Jan 13.
Results Reference
background
PubMed Identifier
8724120
Citation
Hirata F, Fujita K, Ishikura Y, Hosoda K, Ishikawa T, Nakamura H. Hypocholesterolemic effect of sesame lignan in humans. Atherosclerosis. 1996 Apr 26;122(1):135-36. doi: 10.1016/0021-9150(95)05769-2. No abstract available.
Results Reference
background
PubMed Identifier
23822678
Citation
Neves Ribeiro D, Goncalves Alfenas Rde C, Bressan J, Brunoro Costa NM. The effect of oilseed consumption on appetite and on the risk of developing type 2 diabetes mellitus. Nutr Hosp. 2013 Mar-Apr;28(2):296-305. doi: 10.3305/nh.2013.28.2.6309.
Results Reference
background
PubMed Identifier
22345690
Citation
Karatzi K, Stamatelopoulos K, Lykka M, Mantzouratou P, Skalidi S, Zakopoulos N, Papamichael C, Sidossis LS. Sesame oil consumption exerts a beneficial effect on endothelial function in hypertensive men. Eur J Prev Cardiol. 2013 Apr;20(2):202-8. doi: 10.1177/2047487312437625. Epub 2012 Jan 25.
Results Reference
background
PubMed Identifier
34707227
Citation
Sakketou EI, Baxevanis GK, Tentolouris NK, Konstantonis GD, Karathanos VT, Fragkiadakis GA, Kanellos PT. Tahini consumption affects blood pressure and endothelial function in healthy males. J Hum Hypertens. 2022 Dec;36(12):1128-1132. doi: 10.1038/s41371-021-00624-2. Epub 2021 Oct 27.
Results Reference
background
Citation
Baxevanis, G.K., Sakketou, EK.I., Tentolouris, N.K. et al. Tahini consumption improves metabolic and antioxidant status biomarkers in the postprandial state in healthy males. Eur Food Res Technol 247, 2721-2728 (2021). https://doi.org/10.1007/s00217-021-03828-5
Results Reference
background

Learn more about this trial

Effect of Tahini in Oxidative Stress and Endothelial Function in Diabetes

We'll reach out to this number within 24 hrs