search
Back to results

Effects of Transcutaneous Electrical Nerve Stimulation on Cognitive Function and Upper Limb Motor Function in People With Chronic Stroke

Primary Purpose

Chronic Stroke

Status
Recruiting
Phase
Not Applicable
Locations
Hong Kong
Study Type
Interventional
Intervention
spine TENS
tVNS
Control
Sponsored by
The Hong Kong Polytechnic University
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional treatment trial for Chronic Stroke

Eligibility Criteria

50 Years - 80 Years (Adult, Older Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria: aged between 50 and 80; have suffered from a single stroke at least 1 year; had volitional control of the non-paretic arm and at least minimal antigravity movement in the paretic shoulder; scored 7 or above in the Abbreviated Mental Test. Exclusion Criteria: have cardiac pacemaker or cochlear implant; have other neurological diseases; are taking medication that may affect measured outcomes; have skin lesions, infection, or inflammation near selected position; are participating in other drug/treatment programs.

Sites / Locations

  • The Hong Kong Polytechnic UniversityRecruiting

Arms of the Study

Arm 1

Arm 2

Arm 3

Arm Type

Experimental

Experimental

Placebo Comparator

Arm Label

spine TENS

tVNS

Control

Arm Description

The participants will be received eighteen 45-minute sessions of intervention, 3 sessions per week for 6 weeks.

The participants will be received eighteen 45-minute sessions of intervention, 3 sessions per week for 6 weeks.

The participants will be received eighteen 45-minute sessions of intervention, 3 sessions per week for 6 weeks.

Outcomes

Primary Outcome Measures

Fugl-Meyer Assessment of the Upper Extremity
The Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) assesses the motor control, which included the reflex, synergistic and isolated movements and coordination of the upper extremity. It is a 3-point ordinal scale with 33 items and the total score ranges from 0 to 66. In this scale, "0" represents "cannot perform", "1" represents "performs partially" and "2" represents "performs fully". The higher score indicates better motor control of the upper extremity. The FMA-UE has an excellent inter-rater reliability (ICC = 0.98) in people with stroke.
Fugl-Meyer Assessment of the Upper Extremity
The Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) assesses the motor control, which included the reflex, synergistic and isolated movements and coordination of the upper extremity. It is a 3-point ordinal scale with 33 items and the total score ranges from 0 to 66. In this scale, "0" represents "cannot perform", "1" represents "performs partially" and "2" represents "performs fully". The higher score indicates better motor control of the upper extremity. The FMA-UE has an excellent inter-rater reliability (ICC = 0.98) in people with stroke.
Fugl-Meyer Assessment of the Upper Extremity
The Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) assesses the motor control, which included the reflex, synergistic and isolated movements and coordination of the upper extremity. It is a 3-point ordinal scale with 33 items and the total score ranges from 0 to 66. In this scale, "0" represents "cannot perform", "1" represents "performs partially" and "2" represents "performs fully". The higher score indicates better motor control of the upper extremity. The FMA-UE has an excellent inter-rater reliability (ICC = 0.98) in people with stroke.
Fugl-Meyer Assessment of the Upper Extremity
The Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) assesses the motor control, which included the reflex, synergistic and isolated movements and coordination of the upper extremity. It is a 3-point ordinal scale with 33 items and the total score ranges from 0 to 66. In this scale, "0" represents "cannot perform", "1" represents "performs partially" and "2" represents "performs fully". The higher score indicates better motor control of the upper extremity. The FMA-UE has an excellent inter-rater reliability (ICC = 0.98) in people with stroke.
Wolf Motor Function Test
The Wolf Motor Function Test (WMFT) evaluates the motor ability of upper extremity through timed and functional tasks. It consists of 17 tasks which is rated by 6-point scale which ranges from 0 (no attempt made to use the more affected upper extremity) to 5 (movement appears to be normal). The time for completing each functional task is also recorded, with a maximum of 120 seconds allow for each task. The higher score represents the better functioning level of upper extremity, Excellent test-retest reliability (ICC = 0.92 - 0.99) has been demonstrated in people with stroke.
Wolf Motor Function Test
The Wolf Motor Function Test (WMFT) evaluates the motor ability of upper extremity through timed and functional tasks. It consists of 17 tasks which is rated by 6-point scale which ranges from 0 (no attempt made to use the more affected upper extremity) to 5 (movement appears to be normal). The time for completing each functional task is also recorded, with a maximum of 120 seconds allow for each task. The higher score represents the better functioning level of upper extremity, Excellent test-retest reliability (ICC = 0.92 - 0.99) has been demonstrated in people with stroke.
Wolf Motor Function Test
The Wolf Motor Function Test (WMFT) evaluates the motor ability of upper extremity through timed and functional tasks. It consists of 17 tasks which is rated by 6-point scale which ranges from 0 (no attempt made to use the more affected upper extremity) to 5 (movement appears to be normal). The time for completing each functional task is also recorded, with a maximum of 120 seconds allow for each task. The higher score represents the better functioning level of upper extremity, Excellent test-retest reliability (ICC = 0.92 - 0.99) has been demonstrated in people with stroke.
Wolf Motor Function Test
The Wolf Motor Function Test (WMFT) evaluates the motor ability of upper extremity through timed and functional tasks. It consists of 17 tasks which is rated by 6-point scale which ranges from 0 (no attempt made to use the more affected upper extremity) to 5 (movement appears to be normal). The time for completing each functional task is also recorded, with a maximum of 120 seconds allow for each task. The higher score represents the better functioning level of upper extremity, Excellent test-retest reliability (ICC = 0.92 - 0.99) has been demonstrated in people with stroke.
Muscle strength
A hand-held dynamometer (Model 01165; Lafayette Instrument, Indiana, USA) will be used to measure the muscle force generated by biceps brachii and triceps brachii muscles of affected and unaffected sides. The participant will be instructed to perform isometric contraction and resistance will be applied by the examiner to avoid movement of the arm during the measurement. Two trials will be performed for each muscle group and the mean force of two trials will be recorded.
Muscle strength
A hand-held dynamometer (Model 01165; Lafayette Instrument, Indiana, USA) will be used to measure the muscle force generated by biceps brachii and triceps brachii muscles of affected and unaffected sides. The participant will be instructed to perform isometric contraction and resistance will be applied by the examiner to avoid movement of the arm during the measurement. Two trials will be performed for each muscle group and the mean force of two trials will be recorded.
Muscle strength
A hand-held dynamometer (Model 01165; Lafayette Instrument, Indiana, USA) will be used to measure the muscle force generated by biceps brachii and triceps brachii muscles of affected and unaffected sides. The participant will be instructed to perform isometric contraction and resistance will be applied by the examiner to avoid movement of the arm during the measurement. Two trials will be performed for each muscle group and the mean force of two trials will be recorded.
Muscle strength
A hand-held dynamometer (Model 01165; Lafayette Instrument, Indiana, USA) will be used to measure the muscle force generated by biceps brachii and triceps brachii muscles of affected and unaffected sides. The participant will be instructed to perform isometric contraction and resistance will be applied by the examiner to avoid movement of the arm during the measurement. Two trials will be performed for each muscle group and the mean force of two trials will be recorded.
Muscle stiffness
The muscle stiffness of biceps brachii and triceps brachii muscles will be quantified by MyotonPRO device (Myoton AS, Tallinn, Estonia). The MyotonPRO device will be placed perpendicularly to the skin surface and apply mechanical impulses on the muscles to generate damped oscillations of the underlying tissue. The biceps brachii measurements will be performed at the long head of the muscle in the middle of the arm. The triceps brachii measurements will be performed at the medial head of the muscle in the middle of the arm. Muscle stiffness will be described as newton-meter (N/m), where the higher value indicates the higher stiffness of the tissue.
Muscle stiffness
The muscle stiffness of biceps brachii and triceps brachii muscles will be quantified by MyotonPRO device (Myoton AS, Tallinn, Estonia). The MyotonPRO device will be placed perpendicularly to the skin surface and apply mechanical impulses on the muscles to generate damped oscillations of the underlying tissue. The biceps brachii measurements will be performed at the long head of the muscle in the middle of the arm. The triceps brachii measurements will be performed at the medial head of the muscle in the middle of the arm. Muscle stiffness will be described as newton-meter (N/m), where the higher value indicates the higher stiffness of the tissue.
Muscle stiffness
The muscle stiffness of biceps brachii and triceps brachii muscles will be quantified by MyotonPRO device (Myoton AS, Tallinn, Estonia). The MyotonPRO device will be placed perpendicularly to the skin surface and apply mechanical impulses on the muscles to generate damped oscillations of the underlying tissue. The biceps brachii measurements will be performed at the long head of the muscle in the middle of the arm. The triceps brachii measurements will be performed at the medial head of the muscle in the middle of the arm. Muscle stiffness will be described as newton-meter (N/m), where the higher value indicates the higher stiffness of the tissue.
Muscle stiffness
The muscle stiffness of biceps brachii and triceps brachii muscles will be quantified by MyotonPRO device (Myoton AS, Tallinn, Estonia). The MyotonPRO device will be placed perpendicularly to the skin surface and apply mechanical impulses on the muscles to generate damped oscillations of the underlying tissue. The biceps brachii measurements will be performed at the long head of the muscle in the middle of the arm. The triceps brachii measurements will be performed at the medial head of the muscle in the middle of the arm. Muscle stiffness will be described as newton-meter (N/m), where the higher value indicates the higher stiffness of the tissue.
Rivermead Behavioural Memory Test - Third edition
The Rivermead Behavioural Memory Test - Third edition (RBMT-3) examines the everyday memory function with 14 subtests, including the assessment for visual, verbal, recall, recognition, immediate, and delayed memory. The scaled score of each subtest and total scaled score will be computed by converting raw scores based on different age group. Higher scaled score indicates better memory function. The RBMT-3 has demonstrated excellent inter-rater reliability (ICC = 0.997) and intra-rater reliability (ICC = 0.924) and good internal consistency (Cronbach's alpha = 0.643 - 0.832) in people with dementia, mild cognitive impairment and healthy older adults.
Rivermead Behavioural Memory Test - Third edition
The Rivermead Behavioural Memory Test - Third edition (RBMT-3) examines the everyday memory function with 14 subtests, including the assessment for visual, verbal, recall, recognition, immediate, and delayed memory. The scaled score of each subtest and total scaled score will be computed by converting raw scores based on different age group. Higher scaled score indicates better memory function. The RBMT-3 has demonstrated excellent inter-rater reliability (ICC = 0.997) and intra-rater reliability (ICC = 0.924) and good internal consistency (Cronbach's alpha = 0.643 - 0.832) in people with dementia, mild cognitive impairment and healthy older adults.
Rivermead Behavioural Memory Test - Third edition
The Rivermead Behavioural Memory Test - Third edition (RBMT-3) examines the everyday memory function with 14 subtests, including the assessment for visual, verbal, recall, recognition, immediate, and delayed memory. The scaled score of each subtest and total scaled score will be computed by converting raw scores based on different age group. Higher scaled score indicates better memory function. The RBMT-3 has demonstrated excellent inter-rater reliability (ICC = 0.997) and intra-rater reliability (ICC = 0.924) and good internal consistency (Cronbach's alpha = 0.643 - 0.832) in people with dementia, mild cognitive impairment and healthy older adults.
Rivermead Behavioural Memory Test - Third edition
The Rivermead Behavioural Memory Test - Third edition (RBMT-3) examines the everyday memory function with 14 subtests, including the assessment for visual, verbal, recall, recognition, immediate, and delayed memory. The scaled score of each subtest and total scaled score will be computed by converting raw scores based on different age group. Higher scaled score indicates better memory function. The RBMT-3 has demonstrated excellent inter-rater reliability (ICC = 0.997) and intra-rater reliability (ICC = 0.924) and good internal consistency (Cronbach's alpha = 0.643 - 0.832) in people with dementia, mild cognitive impairment and healthy older adults.
Digit Span Test
The Digit Span Test (DST) consists of two parts to measure the verbal short-term memory and working memory of an individual, which are digit span forwards and digit span backwards. The participants are presented with a series of numbers. In the digit span forward (DSF), they are required to repeat the numbers in forward order. In the digit span backward (DSB), they are asked to repeat the numbers in reverse order. The length of digits in each string increases from 3 to 9 in DSF and from 2 to 8 in DSB. Two trials are presented at each length. The test is interrupted when participant failed to either trial at equal digit length. If the participants correctly recall the sequence in either first and second trial, 1 point will be scored. The total score of DSF and DSB are 16 and 14 respectively. The intra-rater reliability of DSF and DSB are 0.891 and 0.598 respectively in older adults with neurocognitive disorder.
Digit Span Test
The Digit Span Test (DST) consists of two parts to measure the verbal short-term memory and working memory of an individual, which are digit span forwards and digit span backwards. The participants are presented with a series of numbers. In the digit span forward (DSF), they are required to repeat the numbers in forward order. In the digit span backward (DSB), they are asked to repeat the numbers in reverse order. The length of digits in each string increases from 3 to 9 in DSF and from 2 to 8 in DSB. Two trials are presented at each length. The test is interrupted when participant failed to either trial at equal digit length. If the participants correctly recall the sequence in either first and second trial, 1 point will be scored. The total score of DSF and DSB are 16 and 14 respectively. The intra-rater reliability of DSF and DSB are 0.891 and 0.598 respectively in older adults with neurocognitive disorder.
Digit Span Test
The Digit Span Test (DST) consists of two parts to measure the verbal short-term memory and working memory of an individual, which are digit span forwards and digit span backwards. The participants are presented with a series of numbers. In the digit span forward (DSF), they are required to repeat the numbers in forward order. In the digit span backward (DSB), they are asked to repeat the numbers in reverse order. The length of digits in each string increases from 3 to 9 in DSF and from 2 to 8 in DSB. Two trials are presented at each length. The test is interrupted when participant failed to either trial at equal digit length. If the participants correctly recall the sequence in either first and second trial, 1 point will be scored. The total score of DSF and DSB are 16 and 14 respectively. The intra-rater reliability of DSF and DSB are 0.891 and 0.598 respectively in older adults with neurocognitive disorder.
Digit Span Test
The Digit Span Test (DST) consists of two parts to measure the verbal short-term memory and working memory of an individual, which are digit span forwards and digit span backwards. The participants are presented with a series of numbers. In the digit span forward (DSF), they are required to repeat the numbers in forward order. In the digit span backward (DSB), they are asked to repeat the numbers in reverse order. The length of digits in each string increases from 3 to 9 in DSF and from 2 to 8 in DSB. Two trials are presented at each length. The test is interrupted when participant failed to either trial at equal digit length. If the participants correctly recall the sequence in either first and second trial, 1 point will be scored. The total score of DSF and DSB are 16 and 14 respectively. The intra-rater reliability of DSF and DSB are 0.891 and 0.598 respectively in older adults with neurocognitive disorder.
Montreal Cognitive Assessment
The Montreal Cognitive Assessment (MoCA) is a screening tool to detect cognitive impairment of an individual with a total score of 30. The MoCA assesses different cognitive domains, including executive functioning, immediate and delayed memory, visuospatial abilities, attention, working memory, language, and orientation to time and place. It can identify dementia from controls with a sensitivity of 92.3% and specificity of 91.8% with a cut-off score of 22.
Montreal Cognitive Assessment
The Montreal Cognitive Assessment (MoCA) is a screening tool to detect cognitive impairment of an individual with a total score of 30. The MoCA assesses different cognitive domains, including executive functioning, immediate and delayed memory, visuospatial abilities, attention, working memory, language, and orientation to time and place. It can identify dementia from controls with a sensitivity of 92.3% and specificity of 91.8% with a cut-off score of 22.
Montreal Cognitive Assessment
The Montreal Cognitive Assessment (MoCA) is a screening tool to detect cognitive impairment of an individual with a total score of 30. The MoCA assesses different cognitive domains, including executive functioning, immediate and delayed memory, visuospatial abilities, attention, working memory, language, and orientation to time and place. It can identify dementia from controls with a sensitivity of 92.3% and specificity of 91.8% with a cut-off score of 22.
Montreal Cognitive Assessment
The Montreal Cognitive Assessment (MoCA) is a screening tool to detect cognitive impairment of an individual with a total score of 30. The MoCA assesses different cognitive domains, including executive functioning, immediate and delayed memory, visuospatial abilities, attention, working memory, language, and orientation to time and place. It can identify dementia from controls with a sensitivity of 92.3% and specificity of 91.8% with a cut-off score of 22.
Trail Making Test
Trail Making Test (TMT) can assess the attention and cognitive flexibility of individuals. The test is divided into part A and part B. In part A, the circle is numbered (i.e., 1 to 25). The subjects should draw lines in numeric order of the listed circle. In part B, the circles include both numbers (i.e., 1 to 13) and words (i.e., A to L). The subjects should draw the lines in a specific sequence between number and word (i.e., 1 to A to 2 to B etc.). A shorter time recorded in the test indicated the better performance. The test-retest reliability has been tested in people with stroke (ICC = 0.94 and 0.86 for Part A and Part B, respectively).
Trail Making Test
Trail Making Test (TMT) can assess the attention and cognitive flexibility of individuals. The test is divided into part A and part B. In part A, the circle is numbered (i.e., 1 to 25). The subjects should draw lines in numeric order of the listed circle. In part B, the circles include both numbers (i.e., 1 to 13) and words (i.e., A to L). The subjects should draw the lines in a specific sequence between number and word (i.e., 1 to A to 2 to B etc.). A shorter time recorded in the test indicated the better performance. The test-retest reliability has been tested in people with stroke (ICC = 0.94 and 0.86 for Part A and Part B, respectively).
Trail Making Test
Trail Making Test (TMT) can assess the attention and cognitive flexibility of individuals. The test is divided into part A and part B. In part A, the circle is numbered (i.e., 1 to 25). The subjects should draw lines in numeric order of the listed circle. In part B, the circles include both numbers (i.e., 1 to 13) and words (i.e., A to L). The subjects should draw the lines in a specific sequence between number and word (i.e., 1 to A to 2 to B etc.). A shorter time recorded in the test indicated the better performance. The test-retest reliability has been tested in people with stroke (ICC = 0.94 and 0.86 for Part A and Part B, respectively).
Trail Making Test
Trail Making Test (TMT) can assess the attention and cognitive flexibility of individuals. The test is divided into part A and part B. In part A, the circle is numbered (i.e., 1 to 25). The subjects should draw lines in numeric order of the listed circle. In part B, the circles include both numbers (i.e., 1 to 13) and words (i.e., A to L). The subjects should draw the lines in a specific sequence between number and word (i.e., 1 to A to 2 to B etc.). A shorter time recorded in the test indicated the better performance. The test-retest reliability has been tested in people with stroke (ICC = 0.94 and 0.86 for Part A and Part B, respectively).
Oxford Participation and Activities Questionnaire
The 23-item Oxford Participation and Activities Questionnaire (Ox-PAQ) evaluates participation and activity levels based on the three domains of routine activities, social engagement, and emotional well-being. Each item is measured on a 5-point Likert scale (0 = never; 1 = rarely; 2 = sometimes; 3 = often; 4 = always). The higher scores represent greater difficulties with participation and activities. Good to excellent internal consistency (Cronbach's α = 0.81 - 0.96) and test-retest reliability (ICC = 0.83 - 0.96) have been shown for this instrument in people with motor neuron disease, multiple sclerosis, and Parkinson's disease.
Oxford Participation and Activities Questionnaire
The 23-item Oxford Participation and Activities Questionnaire (Ox-PAQ) evaluates participation and activity levels based on the three domains of routine activities, social engagement, and emotional well-being. Each item is measured on a 5-point Likert scale (0 = never; 1 = rarely; 2 = sometimes; 3 = often; 4 = always). The higher scores represent greater difficulties with participation and activities. Good to excellent internal consistency (Cronbach's α = 0.81 - 0.96) and test-retest reliability (ICC = 0.83 - 0.96) have been shown for this instrument in people with motor neuron disease, multiple sclerosis, and Parkinson's disease.
Oxford Participation and Activities Questionnaire
The 23-item Oxford Participation and Activities Questionnaire (Ox-PAQ) evaluates participation and activity levels based on the three domains of routine activities, social engagement, and emotional well-being. Each item is measured on a 5-point Likert scale (0 = never; 1 = rarely; 2 = sometimes; 3 = often; 4 = always). The higher scores represent greater difficulties with participation and activities. Good to excellent internal consistency (Cronbach's α = 0.81 - 0.96) and test-retest reliability (ICC = 0.83 - 0.96) have been shown for this instrument in people with motor neuron disease, multiple sclerosis, and Parkinson's disease.
Oxford Participation and Activities Questionnaire
The 23-item Oxford Participation and Activities Questionnaire (Ox-PAQ) evaluates participation and activity levels based on the three domains of routine activities, social engagement, and emotional well-being. Each item is measured on a 5-point Likert scale (0 = never; 1 = rarely; 2 = sometimes; 3 = often; 4 = always). The higher scores represent greater difficulties with participation and activities. Good to excellent internal consistency (Cronbach's α = 0.81 - 0.96) and test-retest reliability (ICC = 0.83 - 0.96) have been shown for this instrument in people with motor neuron disease, multiple sclerosis, and Parkinson's disease.
12-item Short-Form Survey (second version)
The 12-item Short-Form Survey (second version) (SF-12v2) will be used to measure the health-related quality of life of individuals. This instrument contains eight domains: physical functioning, role physical, bodily pain, general health, vitality, social functioning, emotional role, and mental health. The total score ranges from 0 to 100, with a higher score indicating better quality of life. It has good internal consistency (Cronbach's alpha = 0.48 - 0.81) and test-retest reliability (ICC = 0.67 - 0.82) in healthy adults.
12-item Short-Form Survey (second version)
The 12-item Short-Form Survey (second version) (SF-12v2) will be used to measure the health-related quality of life of individuals. This instrument contains eight domains: physical functioning, role physical, bodily pain, general health, vitality, social functioning, emotional role, and mental health. The total score ranges from 0 to 100, with a higher score indicating better quality of life. It has good internal consistency (Cronbach's alpha = 0.48 - 0.81) and test-retest reliability (ICC = 0.67 - 0.82) in healthy adults.
12-item Short-Form Survey (second version)
The 12-item Short-Form Survey (second version) (SF-12v2) will be used to measure the health-related quality of life of individuals. This instrument contains eight domains: physical functioning, role physical, bodily pain, general health, vitality, social functioning, emotional role, and mental health. The total score ranges from 0 to 100, with a higher score indicating better quality of life. It has good internal consistency (Cronbach's alpha = 0.48 - 0.81) and test-retest reliability (ICC = 0.67 - 0.82) in healthy adults.
12-item Short-Form Survey (second version)
The 12-item Short-Form Survey (second version) (SF-12v2) will be used to measure the health-related quality of life of individuals. This instrument contains eight domains: physical functioning, role physical, bodily pain, general health, vitality, social functioning, emotional role, and mental health. The total score ranges from 0 to 100, with a higher score indicating better quality of life. It has good internal consistency (Cronbach's alpha = 0.48 - 0.81) and test-retest reliability (ICC = 0.67 - 0.82) in healthy adults.
Arm Activity Measure
The Arm Activity Measure (ArmA) is a 20-item questionnaire to assess the difficulties in passive and active upper limb tasks, where section A evaluates the passive function and section B evaluates the active function. It uses a 5-point Likert scale, ranging from 0 (no difficulty) to 4 (unable to do the task). The total score of section A and B are 32 and 52 respectively [59]. The higher score in ArmA indicates more difficulties experienced in activities when using upper limb. Good internal consistency (Cronbach's alpha = 0.85 - 0.96) has been shown in people with upper limb paresis.
Arm Activity Measure
The Arm Activity Measure (ArmA) is a 20-item questionnaire to assess the difficulties in passive and active upper limb tasks, where section A evaluates the passive function and section B evaluates the active function. It uses a 5-point Likert scale, ranging from 0 (no difficulty) to 4 (unable to do the task). The total score of section A and B are 32 and 52 respectively [59]. The higher score in ArmA indicates more difficulties experienced in activities when using upper limb. Good internal consistency (Cronbach's alpha = 0.85 - 0.96) has been shown in people with upper limb paresis.
Arm Activity Measure
The Arm Activity Measure (ArmA) is a 20-item questionnaire to assess the difficulties in passive and active upper limb tasks, where section A evaluates the passive function and section B evaluates the active function. It uses a 5-point Likert scale, ranging from 0 (no difficulty) to 4 (unable to do the task). The total score of section A and B are 32 and 52 respectively [59]. The higher score in ArmA indicates more difficulties experienced in activities when using upper limb. Good internal consistency (Cronbach's alpha = 0.85 - 0.96) has been shown in people with upper limb paresis.
Arm Activity Measure
The Arm Activity Measure (ArmA) is a 20-item questionnaire to assess the difficulties in passive and active upper limb tasks, where section A evaluates the passive function and section B evaluates the active function. It uses a 5-point Likert scale, ranging from 0 (no difficulty) to 4 (unable to do the task). The total score of section A and B are 32 and 52 respectively [59]. The higher score in ArmA indicates more difficulties experienced in activities when using upper limb. Good internal consistency (Cronbach's alpha = 0.85 - 0.96) has been shown in people with upper limb paresis.

Secondary Outcome Measures

Full Information

First Posted
November 7, 2022
Last Updated
March 1, 2023
Sponsor
The Hong Kong Polytechnic University
search

1. Study Identification

Unique Protocol Identification Number
NCT05615610
Brief Title
Effects of Transcutaneous Electrical Nerve Stimulation on Cognitive Function and Upper Limb Motor Function in People With Chronic Stroke
Official Title
A Randomized Controlled Clinical Trial of Transcutaneous Electrical Nerve Stimulation on Cognitive Function and Upper Limb Motor Function in People With Chronic Stroke
Study Type
Interventional

2. Study Status

Record Verification Date
November 2022
Overall Recruitment Status
Recruiting
Study Start Date
December 1, 2022 (Actual)
Primary Completion Date
December 1, 2024 (Anticipated)
Study Completion Date
December 1, 2024 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Sponsor
Name of the Sponsor
The Hong Kong Polytechnic University

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Data Monitoring Committee
No

5. Study Description

Brief Summary
Upper limb impairment is present in more than 85% of people with stroke, which greatly affect the quality of life, social participation, and performance of daily activities of people with stroke. Previous study also revealed that 53.4% of people after stroke experienced cognitive impairment. Different cognitive domains might be affected following stroke, such as attention, memory, language, and orientation, and the problems with memory are often prominent. Yet, there is no effective treatment for the post-stroke cognitive impairment. Transcutaneous electrical nerve stimulation (TENS) applied on thoracic region and transcutaneous vagus nerve stimulation (tVNS) are simple and non-invasive treatment to improve upper limb motor function and cognitive function. However, no existing studies have explored on the effects of TENS and tVNS on cognitive function in people with stroke. Therefore, the purpose of this study is to evaluate the effectiveness of TENS on improving upper limb function and cognitive function in people with chronic stroke. Also, this study will investigate the cortical response of people with stroke during TENS by using EEG power spectrum analysis.
Detailed Description
This study aims to investigate the effects of three intervention protocols in people with stroke. The participants in Group A will receive TENS on C6 and T5 level of the spine with upper limb exercises. The participants in Group B will receive tVNS on the cymba conchae of left outer ear with upper limb exercises. The participants in Group C will receive placebo tVNS with upper limb exercises.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Chronic Stroke

7. Study Design

Primary Purpose
Treatment
Study Phase
Not Applicable
Interventional Study Model
Parallel Assignment
Masking
Participant
Allocation
Randomized
Enrollment
75 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
spine TENS
Arm Type
Experimental
Arm Description
The participants will be received eighteen 45-minute sessions of intervention, 3 sessions per week for 6 weeks.
Arm Title
tVNS
Arm Type
Experimental
Arm Description
The participants will be received eighteen 45-minute sessions of intervention, 3 sessions per week for 6 weeks.
Arm Title
Control
Arm Type
Placebo Comparator
Arm Description
The participants will be received eighteen 45-minute sessions of intervention, 3 sessions per week for 6 weeks.
Intervention Type
Device
Intervention Name(s)
spine TENS
Intervention Description
The participants in Group A will receive TENS (Burst mode, 9 pulses per burst, pulse frequency = 160 Hz, burst frequency = 2 Hz) with upper limb exercises. The electrical stimulation will be generated by the neurostimulator (MH8000P; MEDIHIGHTEC MEDICAL CO., LTD., Taiwan). Two 7.5 × 12.6 cm electrodes will be attached between C6 and T5 level on each side of spinal column and with 2 cm from the spine. Intensity of TENS will be individually selected by the participants according to tolerance levels.
Intervention Type
Device
Intervention Name(s)
tVNS
Intervention Description
The participants in Group B will receive tVNS (pulse frequency = 25Hz, pulse duration = 0.3 ms) on the cymba conchae of left outer ear with upper limb exercises.The electrical stimulation will be generated by the neurostimulator (MH8000P; MEDIHIGHTEC MEDICAL CO., LTD., Taiwan). Intensity of tVNS will be individually selected by the participants according to tolerance levels. Previous studies showed that it was effective to improve the upper limb motor function in people with stroke and cognitive function in people with mild cognitive function.
Intervention Type
Device
Intervention Name(s)
Control
Intervention Description
The participants in Group C will receive placebo tVNS with upper limb exercises, where the stimulation will be delivered by placebo-TENS device with disconnected electrical circuit.
Primary Outcome Measure Information:
Title
Fugl-Meyer Assessment of the Upper Extremity
Description
The Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) assesses the motor control, which included the reflex, synergistic and isolated movements and coordination of the upper extremity. It is a 3-point ordinal scale with 33 items and the total score ranges from 0 to 66. In this scale, "0" represents "cannot perform", "1" represents "performs partially" and "2" represents "performs fully". The higher score indicates better motor control of the upper extremity. The FMA-UE has an excellent inter-rater reliability (ICC = 0.98) in people with stroke.
Time Frame
Baseline (0 week)
Title
Fugl-Meyer Assessment of the Upper Extremity
Description
The Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) assesses the motor control, which included the reflex, synergistic and isolated movements and coordination of the upper extremity. It is a 3-point ordinal scale with 33 items and the total score ranges from 0 to 66. In this scale, "0" represents "cannot perform", "1" represents "performs partially" and "2" represents "performs fully". The higher score indicates better motor control of the upper extremity. The FMA-UE has an excellent inter-rater reliability (ICC = 0.98) in people with stroke.
Time Frame
Mid-intervention (3 week)
Title
Fugl-Meyer Assessment of the Upper Extremity
Description
The Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) assesses the motor control, which included the reflex, synergistic and isolated movements and coordination of the upper extremity. It is a 3-point ordinal scale with 33 items and the total score ranges from 0 to 66. In this scale, "0" represents "cannot perform", "1" represents "performs partially" and "2" represents "performs fully". The higher score indicates better motor control of the upper extremity. The FMA-UE has an excellent inter-rater reliability (ICC = 0.98) in people with stroke.
Time Frame
Post-intervention (6 week)
Title
Fugl-Meyer Assessment of the Upper Extremity
Description
The Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) assesses the motor control, which included the reflex, synergistic and isolated movements and coordination of the upper extremity. It is a 3-point ordinal scale with 33 items and the total score ranges from 0 to 66. In this scale, "0" represents "cannot perform", "1" represents "performs partially" and "2" represents "performs fully". The higher score indicates better motor control of the upper extremity. The FMA-UE has an excellent inter-rater reliability (ICC = 0.98) in people with stroke.
Time Frame
1-month follow-up (10 week)
Title
Wolf Motor Function Test
Description
The Wolf Motor Function Test (WMFT) evaluates the motor ability of upper extremity through timed and functional tasks. It consists of 17 tasks which is rated by 6-point scale which ranges from 0 (no attempt made to use the more affected upper extremity) to 5 (movement appears to be normal). The time for completing each functional task is also recorded, with a maximum of 120 seconds allow for each task. The higher score represents the better functioning level of upper extremity, Excellent test-retest reliability (ICC = 0.92 - 0.99) has been demonstrated in people with stroke.
Time Frame
Baseline (0 week)
Title
Wolf Motor Function Test
Description
The Wolf Motor Function Test (WMFT) evaluates the motor ability of upper extremity through timed and functional tasks. It consists of 17 tasks which is rated by 6-point scale which ranges from 0 (no attempt made to use the more affected upper extremity) to 5 (movement appears to be normal). The time for completing each functional task is also recorded, with a maximum of 120 seconds allow for each task. The higher score represents the better functioning level of upper extremity, Excellent test-retest reliability (ICC = 0.92 - 0.99) has been demonstrated in people with stroke.
Time Frame
Mid-intervention (3 week)
Title
Wolf Motor Function Test
Description
The Wolf Motor Function Test (WMFT) evaluates the motor ability of upper extremity through timed and functional tasks. It consists of 17 tasks which is rated by 6-point scale which ranges from 0 (no attempt made to use the more affected upper extremity) to 5 (movement appears to be normal). The time for completing each functional task is also recorded, with a maximum of 120 seconds allow for each task. The higher score represents the better functioning level of upper extremity, Excellent test-retest reliability (ICC = 0.92 - 0.99) has been demonstrated in people with stroke.
Time Frame
Post-intervention (6 week)
Title
Wolf Motor Function Test
Description
The Wolf Motor Function Test (WMFT) evaluates the motor ability of upper extremity through timed and functional tasks. It consists of 17 tasks which is rated by 6-point scale which ranges from 0 (no attempt made to use the more affected upper extremity) to 5 (movement appears to be normal). The time for completing each functional task is also recorded, with a maximum of 120 seconds allow for each task. The higher score represents the better functioning level of upper extremity, Excellent test-retest reliability (ICC = 0.92 - 0.99) has been demonstrated in people with stroke.
Time Frame
1-month follow-up (10 week)
Title
Muscle strength
Description
A hand-held dynamometer (Model 01165; Lafayette Instrument, Indiana, USA) will be used to measure the muscle force generated by biceps brachii and triceps brachii muscles of affected and unaffected sides. The participant will be instructed to perform isometric contraction and resistance will be applied by the examiner to avoid movement of the arm during the measurement. Two trials will be performed for each muscle group and the mean force of two trials will be recorded.
Time Frame
Baseline (0 week)
Title
Muscle strength
Description
A hand-held dynamometer (Model 01165; Lafayette Instrument, Indiana, USA) will be used to measure the muscle force generated by biceps brachii and triceps brachii muscles of affected and unaffected sides. The participant will be instructed to perform isometric contraction and resistance will be applied by the examiner to avoid movement of the arm during the measurement. Two trials will be performed for each muscle group and the mean force of two trials will be recorded.
Time Frame
Mid-intervention (3 week)
Title
Muscle strength
Description
A hand-held dynamometer (Model 01165; Lafayette Instrument, Indiana, USA) will be used to measure the muscle force generated by biceps brachii and triceps brachii muscles of affected and unaffected sides. The participant will be instructed to perform isometric contraction and resistance will be applied by the examiner to avoid movement of the arm during the measurement. Two trials will be performed for each muscle group and the mean force of two trials will be recorded.
Time Frame
Post-intervention (6 week)
Title
Muscle strength
Description
A hand-held dynamometer (Model 01165; Lafayette Instrument, Indiana, USA) will be used to measure the muscle force generated by biceps brachii and triceps brachii muscles of affected and unaffected sides. The participant will be instructed to perform isometric contraction and resistance will be applied by the examiner to avoid movement of the arm during the measurement. Two trials will be performed for each muscle group and the mean force of two trials will be recorded.
Time Frame
1-month follow-up (10 week)
Title
Muscle stiffness
Description
The muscle stiffness of biceps brachii and triceps brachii muscles will be quantified by MyotonPRO device (Myoton AS, Tallinn, Estonia). The MyotonPRO device will be placed perpendicularly to the skin surface and apply mechanical impulses on the muscles to generate damped oscillations of the underlying tissue. The biceps brachii measurements will be performed at the long head of the muscle in the middle of the arm. The triceps brachii measurements will be performed at the medial head of the muscle in the middle of the arm. Muscle stiffness will be described as newton-meter (N/m), where the higher value indicates the higher stiffness of the tissue.
Time Frame
Baseline (0 week)
Title
Muscle stiffness
Description
The muscle stiffness of biceps brachii and triceps brachii muscles will be quantified by MyotonPRO device (Myoton AS, Tallinn, Estonia). The MyotonPRO device will be placed perpendicularly to the skin surface and apply mechanical impulses on the muscles to generate damped oscillations of the underlying tissue. The biceps brachii measurements will be performed at the long head of the muscle in the middle of the arm. The triceps brachii measurements will be performed at the medial head of the muscle in the middle of the arm. Muscle stiffness will be described as newton-meter (N/m), where the higher value indicates the higher stiffness of the tissue.
Time Frame
Mid-intervention (3 week)
Title
Muscle stiffness
Description
The muscle stiffness of biceps brachii and triceps brachii muscles will be quantified by MyotonPRO device (Myoton AS, Tallinn, Estonia). The MyotonPRO device will be placed perpendicularly to the skin surface and apply mechanical impulses on the muscles to generate damped oscillations of the underlying tissue. The biceps brachii measurements will be performed at the long head of the muscle in the middle of the arm. The triceps brachii measurements will be performed at the medial head of the muscle in the middle of the arm. Muscle stiffness will be described as newton-meter (N/m), where the higher value indicates the higher stiffness of the tissue.
Time Frame
Post-intervention (6 week)
Title
Muscle stiffness
Description
The muscle stiffness of biceps brachii and triceps brachii muscles will be quantified by MyotonPRO device (Myoton AS, Tallinn, Estonia). The MyotonPRO device will be placed perpendicularly to the skin surface and apply mechanical impulses on the muscles to generate damped oscillations of the underlying tissue. The biceps brachii measurements will be performed at the long head of the muscle in the middle of the arm. The triceps brachii measurements will be performed at the medial head of the muscle in the middle of the arm. Muscle stiffness will be described as newton-meter (N/m), where the higher value indicates the higher stiffness of the tissue.
Time Frame
1-month follow-up (10 week)
Title
Rivermead Behavioural Memory Test - Third edition
Description
The Rivermead Behavioural Memory Test - Third edition (RBMT-3) examines the everyday memory function with 14 subtests, including the assessment for visual, verbal, recall, recognition, immediate, and delayed memory. The scaled score of each subtest and total scaled score will be computed by converting raw scores based on different age group. Higher scaled score indicates better memory function. The RBMT-3 has demonstrated excellent inter-rater reliability (ICC = 0.997) and intra-rater reliability (ICC = 0.924) and good internal consistency (Cronbach's alpha = 0.643 - 0.832) in people with dementia, mild cognitive impairment and healthy older adults.
Time Frame
Baseline (0 week)
Title
Rivermead Behavioural Memory Test - Third edition
Description
The Rivermead Behavioural Memory Test - Third edition (RBMT-3) examines the everyday memory function with 14 subtests, including the assessment for visual, verbal, recall, recognition, immediate, and delayed memory. The scaled score of each subtest and total scaled score will be computed by converting raw scores based on different age group. Higher scaled score indicates better memory function. The RBMT-3 has demonstrated excellent inter-rater reliability (ICC = 0.997) and intra-rater reliability (ICC = 0.924) and good internal consistency (Cronbach's alpha = 0.643 - 0.832) in people with dementia, mild cognitive impairment and healthy older adults.
Time Frame
Mid-intervention (3 week)
Title
Rivermead Behavioural Memory Test - Third edition
Description
The Rivermead Behavioural Memory Test - Third edition (RBMT-3) examines the everyday memory function with 14 subtests, including the assessment for visual, verbal, recall, recognition, immediate, and delayed memory. The scaled score of each subtest and total scaled score will be computed by converting raw scores based on different age group. Higher scaled score indicates better memory function. The RBMT-3 has demonstrated excellent inter-rater reliability (ICC = 0.997) and intra-rater reliability (ICC = 0.924) and good internal consistency (Cronbach's alpha = 0.643 - 0.832) in people with dementia, mild cognitive impairment and healthy older adults.
Time Frame
Post-intervention (6 week)
Title
Rivermead Behavioural Memory Test - Third edition
Description
The Rivermead Behavioural Memory Test - Third edition (RBMT-3) examines the everyday memory function with 14 subtests, including the assessment for visual, verbal, recall, recognition, immediate, and delayed memory. The scaled score of each subtest and total scaled score will be computed by converting raw scores based on different age group. Higher scaled score indicates better memory function. The RBMT-3 has demonstrated excellent inter-rater reliability (ICC = 0.997) and intra-rater reliability (ICC = 0.924) and good internal consistency (Cronbach's alpha = 0.643 - 0.832) in people with dementia, mild cognitive impairment and healthy older adults.
Time Frame
1-month follow-up (10 week)
Title
Digit Span Test
Description
The Digit Span Test (DST) consists of two parts to measure the verbal short-term memory and working memory of an individual, which are digit span forwards and digit span backwards. The participants are presented with a series of numbers. In the digit span forward (DSF), they are required to repeat the numbers in forward order. In the digit span backward (DSB), they are asked to repeat the numbers in reverse order. The length of digits in each string increases from 3 to 9 in DSF and from 2 to 8 in DSB. Two trials are presented at each length. The test is interrupted when participant failed to either trial at equal digit length. If the participants correctly recall the sequence in either first and second trial, 1 point will be scored. The total score of DSF and DSB are 16 and 14 respectively. The intra-rater reliability of DSF and DSB are 0.891 and 0.598 respectively in older adults with neurocognitive disorder.
Time Frame
Baseline (0 week)
Title
Digit Span Test
Description
The Digit Span Test (DST) consists of two parts to measure the verbal short-term memory and working memory of an individual, which are digit span forwards and digit span backwards. The participants are presented with a series of numbers. In the digit span forward (DSF), they are required to repeat the numbers in forward order. In the digit span backward (DSB), they are asked to repeat the numbers in reverse order. The length of digits in each string increases from 3 to 9 in DSF and from 2 to 8 in DSB. Two trials are presented at each length. The test is interrupted when participant failed to either trial at equal digit length. If the participants correctly recall the sequence in either first and second trial, 1 point will be scored. The total score of DSF and DSB are 16 and 14 respectively. The intra-rater reliability of DSF and DSB are 0.891 and 0.598 respectively in older adults with neurocognitive disorder.
Time Frame
Mid-intervention (3 week)
Title
Digit Span Test
Description
The Digit Span Test (DST) consists of two parts to measure the verbal short-term memory and working memory of an individual, which are digit span forwards and digit span backwards. The participants are presented with a series of numbers. In the digit span forward (DSF), they are required to repeat the numbers in forward order. In the digit span backward (DSB), they are asked to repeat the numbers in reverse order. The length of digits in each string increases from 3 to 9 in DSF and from 2 to 8 in DSB. Two trials are presented at each length. The test is interrupted when participant failed to either trial at equal digit length. If the participants correctly recall the sequence in either first and second trial, 1 point will be scored. The total score of DSF and DSB are 16 and 14 respectively. The intra-rater reliability of DSF and DSB are 0.891 and 0.598 respectively in older adults with neurocognitive disorder.
Time Frame
Post-intervention (6 week)
Title
Digit Span Test
Description
The Digit Span Test (DST) consists of two parts to measure the verbal short-term memory and working memory of an individual, which are digit span forwards and digit span backwards. The participants are presented with a series of numbers. In the digit span forward (DSF), they are required to repeat the numbers in forward order. In the digit span backward (DSB), they are asked to repeat the numbers in reverse order. The length of digits in each string increases from 3 to 9 in DSF and from 2 to 8 in DSB. Two trials are presented at each length. The test is interrupted when participant failed to either trial at equal digit length. If the participants correctly recall the sequence in either first and second trial, 1 point will be scored. The total score of DSF and DSB are 16 and 14 respectively. The intra-rater reliability of DSF and DSB are 0.891 and 0.598 respectively in older adults with neurocognitive disorder.
Time Frame
1-month follow-up (10 week)
Title
Montreal Cognitive Assessment
Description
The Montreal Cognitive Assessment (MoCA) is a screening tool to detect cognitive impairment of an individual with a total score of 30. The MoCA assesses different cognitive domains, including executive functioning, immediate and delayed memory, visuospatial abilities, attention, working memory, language, and orientation to time and place. It can identify dementia from controls with a sensitivity of 92.3% and specificity of 91.8% with a cut-off score of 22.
Time Frame
Baseline (0 week)
Title
Montreal Cognitive Assessment
Description
The Montreal Cognitive Assessment (MoCA) is a screening tool to detect cognitive impairment of an individual with a total score of 30. The MoCA assesses different cognitive domains, including executive functioning, immediate and delayed memory, visuospatial abilities, attention, working memory, language, and orientation to time and place. It can identify dementia from controls with a sensitivity of 92.3% and specificity of 91.8% with a cut-off score of 22.
Time Frame
Mid-intervention (3 week)
Title
Montreal Cognitive Assessment
Description
The Montreal Cognitive Assessment (MoCA) is a screening tool to detect cognitive impairment of an individual with a total score of 30. The MoCA assesses different cognitive domains, including executive functioning, immediate and delayed memory, visuospatial abilities, attention, working memory, language, and orientation to time and place. It can identify dementia from controls with a sensitivity of 92.3% and specificity of 91.8% with a cut-off score of 22.
Time Frame
Post-intervention (6 week)
Title
Montreal Cognitive Assessment
Description
The Montreal Cognitive Assessment (MoCA) is a screening tool to detect cognitive impairment of an individual with a total score of 30. The MoCA assesses different cognitive domains, including executive functioning, immediate and delayed memory, visuospatial abilities, attention, working memory, language, and orientation to time and place. It can identify dementia from controls with a sensitivity of 92.3% and specificity of 91.8% with a cut-off score of 22.
Time Frame
1-month follow-up (10 week)
Title
Trail Making Test
Description
Trail Making Test (TMT) can assess the attention and cognitive flexibility of individuals. The test is divided into part A and part B. In part A, the circle is numbered (i.e., 1 to 25). The subjects should draw lines in numeric order of the listed circle. In part B, the circles include both numbers (i.e., 1 to 13) and words (i.e., A to L). The subjects should draw the lines in a specific sequence between number and word (i.e., 1 to A to 2 to B etc.). A shorter time recorded in the test indicated the better performance. The test-retest reliability has been tested in people with stroke (ICC = 0.94 and 0.86 for Part A and Part B, respectively).
Time Frame
Baseline (0 week)
Title
Trail Making Test
Description
Trail Making Test (TMT) can assess the attention and cognitive flexibility of individuals. The test is divided into part A and part B. In part A, the circle is numbered (i.e., 1 to 25). The subjects should draw lines in numeric order of the listed circle. In part B, the circles include both numbers (i.e., 1 to 13) and words (i.e., A to L). The subjects should draw the lines in a specific sequence between number and word (i.e., 1 to A to 2 to B etc.). A shorter time recorded in the test indicated the better performance. The test-retest reliability has been tested in people with stroke (ICC = 0.94 and 0.86 for Part A and Part B, respectively).
Time Frame
Mid-intervention (3 week)
Title
Trail Making Test
Description
Trail Making Test (TMT) can assess the attention and cognitive flexibility of individuals. The test is divided into part A and part B. In part A, the circle is numbered (i.e., 1 to 25). The subjects should draw lines in numeric order of the listed circle. In part B, the circles include both numbers (i.e., 1 to 13) and words (i.e., A to L). The subjects should draw the lines in a specific sequence between number and word (i.e., 1 to A to 2 to B etc.). A shorter time recorded in the test indicated the better performance. The test-retest reliability has been tested in people with stroke (ICC = 0.94 and 0.86 for Part A and Part B, respectively).
Time Frame
Post-intervention (6 week)
Title
Trail Making Test
Description
Trail Making Test (TMT) can assess the attention and cognitive flexibility of individuals. The test is divided into part A and part B. In part A, the circle is numbered (i.e., 1 to 25). The subjects should draw lines in numeric order of the listed circle. In part B, the circles include both numbers (i.e., 1 to 13) and words (i.e., A to L). The subjects should draw the lines in a specific sequence between number and word (i.e., 1 to A to 2 to B etc.). A shorter time recorded in the test indicated the better performance. The test-retest reliability has been tested in people with stroke (ICC = 0.94 and 0.86 for Part A and Part B, respectively).
Time Frame
1-month follow-up (10 week)
Title
Oxford Participation and Activities Questionnaire
Description
The 23-item Oxford Participation and Activities Questionnaire (Ox-PAQ) evaluates participation and activity levels based on the three domains of routine activities, social engagement, and emotional well-being. Each item is measured on a 5-point Likert scale (0 = never; 1 = rarely; 2 = sometimes; 3 = often; 4 = always). The higher scores represent greater difficulties with participation and activities. Good to excellent internal consistency (Cronbach's α = 0.81 - 0.96) and test-retest reliability (ICC = 0.83 - 0.96) have been shown for this instrument in people with motor neuron disease, multiple sclerosis, and Parkinson's disease.
Time Frame
Baseline (0 week)
Title
Oxford Participation and Activities Questionnaire
Description
The 23-item Oxford Participation and Activities Questionnaire (Ox-PAQ) evaluates participation and activity levels based on the three domains of routine activities, social engagement, and emotional well-being. Each item is measured on a 5-point Likert scale (0 = never; 1 = rarely; 2 = sometimes; 3 = often; 4 = always). The higher scores represent greater difficulties with participation and activities. Good to excellent internal consistency (Cronbach's α = 0.81 - 0.96) and test-retest reliability (ICC = 0.83 - 0.96) have been shown for this instrument in people with motor neuron disease, multiple sclerosis, and Parkinson's disease.
Time Frame
Mid-intervention (3 week)
Title
Oxford Participation and Activities Questionnaire
Description
The 23-item Oxford Participation and Activities Questionnaire (Ox-PAQ) evaluates participation and activity levels based on the three domains of routine activities, social engagement, and emotional well-being. Each item is measured on a 5-point Likert scale (0 = never; 1 = rarely; 2 = sometimes; 3 = often; 4 = always). The higher scores represent greater difficulties with participation and activities. Good to excellent internal consistency (Cronbach's α = 0.81 - 0.96) and test-retest reliability (ICC = 0.83 - 0.96) have been shown for this instrument in people with motor neuron disease, multiple sclerosis, and Parkinson's disease.
Time Frame
Post-intervention (6 week)
Title
Oxford Participation and Activities Questionnaire
Description
The 23-item Oxford Participation and Activities Questionnaire (Ox-PAQ) evaluates participation and activity levels based on the three domains of routine activities, social engagement, and emotional well-being. Each item is measured on a 5-point Likert scale (0 = never; 1 = rarely; 2 = sometimes; 3 = often; 4 = always). The higher scores represent greater difficulties with participation and activities. Good to excellent internal consistency (Cronbach's α = 0.81 - 0.96) and test-retest reliability (ICC = 0.83 - 0.96) have been shown for this instrument in people with motor neuron disease, multiple sclerosis, and Parkinson's disease.
Time Frame
1-month follow-up (10 week)
Title
12-item Short-Form Survey (second version)
Description
The 12-item Short-Form Survey (second version) (SF-12v2) will be used to measure the health-related quality of life of individuals. This instrument contains eight domains: physical functioning, role physical, bodily pain, general health, vitality, social functioning, emotional role, and mental health. The total score ranges from 0 to 100, with a higher score indicating better quality of life. It has good internal consistency (Cronbach's alpha = 0.48 - 0.81) and test-retest reliability (ICC = 0.67 - 0.82) in healthy adults.
Time Frame
Baseline (0 week)
Title
12-item Short-Form Survey (second version)
Description
The 12-item Short-Form Survey (second version) (SF-12v2) will be used to measure the health-related quality of life of individuals. This instrument contains eight domains: physical functioning, role physical, bodily pain, general health, vitality, social functioning, emotional role, and mental health. The total score ranges from 0 to 100, with a higher score indicating better quality of life. It has good internal consistency (Cronbach's alpha = 0.48 - 0.81) and test-retest reliability (ICC = 0.67 - 0.82) in healthy adults.
Time Frame
Mid-intervention (3 week)
Title
12-item Short-Form Survey (second version)
Description
The 12-item Short-Form Survey (second version) (SF-12v2) will be used to measure the health-related quality of life of individuals. This instrument contains eight domains: physical functioning, role physical, bodily pain, general health, vitality, social functioning, emotional role, and mental health. The total score ranges from 0 to 100, with a higher score indicating better quality of life. It has good internal consistency (Cronbach's alpha = 0.48 - 0.81) and test-retest reliability (ICC = 0.67 - 0.82) in healthy adults.
Time Frame
Post-intervention (6 week)
Title
12-item Short-Form Survey (second version)
Description
The 12-item Short-Form Survey (second version) (SF-12v2) will be used to measure the health-related quality of life of individuals. This instrument contains eight domains: physical functioning, role physical, bodily pain, general health, vitality, social functioning, emotional role, and mental health. The total score ranges from 0 to 100, with a higher score indicating better quality of life. It has good internal consistency (Cronbach's alpha = 0.48 - 0.81) and test-retest reliability (ICC = 0.67 - 0.82) in healthy adults.
Time Frame
1-month follow-up (10 week)
Title
Arm Activity Measure
Description
The Arm Activity Measure (ArmA) is a 20-item questionnaire to assess the difficulties in passive and active upper limb tasks, where section A evaluates the passive function and section B evaluates the active function. It uses a 5-point Likert scale, ranging from 0 (no difficulty) to 4 (unable to do the task). The total score of section A and B are 32 and 52 respectively [59]. The higher score in ArmA indicates more difficulties experienced in activities when using upper limb. Good internal consistency (Cronbach's alpha = 0.85 - 0.96) has been shown in people with upper limb paresis.
Time Frame
Baseline (0 week)
Title
Arm Activity Measure
Description
The Arm Activity Measure (ArmA) is a 20-item questionnaire to assess the difficulties in passive and active upper limb tasks, where section A evaluates the passive function and section B evaluates the active function. It uses a 5-point Likert scale, ranging from 0 (no difficulty) to 4 (unable to do the task). The total score of section A and B are 32 and 52 respectively [59]. The higher score in ArmA indicates more difficulties experienced in activities when using upper limb. Good internal consistency (Cronbach's alpha = 0.85 - 0.96) has been shown in people with upper limb paresis.
Time Frame
Mid-intervention (3 week)
Title
Arm Activity Measure
Description
The Arm Activity Measure (ArmA) is a 20-item questionnaire to assess the difficulties in passive and active upper limb tasks, where section A evaluates the passive function and section B evaluates the active function. It uses a 5-point Likert scale, ranging from 0 (no difficulty) to 4 (unable to do the task). The total score of section A and B are 32 and 52 respectively [59]. The higher score in ArmA indicates more difficulties experienced in activities when using upper limb. Good internal consistency (Cronbach's alpha = 0.85 - 0.96) has been shown in people with upper limb paresis.
Time Frame
Post-intervention (6 week)
Title
Arm Activity Measure
Description
The Arm Activity Measure (ArmA) is a 20-item questionnaire to assess the difficulties in passive and active upper limb tasks, where section A evaluates the passive function and section B evaluates the active function. It uses a 5-point Likert scale, ranging from 0 (no difficulty) to 4 (unable to do the task). The total score of section A and B are 32 and 52 respectively [59]. The higher score in ArmA indicates more difficulties experienced in activities when using upper limb. Good internal consistency (Cronbach's alpha = 0.85 - 0.96) has been shown in people with upper limb paresis.
Time Frame
1-month follow-up (10 week)

10. Eligibility

Sex
All
Minimum Age & Unit of Time
50 Years
Maximum Age & Unit of Time
80 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: aged between 50 and 80; have suffered from a single stroke at least 1 year; had volitional control of the non-paretic arm and at least minimal antigravity movement in the paretic shoulder; scored 7 or above in the Abbreviated Mental Test. Exclusion Criteria: have cardiac pacemaker or cochlear implant; have other neurological diseases; are taking medication that may affect measured outcomes; have skin lesions, infection, or inflammation near selected position; are participating in other drug/treatment programs.
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
Shamay NG, PhD
Phone
+852 27664889
Email
shamay.ng@polyu.edu.hk
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Shamay NG, PhD
Organizational Affiliation
The Hong Kong Polytechnic University
Official's Role
Principal Investigator
Facility Information:
Facility Name
The Hong Kong Polytechnic University
City
Hong Kong
Country
Hong Kong
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Shamay Ng, PhD
Phone
27664889
Email
Shamay.Ng@polyu.edu.hk
First Name & Middle Initial & Last Name & Degree
Shamay SM Ng, PhD

12. IPD Sharing Statement

Plan to Share IPD
No
Citations:
PubMed Identifier
8172497
Citation
Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1994 Apr;75(4):394-8. doi: 10.1016/0003-9993(94)90161-9.
Results Reference
background
PubMed Identifier
21571152
Citation
Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011 May 14;377(9778):1693-702. doi: 10.1016/S0140-6736(11)60325-5.
Results Reference
background
PubMed Identifier
15947263
Citation
Nichols-Larsen DS, Clark PC, Zeringue A, Greenspan A, Blanton S. Factors influencing stroke survivors' quality of life during subacute recovery. Stroke. 2005 Jul;36(7):1480-4. doi: 10.1161/01.STR.0000170706.13595.4f. Epub 2005 Jun 9.
Results Reference
background
PubMed Identifier
16467057
Citation
Desrosiers J, Noreau L, Rochette A, Bourbonnais D, Bravo G, Bourget A. Predictors of long-term participation after stroke. Disabil Rehabil. 2006 Feb 28;28(4):221-30. doi: 10.1080/09638280500158372.
Results Reference
background
PubMed Identifier
34955097
Citation
Ingwersen T, Wolf S, Birke G, Schlemm E, Bartling C, Bender G, Meyer A, Nolte A, Ottes K, Pade O, Peller M, Steinmetz J, Gerloff C, Thomalla G. Long-term recovery of upper limb motor function and self-reported health: results from a multicenter observational study 1 year after discharge from rehabilitation. Neurol Res Pract. 2021 Dec 27;3(1):66. doi: 10.1186/s42466-021-00164-7.
Results Reference
background
PubMed Identifier
30504699
Citation
Barbay M, Diouf M, Roussel M, Godefroy O; GRECOGVASC study group. Systematic Review and Meta-Analysis of Prevalence in Post-Stroke Neurocognitive Disorders in Hospital-Based Studies. Dement Geriatr Cogn Disord. 2018;46(5-6):322-334. doi: 10.1159/000492920. Epub 2018 Nov 30.
Results Reference
background
PubMed Identifier
25228808
Citation
Al-Qazzaz NK, Ali SH, Ahmad SA, Islam S, Mohamad K. Cognitive impairment and memory dysfunction after a stroke diagnosis: a post-stroke memory assessment. Neuropsychiatr Dis Treat. 2014 Sep 9;10:1677-91. doi: 10.2147/NDT.S67184. eCollection 2014.
Results Reference
background
PubMed Identifier
25333055
Citation
Sun JH, Tan L, Yu JT. Post-stroke cognitive impairment: epidemiology, mechanisms and management. Ann Transl Med. 2014 Aug;2(8):80. doi: 10.3978/j.issn.2305-5839.2014.08.05.
Results Reference
background
PubMed Identifier
21054326
Citation
Lam SC, Wong YY, Woo J. Reliability and validity of the abbreviated mental test (Hong Kong version) in residential care homes. J Am Geriatr Soc. 2010 Nov;58(11):2255-7. doi: 10.1111/j.1532-5415.2010.03129.x. No abstract available.
Results Reference
background
PubMed Identifier
10188004
Citation
Scherder EJ, Bouma A. Effects of transcutaneous electrical nerve stimulation on memory and behavior in Alzheimer's disease may be stage-dependent. Biol Psychiatry. 1999 Mar 15;45(6):743-9. doi: 10.1016/s0006-3223(98)00072-9.
Results Reference
background
PubMed Identifier
9532346
Citation
Scherder EJ, Bouma A, Steen LM. Effects of "isolated" transcutaneous electrical nerve stimulation on memory and affective behavior in patients with probable Alzheimer's disease. Biol Psychiatry. 1998 Mar 15;43(6):417-24. doi: 10.1016/s0006-3223(97)00208-4.
Results Reference
background
PubMed Identifier
22330108
Citation
Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, Johansen M, Jones L, Krassioukov A, Mulcahey MJ, Schmidt-Read M, Waring W. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med. 2011 Nov;34(6):535-46. doi: 10.1179/204577211X13207446293695. No abstract available.
Results Reference
background
PubMed Identifier
32802039
Citation
Wu D, Ma J, Zhang L, Wang S, Tan B, Jia G. Effect and Safety of Transcutaneous Auricular Vagus Nerve Stimulation on Recovery of Upper Limb Motor Function in Subacute Ischemic Stroke Patients: A Randomized Pilot Study. Neural Plast. 2020 Aug 1;2020:8841752. doi: 10.1155/2020/8841752. eCollection 2020.
Results Reference
background
PubMed Identifier
36150665
Citation
Wang L, Zhang J, Guo C, He J, Zhang S, Wang Y, Zhao Y, Li L, Wang J, Hou L, Li S, Wang Y, Hao L, Zhao Y, Wu M, Fang J, Rong P. The efficacy and safety of transcutaneous auricular vagus nerve stimulation in patients with mild cognitive impairment: A double blinded randomized clinical trial. Brain Stimul. 2022 Nov-Dec;15(6):1405-1414. doi: 10.1016/j.brs.2022.09.003. Epub 2022 Sep 21.
Results Reference
background
PubMed Identifier
24971913
Citation
Schleiger E, Sheikh N, Rowland T, Wong A, Read S, Finnigan S. Frontal EEG delta/alpha ratio and screening for post-stroke cognitive deficits: the power of four electrodes. Int J Psychophysiol. 2014 Oct;94(1):19-24. doi: 10.1016/j.ijpsycho.2014.06.012. Epub 2014 Jun 24.
Results Reference
background
PubMed Identifier
27748095
Citation
Britton JW, Frey LC, Hopp JL, Korb P, Koubeissi MZ, Lievens WE, Pestana-Knight EM, St. Louis EK, authors. St. Louis EK, Frey LC, editors. Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants [Internet]. Chicago: American Epilepsy Society; 2016. Available from http://www.ncbi.nlm.nih.gov/books/NBK390354/
Results Reference
background
PubMed Identifier
19375386
Citation
Sheorajpanday RV, Nagels G, Weeren AJ, van Putten MJ, De Deyn PP. Reproducibility and clinical relevance of quantitative EEG parameters in cerebral ischemia: a basic approach. Clin Neurophysiol. 2009 May;120(5):845-55. doi: 10.1016/j.clinph.2009.02.171. Epub 2009 Apr 16.
Results Reference
background
PubMed Identifier
17888719
Citation
van Putten MJ. The revised brain symmetry index. Clin Neurophysiol. 2007 Nov;118(11):2362-7. doi: 10.1016/j.clinph.2007.07.019. Epub 2007 Sep 20.
Results Reference
background
PubMed Identifier
28251015
Citation
Agius Anastasi A, Falzon O, Camilleri K, Vella M, Muscat R. Brain Symmetry Index in Healthy and Stroke Patients for Assessment and Prognosis. Stroke Res Treat. 2017;2017:8276136. doi: 10.1155/2017/8276136. Epub 2017 Jan 30.
Results Reference
background
PubMed Identifier
1135616
Citation
Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13-31.
Results Reference
background
PubMed Identifier
21519719
Citation
Michaelsen SM, Rocha AS, Knabben RJ, Rodrigues LP, Fernandes CG. Translation, adaptation and inter-rater reliability of the administration manual for the Fugl-Meyer assessment. Rev Bras Fisioter. 2011 Jan-Feb;15(1):80-8.
Results Reference
background
PubMed Identifier
16093410
Citation
Wolf SL, Thompson PA, Morris DM, Rose DK, Winstein CJ, Taub E, Giuliani C, Pearson SL. The EXCITE trial: attributes of the Wolf Motor Function Test in patients with subacute stroke. Neurorehabil Neural Repair. 2005 Sep;19(3):194-205. doi: 10.1177/1545968305276663.
Results Reference
background
PubMed Identifier
16635628
Citation
Whitall J, Savin DN Jr, Harris-Love M, Waller SM. Psychometric properties of a modified Wolf Motor Function test for people with mild and moderate upper-extremity hemiparesis. Arch Phys Med Rehabil. 2006 May;87(5):656-60. doi: 10.1016/j.apmr.2006.02.004.
Results Reference
background
PubMed Identifier
23294435
Citation
Ashford S, Slade M, Turner-Stokes L. Conceptualisation and development of the arm activity measure (ArmA) for assessment of activity in the hemiparetic arm. Disabil Rehabil. 2013 Aug;35(18):1513-8. doi: 10.3109/09638288.2012.743602. Epub 2013 Jan 7.
Results Reference
background
PubMed Identifier
28051902
Citation
Fong KNK, Lee KKL, Tsang ZPY, Wan JYH, Zhang YY, Lau AFC. The clinical utility, reliability and validity of the Rivermead Behavioural Memory Test-Third Edition (RBMT-3) in Hong Kong older adults with or without cognitive impairments. Neuropsychol Rehabil. 2019 Jan;29(1):144-159. doi: 10.1080/09602011.2016.1272467. Epub 2017 Jan 4.
Results Reference
background
PubMed Identifier
21729426
Citation
Leung JL, Lee GT, Lam YH, Chan RC, Wu JY. The use of the Digit Span Test in screening for cognitive impairment in acute medical inpatients. Int Psychogeriatr. 2011 Dec;23(10):1569-74. doi: 10.1017/S1041610211000792. Epub 2011 May 17.
Results Reference
background
PubMed Identifier
27579598
Citation
de Paula JJ, Malloy-Diniz LF, Romano-Silva MA. Reliability of working memory assessment in neurocognitive disorders: a study of the Digit Span and Corsi Block-Tapping tasks. Braz J Psychiatry. 2016 Jul-Sep;38(3):262-3. doi: 10.1590/1516-4446-2015-1879. No abstract available.
Results Reference
background
PubMed Identifier
15817019
Citation
Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005 Apr;53(4):695-9. doi: 10.1111/j.1532-5415.2005.53221.x. Erratum In: J Am Geriatr Soc. 2019 Sep;67(9):1991.
Results Reference
background
PubMed Identifier
25125421
Citation
Yeung PY, Wong LL, Chan CC, Leung JL, Yung CY. A validation study of the Hong Kong version of Montreal Cognitive Assessment (HK-MoCA) in Chinese older adults in Hong Kong. Hong Kong Med J. 2014 Dec;20(6):504-10. doi: 10.12809/hkmj144219. Epub 2014 Aug 15.
Results Reference
background
PubMed Identifier
13263471
Citation
REITAN RM. The relation of the trail making test to organic brain damage. J Consult Psychol. 1955 Oct;19(5):393-4. doi: 10.1037/h0044509. No abstract available.
Results Reference
background
PubMed Identifier
27366108
Citation
Morley D, Dummett S, Kelly L, Dawson J, Fitzpatrick R, Jenkinson C. Validation of the Oxford Participation and Activities Questionnaire. Patient Relat Outcome Meas. 2016 Jun 15;7:73-80. doi: 10.2147/PROM.S96822. eCollection 2016.
Results Reference
background
PubMed Identifier
31551659
Citation
Jenkinson C, Kelly L, Dummett S, Morley D. The Oxford Participation and Activities Questionnaire (Ox-PAQ): development of a short form and index measure. Patient Relat Outcome Meas. 2019 Jul 29;10:227-232. doi: 10.2147/PROM.S210416. eCollection 2019.
Results Reference
background
PubMed Identifier
22128754
Citation
Lam ET, Lam CL, Fong DY, Huang WW. Is the SF-12 version 2 Health Survey a valid and equivalent substitute for the SF-36 version 2 Health Survey for the Chinese? J Eval Clin Pract. 2013 Feb;19(1):200-8. doi: 10.1111/j.1365-2753.2011.01800.x. Epub 2011 Nov 29.
Results Reference
background

Learn more about this trial

Effects of Transcutaneous Electrical Nerve Stimulation on Cognitive Function and Upper Limb Motor Function in People With Chronic Stroke

We'll reach out to this number within 24 hrs