search
Back to results

Hand Rehabilitation Based on a RobHand Exoskeleton in Stroke Patients: a Case Series Study

Primary Purpose

Stroke

Status
Completed
Phase
Not Applicable
Locations
Chile
Study Type
Interventional
Intervention
Training with Robotic Hand Exoskeleton
Sponsored by
Corporación de Rehabilitación Club de Leones Cruz del Sur
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional treatment trial for Stroke focused on measuring Stroke, Hand Rehabilitation, Exoskeleton

Eligibility Criteria

18 Years - 80 Years (Adult, Older Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria:

  • Over 18 years old
  • Active patient at the Rehabilitation Center Club de Leones Cruz del Sur
  • At least 1 Hemorrhagic or ischemic stroke
  • Adequate level of consciousness
  • Paresis of the upper extremities
  • Patient who signed the inform consent

Exclusion Criteria:

  • Comorbidities in the central nervous system
  • Pain in the upper extremity (hand, forearm, arm)
  • Patient who does not sign the informed consent

Sites / Locations

  • Corporación de Rehabilitación Club de Leones Cruz del Sur

Arms of the Study

Arm 1

Arm Type

Experimental

Arm Label

Robot-assisted Rehabilitation

Arm Description

Participants will receive rehabilitation based on hand robotic exosqueleton (ROBHAND, ITAP Valladolid, Spain) Patients will perform upper limb exercises assisted by the device. Training involve 16 sessions, 2 sessions per week for 8 weeks, each lasting about 60 minutes.

Outcomes

Primary Outcome Measures

Dynamometry - Grip Baseline
A Jamar hydraulic hand dynamometer (Pennsylvania, USA) was used to assess isometric contractions. This test allows to evaluate the functional integrity of the upper extremity through the force exerted when squeezing the hand and therefore,to identify the loss of physiological muscle function. The patient is asked to grasp the resistance of the handle, place his shoulder in abduction and with neutral rotation. Additionally, the elbow must be flexed at 90º and with the forearm in a neutral position.
Dynamometry - Grip Post Intervention
A Jamar hydraulic hand dynamometer (Pennsylvania, USA) was used to assess isometric contractions. This test allows to evaluate the functional integrity of the upper extremity through the force exerted when squeezing the hand and therefore,to identify the loss of physiological muscle function. The patient is asked to grasp the resistance of the handle, place his shoulder in abduction and with neutral rotation. Additionally, the elbow must be flexed at 90º and with the forearm in a neutral position.

Secondary Outcome Measures

Nine Hole Peg Test (9-HPT) Baseline
9-HPT seeks to evaluate the dexterity of the fingers [43], for which a board and nine pegs are used. The patient must place the 9 pegs on the board and then remove all of them, using the dominant and non-dominant hand. This test is timed.
Nine Hole Peg Test (9-HPT) Post Intervention
9-HPT seeks to evaluate the dexterity of the fingers [43], for which a board and nine pegs are used. The patient must place the 9 pegs on the board and then remove all of them, using the dominant and non-dominant hand. This test is timed.

Full Information

First Posted
September 27, 2022
Last Updated
October 27, 2022
Sponsor
Corporación de Rehabilitación Club de Leones Cruz del Sur
Collaborators
University of Valladolid, Universidad de Magallanes
search

1. Study Identification

Unique Protocol Identification Number
NCT05598892
Brief Title
Hand Rehabilitation Based on a RobHand Exoskeleton in Stroke Patients: a Case Series Study
Official Title
Hand Rehabilitation Based on a RobHand Exoskeleton in Stroke Patients: a Case Series Study
Study Type
Interventional

2. Study Status

Record Verification Date
September 2022
Overall Recruitment Status
Completed
Study Start Date
March 1, 2021 (Actual)
Primary Completion Date
September 30, 2021 (Actual)
Study Completion Date
September 30, 2021 (Actual)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Sponsor
Name of the Sponsor
Corporación de Rehabilitación Club de Leones Cruz del Sur
Collaborators
University of Valladolid, Universidad de Magallanes

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Data Monitoring Committee
No

5. Study Description

Brief Summary
The following study seeks to provide information regarding to the RobHand exoskeleton for hand neuromotor maintenance and/or rehabilitation, developed by the University of Valladolid, Spain.
Detailed Description
The following study seeks to provide information regarding to the RobHand exoskeleton for hand neuromotor maintenance and/or rehabilitation, developed by the University of Valladolid, Spain. The study was carried out by the Neurotchnology Group of the Research and Development Area of the Corporación de Rehabilitación Club de Leones Cruz del Sur, Chile. Clinical test were implemented on four subjects with Stroke sequelae who participated in two evaluations of manual function and 16 training sessions with the robotic exoskeleton, in order to know the clinical effects on manual function, safety and satisfaction of users who utilize the exoskeleton RobHand.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Stroke
Keywords
Stroke, Hand Rehabilitation, Exoskeleton

7. Study Design

Primary Purpose
Treatment
Study Phase
Not Applicable
Interventional Study Model
Single Group Assignment
Masking
None (Open Label)
Allocation
N/A
Enrollment
4 (Actual)

8. Arms, Groups, and Interventions

Arm Title
Robot-assisted Rehabilitation
Arm Type
Experimental
Arm Description
Participants will receive rehabilitation based on hand robotic exosqueleton (ROBHAND, ITAP Valladolid, Spain) Patients will perform upper limb exercises assisted by the device. Training involve 16 sessions, 2 sessions per week for 8 weeks, each lasting about 60 minutes.
Intervention Type
Device
Intervention Name(s)
Training with Robotic Hand Exoskeleton
Intervention Description
The intervention consists in Robotic Hand training sessions. Each subject received 16 sessions lasting 60 minutes each and a frequency of 2 sessions per week. The sessions will be applied by an Ocupational Therapist with experience in Robotic training. Robhand exoskeleton (ITAP, Valladolid, Spain) is an exoskeleton-type electromechanical device, which is attached to the patient's hand and provides assistance for performing different types of finger movement rehabilitation therapies. The exoskeleton is composed of five independent subassemblies that are placed on a platform which is located on the back of the hand, with the exception of the thumb subassembly that is mounted on a separated module connected to the hand support platform through a linkage device.
Primary Outcome Measure Information:
Title
Dynamometry - Grip Baseline
Description
A Jamar hydraulic hand dynamometer (Pennsylvania, USA) was used to assess isometric contractions. This test allows to evaluate the functional integrity of the upper extremity through the force exerted when squeezing the hand and therefore,to identify the loss of physiological muscle function. The patient is asked to grasp the resistance of the handle, place his shoulder in abduction and with neutral rotation. Additionally, the elbow must be flexed at 90º and with the forearm in a neutral position.
Time Frame
Baseline
Title
Dynamometry - Grip Post Intervention
Description
A Jamar hydraulic hand dynamometer (Pennsylvania, USA) was used to assess isometric contractions. This test allows to evaluate the functional integrity of the upper extremity through the force exerted when squeezing the hand and therefore,to identify the loss of physiological muscle function. The patient is asked to grasp the resistance of the handle, place his shoulder in abduction and with neutral rotation. Additionally, the elbow must be flexed at 90º and with the forearm in a neutral position.
Time Frame
8 weeks
Secondary Outcome Measure Information:
Title
Nine Hole Peg Test (9-HPT) Baseline
Description
9-HPT seeks to evaluate the dexterity of the fingers [43], for which a board and nine pegs are used. The patient must place the 9 pegs on the board and then remove all of them, using the dominant and non-dominant hand. This test is timed.
Time Frame
Baseline
Title
Nine Hole Peg Test (9-HPT) Post Intervention
Description
9-HPT seeks to evaluate the dexterity of the fingers [43], for which a board and nine pegs are used. The patient must place the 9 pegs on the board and then remove all of them, using the dominant and non-dominant hand. This test is timed.
Time Frame
8 weeks

10. Eligibility

Sex
All
Minimum Age & Unit of Time
18 Years
Maximum Age & Unit of Time
80 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: Over 18 years old Active patient at the Rehabilitation Center Club de Leones Cruz del Sur At least 1 Hemorrhagic or ischemic stroke Adequate level of consciousness Paresis of the upper extremities Patient who signed the inform consent Exclusion Criteria: Comorbidities in the central nervous system Pain in the upper extremity (hand, forearm, arm) Patient who does not sign the informed consent
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Asterio H Andrade, PhD
Organizational Affiliation
Rehabilitation Center Club de Leones Cruz del Sur
Official's Role
Study Chair
Facility Information:
Facility Name
Corporación de Rehabilitación Club de Leones Cruz del Sur
City
Punta Arenas
State/Province
XII Región
ZIP/Postal Code
6211525
Country
Chile

12. IPD Sharing Statement

Plan to Share IPD
No
Citations:
PubMed Identifier
30871944
Citation
GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019 May;18(5):439-458. doi: 10.1016/S1474-4422(19)30034-1. Epub 2019 Mar 11.
Results Reference
background
Citation
Málaga, G., La Cruz-Saldaña, D., Busta-Flores, P., Carbajal, A., & Santiago-Mariaca, K. (2018). La enfermedad cerebrovascular en el Perú: estado actual y perspectivas de investigación clínica. Acta medica peruana, 35(1), 51-54.
Results Reference
background
Citation
Leyton Pavez, C.E., Espinoza, I.R.P., Hernández Poblete, P.A., Gil Martín, J.C.: Atención post hospitalaria de pacientes con accidente cerebrovascular en atención primaria de salud. Revista Médica de Risaralda 25, 23-30 (2019)
Results Reference
background
Citation
Sepúlveda-Contreras, J.: Caracterización de pacientes con accidente cerebrovascular ingresados en un hospital de baja complejidad en Chile. Universidad y Salud 23, 8-12 (2021)
Results Reference
background
PubMed Identifier
12411667
Citation
Rathore SS, Hinn AR, Cooper LS, Tyroler HA, Rosamond WD. Characterization of incident stroke signs and symptoms: findings from the atherosclerosis risk in communities study. Stroke. 2002 Nov;33(11):2718-21. doi: 10.1161/01.str.0000035286.87503.31.
Results Reference
background
PubMed Identifier
17311785
Citation
Fischer HC, Stubblefield K, Kline T, Luo X, Kenyon RV, Kamper DG. Hand rehabilitation following stroke: a pilot study of assisted finger extension training in a virtual environment. Top Stroke Rehabil. 2007 Jan-Feb;14(1):1-12. doi: 10.1310/tsr1401-1.
Results Reference
background
PubMed Identifier
23885710
Citation
Thibaut A, Chatelle C, Ziegler E, Bruno MA, Laureys S, Gosseries O. Spasticity after stroke: physiology, assessment and treatment. Brain Inj. 2013;27(10):1093-105. doi: 10.3109/02699052.2013.804202. Epub 2013 Jul 25.
Results Reference
background
Citation
Beneitez García, P.: Neurorrehabilitación: Robótica Y Realidad Virtual en Accidente Cerebrovascular. Reeducación del Miembro Superior, (2019). http://hdl.handle.net/10810/31072
Results Reference
background
PubMed Identifier
12878437
Citation
Rossini PM, Calautti C, Pauri F, Baron JC. Post-stroke plastic reorganisation in the adult brain. Lancet Neurol. 2003 Aug;2(8):493-502. doi: 10.1016/s1474-4422(03)00485-x.
Results Reference
background
PubMed Identifier
8650578
Citation
Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996 Jun 21;272(5269):1791-4. doi: 10.1126/science.272.5269.1791.
Results Reference
background
PubMed Identifier
10845057
Citation
Jones EG. Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annu Rev Neurosci. 2000;23:1-37. doi: 10.1146/annurev.neuro.23.1.1.
Results Reference
background
PubMed Identifier
14504336
Citation
Sterr A, Freivogel S. Motor-improvement following intensive training in low-functioning chronic hemiparesis. Neurology. 2003 Sep 23;61(6):842-4. doi: 10.1212/wnl.61.6.842.
Results Reference
background
PubMed Identifier
7650532
Citation
Butefisch C, Hummelsheim H, Denzler P, Mauritz KH. Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci. 1995 May;130(1):59-68. doi: 10.1016/0022-510x(95)00003-k.
Results Reference
background
PubMed Identifier
11138954
Citation
Levy CE, Nichols DS, Schmalbrock PM, Keller P, Chakeres DW. Functional MRI evidence of cortical reorganization in upper-limb stroke hemiplegia treated with constraint-induced movement therapy. Am J Phys Med Rehabil. 2001 Jan;80(1):4-12. doi: 10.1097/00002060-200101000-00003.
Results Reference
background
PubMed Identifier
17012642
Citation
Frick EM, Alberts JL. Combined use of repetitive task practice and an assistive robotic device in a patient with subacute stroke. Phys Ther. 2006 Oct;86(10):1378-86. doi: 10.2522/ptj.20050149.
Results Reference
background
Citation
Panagiotis, P., Zheng, W., Kevin C., G., Robert J., W., Conor J., W.: Soft robotic glove for combined assistance and at-home rehabilitation. Robotics and Autonomous Systems 73(Wearable Robotics), 135-143 (2015). doi:10.1016/j.robot.2014.08.014
Results Reference
background
Citation
Ates, S., Haarman, C.J.W., Stienen, A.H.A.: SCRIPT passive orthosis: design of interactive hand and wrist exoskeleton for rehabilitation at home after stroke. Autonomous Robots 41(3), 711-723 (2017). doi:10.1007/s10514-016-9589-6
Results Reference
background
Citation
Pelier, B.Y.N., Aguilar, M.T., Rabelo, J.N.: Terapia robótica en la rehabilitación del miembro superior hemipléjico en pacientes con enfermedad cerebrovascular. Medimay 28(1), 132-41 (2021)
Results Reference
background
Citation
Costa, , Díez, S.: Robótica para la rehabilitación. Sobre Ruedas 102, 16-20 (2019)
Results Reference
background
PubMed Identifier
35574230
Citation
Gil-Castillo J, Barria P, Aguilar Cardenas R, Baleta Abarza K, Andrade Gallardo A, Biskupovic Mancilla A, Azorin JM, Moreno JC. A Robot-Assisted Therapy to Increase Muscle Strength in Hemiplegic Gait Rehabilitation. Front Neurorobot. 2022 Apr 29;16:837494. doi: 10.3389/fnbot.2022.837494. eCollection 2022.
Results Reference
background
Citation
Mancisidor, A., Zubizarreta, A., Cabanes, I., Bengoa, P., Jung, J.H.: Dispositivo robótico multifuncional para la rehabilitación de las extremidades superiores. Revista Iberoamericana de Automática e Informática industrial 15(2), 180-91 (2018). doi:10.4995/riai.2017.8820
Results Reference
background
PubMed Identifier
20740477
Citation
Carmeli E, Peleg S, Bartur G, Elbo E, Vatine JJ. HandTutor enhanced hand rehabilitation after stroke--a pilot study. Physiother Res Int. 2011 Dec;16(4):191-200. doi: 10.1002/pri.485. Epub 2010 Aug 25.
Results Reference
background
Citation
Ueki, S., Kawasaki, H., Ito, S., Nishimoto, Y., Abe, M., Aoki, T., Ishigure, Y., Ojika, T., Mouri, T.:Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy. IEEE/ASME Transactions on Mechatronics 17(1), 136-146 (2012). doi:10.1109/TMECH.2010.2090353
Results Reference
background
PubMed Identifier
20185616
Citation
Kutner NG, Zhang R, Butler AJ, Wolf SL, Alberts JL. Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: a randomized clinical trial. Phys Ther. 2010 Apr;90(4):493-504. doi: 10.2522/ptj.20090160. Epub 2010 Feb 25.
Results Reference
background
PubMed Identifier
17876068
Citation
Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008 Mar-Apr;22(2):111-21. doi: 10.1177/1545968307305457. Epub 2007 Sep 17.
Results Reference
background
Citation
Rietman, J.S., Prange, G., Kottink, A., Ribbers, G., Buurke, J.: The Effect of an Arm Supporting Training Device in Sub-Acute Stroke Patients: Randomized Clinical Trial. Archives of Physical Medicine and Rehabilitation 95(10), 8 (2014). doi:10.1016/j.apmr.2014.07.382
Results Reference
background
Citation
Flores, E., Tobon, G., Cavallaro, E., Cavallaro, F.I., Perry, J.C., Keller, T.: Improving patient motivation in game development for motor deficit rehabilitation. Advances in Computer Entertaiment Technology, 381 (2009). doi:10.1145/1501750.1501839
Results Reference
background
Citation
Loureiro, R.C.V., Collin, C.F., Harwin, W.S.: Robot Aided Therapy: Challenges Ahead for Upper Limb Stroke Rehabilitation. In: 5th Intl. Conf. Disability, Virtual Reality Assoc. Tech., pp. 33-39 (2004).
Results Reference
background
PubMed Identifier
26093805
Citation
Corbetta D, Imeri F, Gatti R. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review. J Physiother. 2015 Jul;61(3):117-24. doi: 10.1016/j.jphys.2015.05.017. Epub 2015 Jun 18.
Results Reference
background
Citation
Cameirao, M.S., Badia, S.B.i., Zimmerli, L., Oller, E.D., Verschure, P.F.M.J.: The Rehabilitation Gaming System: a Virtual Reality Based System for the Evaluation and Rehabilitation of Motor Deficits. In: 2007 Virtual Rehabilitation, pp. 29-33. IEEE, ??? (2007). doi:10.1109/ICVR.2007.4362125.http://ieeexplore.ieee.org/document/4362125/
Results Reference
background
PubMed Identifier
15679945
Citation
Sveistrup H. Motor rehabilitation using virtual reality. J Neuroeng Rehabil. 2004 Dec 10;1(1):10. doi: 10.1186/1743-0003-1-10.
Results Reference
background
PubMed Identifier
25575219
Citation
Nielsen JB, Willerslev-Olsen M, Christiansen L, Lundbye-Jensen J, Lorentzen J. Science-based neurorehabilitation: recommendations for neurorehabilitation from basic science. J Mot Behav. 2015;47(1):7-17. doi: 10.1080/00222895.2014.931273.
Results Reference
background
PubMed Identifier
22785001
Citation
Subramanian SK, Lourenco CB, Chilingaryan G, Sveistrup H, Levin MF. Arm motor recovery using a virtual reality intervention in chronic stroke: randomized control trial. Neurorehabil Neural Repair. 2013 Jan;27(1):13-23. doi: 10.1177/1545968312449695. Epub 2012 Jul 10.
Results Reference
background
Citation
Crosbie, J.H., Crosbie, J.H., Lennon, S., Lennon, S., Mcgoldrick, M.C., Mcgoldrick, M.C., Mcneill, M.D.J., Mcneill, M.D.J., Burke, J.W., Burke, J.W., Mcdonough, S.M., Mcdonough, S.M.: Virtual reality in the rehabilitation of the upper limb after hemiplegic stroke: a randomised pilot study. Screen, 229-235 (2008)
Results Reference
background
Citation
Sainz-Cantero Paredes, J.A.: Montaje Y Control de Una ´ortesis Rob´otica Para la Rehabilitaci´on de la Mano, (2019). http://hdl.handle.net/10835/8020
Results Reference
background
Citation
Cisnal, A., Lobo, V., Moreno, V., Fraile, J.-C., Alonso, R., P´erez-Turiel, J.: Robhand, un exoesqueleto de mano para la rehabilitaci´on neuromotora aplicando terapias activas y pasivas. In: En Actas de las XXXIX Jornadas de Autom´atica, Badajoz, 5-7 de Septiembre de 2018, pp. 34-41 (2018). doi:10.17979/spudc.9788497497565.0034
Results Reference
background
Citation
Moreno-SanJuan, V., Cisnal, A., Fraile, J.-C., P´erez-Turiel, J., de-la-Fuente, E.: Design and characterization of a lightweight underactuated raca hand exoskeleton for neurorehabilitation. Robotics and Autonomous Systems 143, 103828 (2021). doi:10.1016/j.robot.2021.103828
Results Reference
background
Citation
Cisnal, A., P´erez-Turiel, J., Fraile, J.-C., Sierra, D., de la Fuente, E.: Robhand: A hand exoskeleton with real-time emg-driven embedded control. quantifying hand gesture recognition delays for bilateral rehabilitation. IEEE Access 9, 137809-137823 (2021). doi:10.1109/ACCESS.2021.3118281
Results Reference
background
PubMed Identifier
35956063
Citation
Cisnal A, Moreno-SanJuan V, Fraile JC, Turiel JP, de-la-Fuente E, Sanchez-Brizuela G. Assessment of the Patient's Emotional Response with the RobHand Rehabilitation Platform: A Case Series Study. J Clin Med. 2022 Jul 30;11(15):4442. doi: 10.3390/jcm11154442.
Results Reference
background
Citation
C, J., V´azquez, L., S´anchez, G., S, J.: Dinamometria de manos en estudiantes de merida, m´exico. Revista chilena de nutrici´on 39, 45-51 (2012). doi:10.4067/S0717-75182012000300007
Results Reference
background
PubMed Identifier
28778190
Citation
Ong HL, Abdin E, Chua BY, Zhang Y, Seow E, Vaingankar JA, Chong SA, Subramaniam M. Hand-grip strength among older adults in Singapore: a comparison with international norms and associative factors. BMC Geriatr. 2017 Aug 4;17(1):176. doi: 10.1186/s12877-017-0565-6.
Results Reference
background
Citation
Gilbertson, L., Barber-Lomax, S.: Power and pinch grip strength recorded using the hand-held jamar® dynamometer and b+l hydraulic pinch gauge: British normative data for adults. British Journal of Occupational Therapy 57(12), 483-488 (1994). doi:10.1177/030802269405701209. https://doi.org/10.1177/030802269405701209
Results Reference
background
PubMed Identifier
14527120
Citation
Oxford Grice K, Vogel KA, Le V, Mitchell A, Muniz S, Vollmer MA. Adult norms for a commercially available Nine Hole Peg Test for finger dexterity. Am J Occup Ther. 2003 Sep-Oct;57(5):570-3. doi: 10.5014/ajot.57.5.570.
Results Reference
background
PubMed Identifier
30734576
Citation
Tolle KA, Rahman-Filipiak AM, Hale AC, Kitchen Andren KA, Spencer RJ. Grooved Pegboard Test as a measure of executive functioning. Appl Neuropsychol Adult. 2020 Sep-Oct;27(5):414-420. doi: 10.1080/23279095.2018.1559165. Epub 2019 Feb 8.
Results Reference
background
Citation
Figueiredo, S.: Box and Block Test (BBT)
Results Reference
background
PubMed Identifier
17008339
Citation
Van de Winckel A, Feys H, van der Knaap S, Messerli R, Baronti F, Lehmann R, Van Hemelrijk B, Pante F, Perfetti C, De Weerdt W. Can quality of movement be measured? Rasch analysis and inter-rater reliability of the Motor Evaluation Scale for Upper Extremity in Stroke Patients (MESUPES). Clin Rehabil. 2006 Oct;20(10):871-84. doi: 10.1177/0269215506072181.
Results Reference
background
PubMed Identifier
10436097
Citation
Sulter G, Steen C, De Keyser J. Use of the Barthel index and modified Rankin scale in acute stroke trials. Stroke. 1999 Aug;30(8):1538-41. doi: 10.1161/01.str.30.8.1538.
Results Reference
background
PubMed Identifier
11508406
Citation
Demers L, Weiss-Lambrou R, Ska B. Item analysis of the Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST). Assist Technol. 2000;12(2):96-105. doi: 10.1080/10400435.2000.10132015.
Results Reference
background
Citation
Barrera, C.A.M. PhD thesis
Results Reference
background
Citation
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2022). R Foundation for Statistical Computing. https://www.R-project.org/
Results Reference
background

Learn more about this trial

Hand Rehabilitation Based on a RobHand Exoskeleton in Stroke Patients: a Case Series Study

We'll reach out to this number within 24 hrs