Progression free survival of SHH-2 infant (0-2.99 years) and young child (3-4.99 years) medulloblastoma patients treated with systemic HD-MTX-based chemotherapy only.
Progression free survival (PFS) will be measured from treatment initiation to the earliest of disease progression or death from any cause in stratum S-2 eligible M0 patients who receive at least 1 dose of the chemotherapy regimen. Patients who have not experienced one of these events will be censored at their last date of contact. The Kaplan-Meier estimate of PFS at two years will be computed. PFS will be compared to St. Jude historical cohorts using hazard ratios with 95% confidence intervals.
Progression free survival of SHH-1 infant (0-2.99 years) medulloblastoma patients treated with systemic HD-MTX-based chemotherapy augmented with IVT-MTX.
Progression free survival (PFS) will be measured from treatment initiation to the earliest of disease progression or death from any cause in stratum S-1 eligible SHH-1 patients who receive at least 1 dose of the chemotherapy regimen. Patients who have not experienced one of these events will be censored at their last date of contact. The Kaplan-Meier estimate of PFS at two years will be computed. PFS will be compared to St. Jude historical cohorts using hazard ratios with 95% confidence intervals.
Progression free survival of G3/G4 infant (0-2.99 years) medulloblastoma patients treated with systemic chemotherapy and delayed risk-adapted CSI augmented with carboplatin.
Progression free survival (PFS) will be measured from treatment initiation to the earliest of disease progression or death from any cause in stratum S-N eligible patients who receive at least 1 dose of the chemotherapy regimen. Patients who have not experienced one of these events will be censored at their last date of contact. The Kaplan-Meier estimate of PFS at two years will be computed. PFS will be compared to St. Jude historical cohorts using hazard ratios with 95% confidence intervals.
IQ among infants and young children treated with systemic chemotherapy only compared to patients treated with systemic chemotherapy and intra-ventricular chemotherapy or delayed risk-adapted craniospinal irradiation
Change from baseline over time in intellectual function (IQ) will be assessed using different instruments as age appropriate. IQ will be measured in children 0-3:6 years of age using Bayley Scales of Infant and Toddler Development, Fourth Edition (Bayley-4), in children 3.0-5.11 years of age using Wechsler Preschool and Primary Scale of Intelligence, Fourth Edition (WPPSI-IV), and in children 6-10 years of age using Wechsler Intelligence Scale for Children, Fifth Edition (WISC-V). Longitudinal analyses will be conducted using mixed models.
Executive function among infants and young children treated with systemic chemotherapy only compared to patients treated with systemic chemotherapy and intra-ventricular chemotherapy or delayed risk-adapted craniospinal irradiation
Change from baseline over time in executive functions will be assessed using different instruments as age appropriate. The Behavior Rating Inventory of Executive Function [BRIEF-P (ages 2-5:11) and BRIEF-2 (ages 6-18)] will assess behavioral manifestations of executive function. Longitudinal analyses will be conducted using mixed models.
Health-related quality of life among infants and young children treated with systemic chemotherapy only compared to patients treated with systemic chemotherapy and intra-ventricular chemotherapy or delayed risk-adapted craniospinal irradiation
Changes from baseline over time in health-related quality of life will be assessed using the PedsQL (ages 2 and older). Longitudinal analyses will be conducted using mixed models.
Change in IQ among infants (0-2.99 years) and young children (3-4.99 years) treated for medulloblastoma
IQ will be assessed using different instruments as age appropriate. IQ will be measured in children 0-3:6 years of age using Bayley Scales of Infant and Toddler Development, Fourth Edition (Bayley-4), in children 3.0-5.11 years of age using Wechsler Preschool and Primary Scale of Intelligence, Fourth Edition (WPPSI-IV), and in children 6-10 years of age using Wechsler Intelligence Scale for Children, Fifth Edition (WISC-V). The multiple instruments will be combined across all ages into one measure of standardized Full-Scale IQ. A linear mixed-effects regression model will be used to examine changes in IQ from baseline over time as related to demographic (e.g., age at treatment, gender, and socioeconomic status), disease-related (e.g., presence of hydrocephalus, posterior fossa syndrome), and treatment (e.g., systemic chemotherapy with or without IVT-MTX, radiation dosimetry to key brain structures, treatment-related ototoxicity) factors.
Change in executive function among infants (0-2.99 years) and young children (3-4.99 years) treated for medulloblastoma
This will be assessed using different instruments as age appropriate (The Behavior Rating Inventory of Executive Function [BRIEF-P (ages 2-5:11) and BRIEF-2 (ages 6-10)] will assess behavioral manifestations of executive function. A linear mixed-effects regression model will be used to examine changes in executive function from baseline over time as related to demographic (e.g., age at treatment, gender, and socioeconomic status), disease-related (e.g., presence of hydrocephalus, posterior fossa syndrome), and treatment (e.g., systemic chemotherapy with or without IVT-MTX, radiation dosimetry to key brain structures, treatment-related ototoxicity) factors.
Change in health-related quality of life among infants (0-2.99 years) and young children (3-4.99 years) treated for medulloblastoma
Health-related quality of life will be assessed using the PedsQL (ages 2 and older). A linear mixed-effects regression model will be used to examine changes in health-related quality of life from baseline over time as related to demographic (e.g., age at treatment, gender, and socioeconomic status), disease-related (e.g., presence of hydrocephalus, posterior fossa syndrome), and treatment (e.g., systemic chemotherapy with or without IVT-MTX, radiation dosimetry to key brain structures, treatment-related ototoxicity) factors.
Association of familial factors and environmental factors with socioeconomic status
Socioeconomic status will be measured using the Barratt Simplified Measure of Social Status (BSMSS). Generalized linear models will be used to investigate the association of socioeconomic status with familial factors (e.g., family cohesion, family coping with medical management, parent-child interaction style) and environmental factors (e.g., parental verbal abilities, home literacy, adherence with rehabilitative therapies, participation in early intervention, school advocacy)
Association of familial factors and environmental factors with cognitive late effects.
Linear mixed-effects models will be used to examine changes from baseline over time in cognitive outcomes (as described above) with familiar and environmental factors (as described above).
Evaluate family interest in caregiver education combined with interactive neurodevelopmental games.
The neurocognitive intervention consists of the Working for Kids (WFK) education, which is designed to improve parent understanding of the importance of the early learning environment on brain development, and First Pathways Game (FPG), which are interactive neurodevelopmental games designed for parents to play with their children to strengthen brain pathways for specific skills including communication, problem-solving and social emotional skills, motor skills, math skills and early science learning. Family interest in this intervention will be measured by the proportion of families approached enrolling on study.
Evaluate intervention feasibility by measuring the rate of participants completing a caregiver education combined with interactive. neurodevelopmental games.
The neurocognitive intervention consists of the Working for Kids (WFK) education, which is designed to improve parent understanding of the importance of the early learning environment on brain development, and First Pathways Game (FPG), which is an interactive neurodevelopmental games designed for parents to play with their children to strengthen brain pathways for specific skills including communication, problem-solving and social emotional skills, motor skills, math skills and early science learning. Intervention feasibility will be measured by the proportion of randomized participants completing at least 10 neurodevelopmental games.
Evaluate the acceptability of a caregiver education combined with interactive neurodevelopmental games.
The neurocognitive intervention consists of the Working for Kids (WFK) education, which is designed to improve parent understanding of the importance of the early learning environment on brain development, and First Pathways Game (FPG), which is an interactive neurodevelopmental games designed for parents to play with their children to strengthen brain pathways for specific skills including communication, problem-solving and social emotional skills, motor skills, math skills and early science learning. Acceptability will be measured as the proportion of caregivers reporting benefit from the intervention participation on a satisfaction questionnaire.
Magnitude of change in cognition and social-emotional development associated with a caregiver education program combined with interactive neurodevelopmental games.
Mean six-month change from baseline in cognition and social-emotional development as measured by DAYC-2 (parent interview) will be computed for families randomized to the intervention (described above) and for families randomized to the standard care control group.
To characterize the plasma systemic clearance (CL) of cyclophosphamide (CTX) in infants and young children with medulloblastoma.
Drug plasma concentrations will be simultaneously analyzed with a population pharmacokinetic approach, which permits characterizing typical pharmacokinetics and interindividual variability within the population. We will use a similar approach to what we have used in our previously published manuscripts. Cyclophosphamide CL will be estimated based on serial samples acquired during therapy.
To characterize the area under the concentration-time curve (AUC0-24h) of carboxyethylphosphoramide (CEPM) in infants and young children with medulloblastoma receiving cyclophosphamide.
Carboxyethylphosphoramide will be included in above described population pharmacokinetic approach. Based on the results of the population pharmacokinetic analysis, the CEPM AUC0-24h can be calculated.
To characterize the area under the concentration-time curve (AUC0-24h) of 4-hydroxy-cyclophosphamide (4OHCTX) in infants and young children with medulloblastoma receiving cyclophosphamide.
In a similar manner to the CEPM AUC0-24h, the 4-hydroxy-cyclophosphamide area under the curve AUC0-24h can be estimated based on the results of the population pharmacokinetic analysis.
To assess potential covariates (e.g., demographics, clinical chemistry) explaining inter- and intra-patient variability in in the plasma systemic clearance (CL) of CTX in infants and young children with medulloblastoma receiving CTX.
A covariate analysis will be performed to investigate potential associations between the CTX CL pharmacokinetic parameter (outcome measure) and demographics and clinical chemistry data (covariates). Continuous covariates will be implemented according to a power model scaled to the population median covariate value. Categorical covariates will be modeled using an exponential change due to the covariate value. Significant covariates will be selected by using a classic forward/backward stepwise approach, with criteria P values of 0.05 and 0.01 for the forward and backward steps, respectively. Wald tests will be also used to test whether covariates should be kept in the model (criteria p-value<0.05) to explain the inter- and intra-patient variability in CTX CL values in infants and young children with medulloblastoma receiving CTX.
To assess potential covariates (e.g., demographics, clinical chemistry) explaining inter- and intra-patient variability in CEPM AUC0-24h in infants and young children with medulloblastoma receiving CTX.
A covariate analysis will be performed to investigate potential associations between the CTX AUC pharmacokinetic parameter (outcome measure) and demographics and clinical chemistry data (covariates). Continuous covariates will be implemented according to a power model scaled to the population median covariate value. Categorical covariates will be modeled using an exponential change due to the covariate value. Significant covariates will be selected by using a classic forward/backward stepwise approach, with criteria P values of 0.05 and 0.01 for the forward and backward steps, respectively. Wald tests will be also used to test whether covariates should be kept in the model (criteria p-value<0.05) to explain the inter- and intra-patient variability in CEPM AUC values in infants and young children with medulloblastoma receiving CTX.
To assess potential covariates (e.g., demographics, clinical chemistry) explaining inter- and intra-patient variability in 4OHCTX AUC0-24h in infants and young children with medulloblastoma receiving CTX.
A covariate analysis will be performed to investigate potential associations between the 4OHCTX AUC pharmacokinetic parameter (outcome measure) and demographics and clinical chemistry data (covariates). Continuous covariates will be implemented according to a power model scaled to the population median covariate value. Categorical covariates will be modeled using an exponential change due to the covariate value. Significant covariates will be selected by using a classic forward/backward stepwise approach, with criteria P values of 0.05 and 0.01 for the forward and backward steps, respectively. Wald tests will be also used to test whether covariates should be kept in the model (criteria p-value<0.05) to explain the inter- and intra-patient variability in 4OHCTX AUC values in infants and young children with medulloblastoma receiving CTX.
To characterize the plasma systemic clearance (CL) of vincristine (VCR) in infants and young children with medulloblastoma.
As with cyclophosphamide, the vincristine drug plasma concentrations will be analyzed with a population pharmacokinetic approach, which permits characterizing typical pharmacokinetics and interindividual variability within the population. Vincristine CL will be estimated based on serial samples acquired during therapy.
To assess potential covariates (e.g., demographics, clinical chemistry) explaining inter- and intra-patient variability in VCR PK parameter (CL) in infants and young children with medulloblastoma receiving VCR.
A covariate analysis will be performed to investigate potential associations between the VCR CL pharmacokinetic parameter (outcome measure) and demographics and clinical chemistry data (covariates). Continuous covariates will be implemented according to a power model scaled to the population median covariate value. Categorical covariates will be modeled using an exponential change due to the covariate value. Significant covariates will be selected by using a classic forward/backward stepwise approach, with criteria P values of 0.05 and 0.01 for the forward and backward steps, respectively. Wald tests will be also used to test whether covariates should be kept in the model (criteria p-value<0.05) to explain the inter- and intra-patient variability in VCR CL values in infants and young children with medulloblastoma receiving VCR.
To characterize the plasma systemic clearance (CL) of topotecan (TPT) in infants and young children with medulloblastoma.
The topotecan drug plasma concentrations will be analyzed with a population pharmacokinetic approach, which permits characterizing typical pharmacokinetics and interindividual variability within the population. Topotecan CL will be estimated based on serial samples acquired during course C of therapy.
To assess potential covariates (e.g., demographics, clinical chemistry) explaining inter- and intra-patient variability in TPT PK parameter (CL) in infants and young children with medulloblastoma receiving TPT.
A covariate analysis will be performed to investigate potential associations between the TPT CL pharmacokinetic parameter (outcome measure) and demographics and clinical chemistry data (covariates). Also included in this analysis will be concomitant medications given at the same as topotecan (i.e., cyclophosphamide), as well as concomitant adjuvant drugs given within 48 hr of topotecan dose in at least 30% of patients included in the analysis. Continuous covariates will be implemented according to a power model scaled to the population median covariate value. Patient age will be tested according to a Hill equation to reflect potential maturation process. Categorical covariates will be modeled using an exponential change due to the covariate value. Significant covariates will be selected by using a classic forward/backward stepwise approach, and a covariate was considered significant at P<0.05 for the forward addition and at the 0.01 for the backward addition.
To characterize the plasma systemic methotrexate (MTX) clearance (CL) in infants and young children with medulloblastoma.
Drug plasma concentrations will be simultaneously analyzed with a population pharmacokinetic approach, which permits characterizing typical pharmacokinetics and interindividual variability within the population. We will use a similar approach to what we have used in our previously published manuscripts. Methotrexate CL will be estimated based on serial samples acquired during the first day of each course of therapy.
To characterize the area under the concentration-time curve (AUC0-24h) of 7-hydroxymethotrexate (7OHMTX) in infants and young children with medulloblastoma receiving methotrexate.
7-hydroxymethotrexate will be included in above described population pharmacokinetic approach. Based on the results of the population pharmacokinetic analysis, the 7OHMTX AUC0-24h will be calculated.
To assess potential covariates (e.g., demographics, clinical chemistry) explaining inter- and intra-patient variability in MTX PK parameter CL in infants and young children with medulloblastoma receiving MTX.
A covariate analysis will be performed to investigate potential associations between the MTX pharmacokinetic parameter CL (outcome measure) and demographics and clinical chemistry data (covariates). Continuous covariates will be implemented according to a power model scaled to the population median covariate value. Categorical covariates will be modeled using an exponential change due to the covariate value. Significant covariates will be selected by using a classic forward/backward stepwise approach, with criteria P values of 0.05 and 0.01 for the forward and backward steps, respectively. Wald tests will be also used to test whether covariates should be kept in the model (criteria p-value<0.05) to explain the inter- and intra-patient variability in MTX CL values in infants and young children with medulloblastoma receiving MTX.
To assess potential covariates (e.g., demographics, clinical chemistry) explaining inter- and intra-patient variability in 7OHMTX PK parameter AUC0-24h in infants and young children with medulloblastoma receiving MTX.
A covariate analysis will be performed to investigate potential associations between the MTX pharmacokinetic parameter AUC (outcome measure) and demographics and clinical chemistry data (covariates). Continuous covariates will be implemented according to a power model scaled to the population median covariate value. Categorical covariates will be modeled using an exponential change due to the covariate value. Significant covariates will be selected by using a classic forward/backward stepwise approach, with criteria P values of 0.05 and 0.01 for the forward and backward steps, respectively. Wald tests will be also used to test whether covariates should be kept in the model (criteria p-value<0.05) to explain the inter- and intra-patient variability in 7OHMTX AUC values in infants and young children with medulloblastoma receiving MTX.