search
Back to results

Effectiveness of Stromal Vascular Fraction (SVF) and Platelets Rich Plasma (PRP) in Osteoarthritis and Tendinopathy (SPOT)

Primary Purpose

Tendinopathy, Osteoarthritis

Status
Not yet recruiting
Phase
Phase 4
Locations
Study Type
Interventional
Intervention
Stromal Vascular Fraction infiltration
Plattelet Rich Plasma infiltration
Sponsored by
Adrien Schwitzguebel
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional treatment trial for Tendinopathy focused on measuring mesenchymal stem cells, stem cells, Stromal Vascular Fraction, Tendinopathy, Osteoarthritis

Eligibility Criteria

16 Years - undefined (Child, Adult, Older Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria: Informed Consent as documented by signature (Appendix Informed Consent Form) Age older than 16 years old, Symptomatic osteoarthritis of the hip, knee, ankle, elbow, shoulder confirmed by MRI or symptomatic tendinopathy confirmed by ultrasonography, Failure of first-line conservative management in the last 3 months including medical or infiltrative treatment, orthotics use, active rehabilitation plan, adaptation of sports and work habits. Exclusion Criteria: Patient is familiar with the lipoaspiration process In case of tendinopathy: significant impingement according to investigator's judgement Subacromial impingement of the supraspinatus tendon, Haglund disease with erosion of the anterior part of Achilles tendon Significant disease of the contralateral member with a function evaluated with SANE score below 80% In case of osteoarthritis: microcristalline disease (i.e. gout, pseudogout), Active inflammatory rheumatic disorders, Need of regular anti-inflammatory treatment (either NSAIDs or corticosteroids), Allergy to local anesthetics or epinephrin Bleeding disorders or current anticoagulation therapy Patients with decompensated renal failure, hepatic dysfunction, or severe pulmonary or cardiovascular disease, Patients with an immunocompromised status Women who are pregnant or intend to become pregnant during the study Inability to follow the procedures of the study, e.g., due to language problems, psychological disorders, dementia, etc. of the participant, Known or suspected non-compliance, drug, or alcohol abuse Previous enrollment into the current study, Participation in another study with investigational drug or procedure within the 30 days preceding and during the present study Enrollment of the investigator, his/her family members, employees, and other dependent persons If a bilateral disease is present and both sides require either the experimental or the control intervention, only the most symptomatic side will be studied.

Sites / Locations

    Arms of the Study

    Arm 1

    Arm 2

    Arm Type

    Experimental

    Active Comparator

    Arm Label

    SVF (Stromal vascular fraction)

    PRP (Platelet-rich plasma)

    Arm Description

    Patients will receive a venepuncture to obtain PRP, and a lipoaspirate to obtain SVF. Then an ultrasonographic guided PRP+SVF injection will be performed. Patients will consecutively receive two monthly PRP injections. Patients in tendinopathies subgroup will besides undergo tendon needling concomitant to each injecetion.

    Patients will receive a venepuncture to obtain PRP, and a sham lipoaspirate. Then an ultrasonographic guided PRP injection will be performed. Patients will consecutively receive two monthly PRP injections. Patients in tendinopathies subgroup will besides undergo tendon needling concomitant to each injecetion.

    Outcomes

    Primary Outcome Measures

    SANE
    The absolute difference (changes from baseline to other time points) between the treatment and control groups on the Single Assessment Numeric Evaluation (0 meaning the poorest function to 100 meaning an optimal function).

    Secondary Outcome Measures

    Quick DASH
    The absolute difference (changes from baseline to other time points) between the treatment and control groups on the Quick Disabilities of Arm, Shoulder, and Hand score for the superior member (0 meaning lower disability to 100 meaning most severe disability).
    LEFS
    The absolute difference (changes from baseline to other time points) between the treatment and control arms on the Low Extremity Functional Scale for the inferior member (0 meaning lower disability to 80 meaning most severe disability).
    VAS
    The absolute difference (changes from baseline to other time points) between the treatment and control arms on the Visual Analogue Scale (VAS) on a 0 to 10 scale. 0: no pain, 10: maximal pain
    SANE
    The absolute difference (changes from baseline to other time points) between the treatment and control arms on the Single Assessment Numeric Evaluation (SANE). From 0% functional to 100% being normal function.
    WOMAC
    The absolute difference (changes from baseline to other time points) between the treatment and control arms on the Western Ontario McMaster Universities Osteoarthritis Index on knee osteoarthritis cases. From 0 to 96, being 0: no limitation, 96: extreme limitation
    Return to work
    The absolute difference between the treatment and control arms on Return to work in days since treatment
    Return to sport
    The absolute difference between the treatment and control arms on the Return to sport in days since treatment
    cross-sectional tendon surface
    The absolute difference (changes from baseline to other time points) between the treatment and control arms on the Affected cross-sectional tendon surface in mm2 on ultrasound
    Tendon quality with elastography
    The absolute difference (changes from baseline to other time points) between the treatment and control arms on Affected tendon quality with elastography (difference in kilopascals from the healthy side) on ultrasound
    Doppler enhancement
    The absolute difference (changes from baseline to other time points) between the treatment and control arms on Ultrasonographic doppler reaction judged as "absent", "minimal", "less than 1/3 of the affected area", "1/3-2/3 of the affected area" or "more than 2/3 of the affected area".
    tendon tear size evolution
    The absolute difference (changes from baseline to other time points) between the treatment and control arms on tendon tear size evolution from baseline in mm3
    AMADEUS SCORE
    The absolute difference (changes from baseline to other time points) between the treatment and control arms on Affected cartilage quality on MRI using Area Measurement And Depth Underlying Structures (AMADEUS) score. (0 worst, 100 best)

    Full Information

    First Posted
    January 24, 2022
    Last Updated
    December 14, 2022
    Sponsor
    Adrien Schwitzguebel
    search

    1. Study Identification

    Unique Protocol Identification Number
    NCT05660824
    Brief Title
    Effectiveness of Stromal Vascular Fraction (SVF) and Platelets Rich Plasma (PRP) in Osteoarthritis and Tendinopathy
    Acronym
    SPOT
    Official Title
    Effectiveness of Stromal Vascular Fraction (SVF) and Platelets Rich Plasma (PRP) in Osteoarthritis and Tendinopathy: Study Protocol for a Phase III, Prospective, Randomized, Controlled Multi-center Study: (SPOT Study).
    Study Type
    Interventional

    2. Study Status

    Record Verification Date
    December 2022
    Overall Recruitment Status
    Not yet recruiting
    Study Start Date
    June 2023 (Anticipated)
    Primary Completion Date
    January 2025 (Anticipated)
    Study Completion Date
    June 2025 (Anticipated)

    3. Sponsor/Collaborators

    Responsible Party, by Official Title
    Sponsor-Investigator
    Name of the Sponsor
    Adrien Schwitzguebel

    4. Oversight

    Studies a U.S. FDA-regulated Drug Product
    No
    Studies a U.S. FDA-regulated Device Product
    No
    Data Monitoring Committee
    Yes

    5. Study Description

    Brief Summary
    In a multi-centric, randomized, triple-blind controlled trial, 195 patients will be separated in 2 subgroups: 130 individuals with osteoarthritis and 65 with tendinopathies. The mian question to answer are the effect of SVF on : The clinical improvenent The cartilage thickness evolution in case of osteoarthritis The tendon healing in case of thendinopathy Patients will receive an initial single PRP or PRP + SVF injection followed by one- and two-months PRP doses. In parallel, they will beneficiate of a proper rehabilitation plan with active physical therapies.
    Detailed Description
    Background: Osteoarthritis and tendinopathies are two frequent diseases with a high social and individual impact. Both have multifactorial etiology and the development of therapeutic options is a public health priority. Osteoarthritis is the most common joint disease, and more than 30% of sports-related injuries have a component of tendinopathy. Most common conservative treatments for osteoarthritis treatment include painkillers, active physical therapies, orthotics, infiltrations of corticosteroids, hyaluronic acid (HA), and platelet-rich plasma (PRP). PRP may be beneficial in both tendinopathy and osteoarthritis by interfering with catabolic and inflammatory events and by subsequently promoting anabolic responses. Activation of PRP releases biologically active components, including platelet-derived growth factor (PDGF), transforming growth factor-β (PGF-β), type I insulin-like growth factor (IGF-1) and vascular endothelial growth factor (VEGF). These proteins are responsible for a range of critical tissue healing roles such as chondrocyte and mesenchymal stem cells proliferation, bone and vessel remodeling, inflammatory modulation and collagen synthesis. For osteoarthritis, an improvement of clinical outcomes is clearly established, presumably associated with the chondroprotective effect of PRP. Nevertheless, an in-vivo effect on human cartilage regeneration is not yet demonstrated despite the numerous studies approaching the subject. Most common conservative treatments for tendinopathies include painkillers, bracing, active physical therapies, extracorporeal shockwave therapy, other specific therapies (cryotherapy, red light therapy, topical glycerol trinitrate, PRP and tendon lengthening. Clear clinical benefits are currently demonstrated with active exercises and extracorporeal shockwave therapies. Tendon needling, also known as tendon fenestration or percutaneous needle tenotomy, intends to disrupt the chronic inflammatory and degenerative processes through localized bleeding, fibroblastic proliferation, and organized collagen synthesis. The intervened tendon can also lengthen in some cases. Preclinical models elucidated how injected Adipose Derived- Mesenchymal Stem Cells (AD-MSC) coordinate the cartilage regeneration process through paracrine mechanisms, producing cytokines and trophic bioactive factors that stimulate cellular proliferation, reduce inflammation, fibrosis, oxidative stress, and chondrocytes senescence. Stromal Vascular Fraction (SVF), a product from specific adipose tissue processing, contains mesenchymal stem cells, endothelial precursor cells, T regulatory cells, macrophages, smooth muscle cells, pericytes and preadipocytes. SVF extraction and injection techniques have been recently used as an alternative to harvest AD-MSC due to its logistic simplicity and feasibility in clinical practice. SVF injections produce a clinically significant effect on the treatment of knee osteoarthritis, and a possible improvement in cartilage quality. Promising results were observed in the Achilles tendon. This clinical trial aims to assess the clinical efficacy of SVF as adjuvant therapy to PRP on functionality and tissue regeneration on osteoarthritis and tendinopathies.

    6. Conditions and Keywords

    Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
    Tendinopathy, Osteoarthritis
    Keywords
    mesenchymal stem cells, stem cells, Stromal Vascular Fraction, Tendinopathy, Osteoarthritis

    7. Study Design

    Primary Purpose
    Treatment
    Study Phase
    Phase 4
    Interventional Study Model
    Parallel Assignment
    Model Description
    Multicentric randomized. Study participants will be split to osteoarthritis and tendinopathies subgroups. Randomization will be performed at a 1:1 ratio to either the intervention arm or the active comparator. Each block of 4 patients will be assigned to specific strata according to the pathology (osteoarthritis or tendinopathy) age (over or under 40), presence of either partial, full cartilage defects or full cartilage defects with bone deformation (osteoarthritis group) and tendon cross-section involvement greater or less than 50% (tendinopathy group).
    Masking
    ParticipantInvestigatorOutcomes Assessor
    Masking Description
    This study is triple-blinded concerning (i) the participants during the intervention and throughout the study duration, (ii) the outcome assessor, and (iii) the statistician. In case of tendinopathy, an independent and blinded investigator will perform the tendon needling to patients in both study arms. The investigator in charge of the injections will be unblinded and therefore will not be assigned to outcomes assessment. Follow-up and outcome assessment will be identical for both arms.
    Allocation
    Randomized
    Enrollment
    195 (Anticipated)

    8. Arms, Groups, and Interventions

    Arm Title
    SVF (Stromal vascular fraction)
    Arm Type
    Experimental
    Arm Description
    Patients will receive a venepuncture to obtain PRP, and a lipoaspirate to obtain SVF. Then an ultrasonographic guided PRP+SVF injection will be performed. Patients will consecutively receive two monthly PRP injections. Patients in tendinopathies subgroup will besides undergo tendon needling concomitant to each injecetion.
    Arm Title
    PRP (Platelet-rich plasma)
    Arm Type
    Active Comparator
    Arm Description
    Patients will receive a venepuncture to obtain PRP, and a sham lipoaspirate. Then an ultrasonographic guided PRP injection will be performed. Patients will consecutively receive two monthly PRP injections. Patients in tendinopathies subgroup will besides undergo tendon needling concomitant to each injecetion.
    Intervention Type
    Device
    Intervention Name(s)
    Stromal Vascular Fraction infiltration
    Other Intervention Name(s)
    Autologous conditionned adipose tissue (ACA) kit by Arthrex
    Intervention Description
    Procedure to prepare SVF: In the operations room and after aseptic technic, local anesthesia is applied in the liposuction incision site with lidocaine 1% without epinephrine subcutaneously. 60 ml of tumescent solution are injected. After 15-20 minutes waiting, 15 ml of lipoaspiration per side are recollected into a double syringe. This is centrifuged for 4 minutes at 2.500 rpm and the remaining fat is separated from the other fractions. Two 1.4 mm GEMS syringes are attached together, and fat is transferred at least 30 times from one syringe to the other. Syringe content is again centrifugated for 4 minutes. The oil is discarded and approximately 1.5ml SVF fraction remains.
    Intervention Type
    Procedure
    Intervention Name(s)
    Plattelet Rich Plasma infiltration
    Other Intervention Name(s)
    Autologous conditionned plasma (ACP) kit by Arthrex
    Intervention Description
    Procedure to prepare PRP: 15 cm of peripheral blood obtained by venipuncture are centrifugated at 5000 RPM during 5 minutes. Using PRP Arthrex kit platelets poor plasma is discarded and 1-3 mm of PRP are ready to be injected
    Primary Outcome Measure Information:
    Title
    SANE
    Description
    The absolute difference (changes from baseline to other time points) between the treatment and control groups on the Single Assessment Numeric Evaluation (0 meaning the poorest function to 100 meaning an optimal function).
    Time Frame
    6 months
    Secondary Outcome Measure Information:
    Title
    Quick DASH
    Description
    The absolute difference (changes from baseline to other time points) between the treatment and control groups on the Quick Disabilities of Arm, Shoulder, and Hand score for the superior member (0 meaning lower disability to 100 meaning most severe disability).
    Time Frame
    1, 2, 3, 6, and 12 months
    Title
    LEFS
    Description
    The absolute difference (changes from baseline to other time points) between the treatment and control arms on the Low Extremity Functional Scale for the inferior member (0 meaning lower disability to 80 meaning most severe disability).
    Time Frame
    1, 2, 3, 6, and 12 months
    Title
    VAS
    Description
    The absolute difference (changes from baseline to other time points) between the treatment and control arms on the Visual Analogue Scale (VAS) on a 0 to 10 scale. 0: no pain, 10: maximal pain
    Time Frame
    1, 2, 3, 6, and 12 months
    Title
    SANE
    Description
    The absolute difference (changes from baseline to other time points) between the treatment and control arms on the Single Assessment Numeric Evaluation (SANE). From 0% functional to 100% being normal function.
    Time Frame
    1, 2, 3, 6, and 12 months
    Title
    WOMAC
    Description
    The absolute difference (changes from baseline to other time points) between the treatment and control arms on the Western Ontario McMaster Universities Osteoarthritis Index on knee osteoarthritis cases. From 0 to 96, being 0: no limitation, 96: extreme limitation
    Time Frame
    1, 2, 3, 6, and 12 months
    Title
    Return to work
    Description
    The absolute difference between the treatment and control arms on Return to work in days since treatment
    Time Frame
    1, 2, 3, 6, and 12 months
    Title
    Return to sport
    Description
    The absolute difference between the treatment and control arms on the Return to sport in days since treatment
    Time Frame
    1, 2, 3, 6, and 12 months
    Title
    cross-sectional tendon surface
    Description
    The absolute difference (changes from baseline to other time points) between the treatment and control arms on the Affected cross-sectional tendon surface in mm2 on ultrasound
    Time Frame
    6, and 12 months
    Title
    Tendon quality with elastography
    Description
    The absolute difference (changes from baseline to other time points) between the treatment and control arms on Affected tendon quality with elastography (difference in kilopascals from the healthy side) on ultrasound
    Time Frame
    6 and 12 months
    Title
    Doppler enhancement
    Description
    The absolute difference (changes from baseline to other time points) between the treatment and control arms on Ultrasonographic doppler reaction judged as "absent", "minimal", "less than 1/3 of the affected area", "1/3-2/3 of the affected area" or "more than 2/3 of the affected area".
    Time Frame
    6, and 12 months
    Title
    tendon tear size evolution
    Description
    The absolute difference (changes from baseline to other time points) between the treatment and control arms on tendon tear size evolution from baseline in mm3
    Time Frame
    2, 3, 6, and 12 months
    Title
    AMADEUS SCORE
    Description
    The absolute difference (changes from baseline to other time points) between the treatment and control arms on Affected cartilage quality on MRI using Area Measurement And Depth Underlying Structures (AMADEUS) score. (0 worst, 100 best)
    Time Frame
    6 and 12 moths
    Other Pre-specified Outcome Measures:
    Title
    Age
    Description
    Age
    Time Frame
    Baseline
    Title
    Sex
    Description
    Sex
    Time Frame
    Baseline
    Title
    Height
    Description
    Height, cm
    Time Frame
    Baseline
    Title
    Weight
    Description
    Weight, kg
    Time Frame
    Baseline
    Title
    BMI
    Description
    BMI
    Time Frame
    Baseline
    Title
    Number of patients with tobacco use
    Description
    Number of patients with tobacco use
    Time Frame
    Baseline
    Title
    Number of Participants with concomitant diseases
    Description
    Number of Participants with concomitant diseases (diabetes Miletus, dyslipidemia, arterial hypertension, osteopenia, osteoporosis, presence of rheumatologic disease, renal failure, and other relevant comorbidity)
    Time Frame
    Baseline
    Title
    Numer of current and previous treatments
    Description
    Number of current and previous treatments for osteoarthritis and tendinopathy
    Time Frame
    Baseline
    Title
    Affected percentage of torn tendon in cross-sectional area
    Description
    Affected percentage of torn tendon in cross-sectional area in case of tendinopathy
    Time Frame
    Baseline
    Title
    Bilateral comparison of affected tendon cross-sectional surface
    Description
    Bilateral comparison of affected tendon cross-sectional surface in mm2 on ultrasound
    Time Frame
    Baseline
    Title
    Kellgren-Lawrence
    Description
    Baseline Kellgren-Lawrence grade in case of osteoarthritis. I: Mild to IV: Severe
    Time Frame
    Baseline
    Title
    Number of patients with post-traumatic osteoarthritis
    Description
    Number of patients with post-traumatic osteoarthritis
    Time Frame
    Baseline

    10. Eligibility

    Sex
    All
    Minimum Age & Unit of Time
    16 Years
    Accepts Healthy Volunteers
    No
    Eligibility Criteria
    Inclusion Criteria: Informed Consent as documented by signature (Appendix Informed Consent Form) Age older than 16 years old, Symptomatic osteoarthritis of the hip, knee, ankle, elbow, shoulder confirmed by MRI or symptomatic tendinopathy confirmed by ultrasonography, Failure of first-line conservative management in the last 3 months including medical or infiltrative treatment, orthotics use, active rehabilitation plan, adaptation of sports and work habits. Exclusion Criteria: Patient is familiar with the lipoaspiration process In case of tendinopathy: significant impingement according to investigator's judgement Subacromial impingement of the supraspinatus tendon, Haglund disease with erosion of the anterior part of Achilles tendon Significant disease of the contralateral member with a function evaluated with SANE score below 80% In case of osteoarthritis: microcristalline disease (i.e. gout, pseudogout), Active inflammatory rheumatic disorders, Need of regular anti-inflammatory treatment (either NSAIDs or corticosteroids), Allergy to local anesthetics or epinephrin Bleeding disorders or current anticoagulation therapy Patients with decompensated renal failure, hepatic dysfunction, or severe pulmonary or cardiovascular disease, Patients with an immunocompromised status Women who are pregnant or intend to become pregnant during the study Inability to follow the procedures of the study, e.g., due to language problems, psychological disorders, dementia, etc. of the participant, Known or suspected non-compliance, drug, or alcohol abuse Previous enrollment into the current study, Participation in another study with investigational drug or procedure within the 30 days preceding and during the present study Enrollment of the investigator, his/her family members, employees, and other dependent persons If a bilateral disease is present and both sides require either the experimental or the control intervention, only the most symptomatic side will be studied.
    Central Contact Person:
    First Name & Middle Initial & Last Name or Official Title & Degree
    Adrien Schwitzguébel, MD.
    Phone
    +41 79 762 05 62
    Email
    adrien.schwitzguebel@gmail.com
    Overall Study Officials:
    First Name & Middle Initial & Last Name & Degree
    Adrien Schwitzguébel, MD.
    Organizational Affiliation
    Hôpital de La Providenc
    Official's Role
    Principal Investigator

    12. IPD Sharing Statement

    Plan to Share IPD
    No
    Citations:
    Citation
    World Medical A. WMA declaration of Helsinki : ethical principles for medical research involving human subjects 2013. First edition. ed. Guildford, Surrey: Canary Publications; 2014. 12 pages p.
    Results Reference
    background
    Citation
    Harmonization ICo. Guideline for Good Clinical Practice. 1996.
    Results Reference
    background
    PubMed Identifier
    26491614
    Citation
    McCormack J, Underwood F, Slaven E, Cappaert T. THE MINIMUM CLINICALLY IMPORTANT DIFFERENCE ON THE VISA-A AND LEFS FOR PATIENTS WITH INSERTIONAL ACHILLES TENDINOPATHY. Int J Sports Phys Ther. 2015 Oct;10(5):639-44.
    Results Reference
    background
    PubMed Identifier
    24175606
    Citation
    Franchignoni F, Vercelli S, Giordano A, Sartorio F, Bravini E, Ferriero G. Minimal clinically important difference of the disabilities of the arm, shoulder and hand outcome measure (DASH) and its shortened version (QuickDASH). J Orthop Sports Phys Ther. 2014 Jan;44(1):30-9. doi: 10.2519/jospt.2014.4893. Epub 2013 Oct 30.
    Results Reference
    background
    PubMed Identifier
    10819955
    Citation
    Emanuel EJ, Wendler D, Grady C. What makes clinical research ethical? JAMA. 2000 May 24-31;283(20):2701-11. doi: 10.1001/jama.283.20.2701.
    Results Reference
    background
    PubMed Identifier
    34206010
    Citation
    Agarwal N, Mak C, Bojanic C, To K, Khan W. Meta-Analysis of Adipose Tissue Derived Cell-Based Therapy for the Treatment of Knee Osteoarthritis. Cells. 2021 Jun 1;10(6):1365. doi: 10.3390/cells10061365.
    Results Reference
    background
    PubMed Identifier
    33285713
    Citation
    Ma W, Liu C, Wang S, Xu H, Sun H, Fan X. Efficacy and safety of intra-articular injection of mesenchymal stem cells in the treatment of knee osteoarthritis: A systematic review and meta-analysis. Medicine (Baltimore). 2020 Dec 4;99(49):e23343. doi: 10.1097/MD.0000000000023343.
    Results Reference
    background
    PubMed Identifier
    33713757
    Citation
    Zhao D, Pan JK, Yang WY, Han YH, Zeng LF, Liang GH, Liu J. Intra-Articular Injections of Platelet-Rich Plasma, Adipose Mesenchymal Stem Cells, and Bone Marrow Mesenchymal Stem Cells Associated With Better Outcomes Than Hyaluronic Acid and Saline in Knee Osteoarthritis: A Systematic Review and Network Meta-analysis. Arthroscopy. 2021 Jul;37(7):2298-2314.e10. doi: 10.1016/j.arthro.2021.02.045. Epub 2021 Mar 10.
    Results Reference
    background
    PubMed Identifier
    33507375
    Citation
    Jiang P, Mao L, Qiao L, Lei X, Zheng Q, Li D. Efficacy and safety of mesenchymal stem cell injections for patients with osteoarthritis: a meta-analysis and review of RCTs. Arch Orthop Trauma Surg. 2021 Jul;141(7):1241-1251. doi: 10.1007/s00402-020-03703-0. Epub 2021 Jan 28.
    Results Reference
    background
    PubMed Identifier
    33098949
    Citation
    Dai W, Leng X, Wang J, Shi Z, Cheng J, Hu X, Ao Y. Intra-Articular Mesenchymal Stromal Cell Injections Are No Different From Placebo in the Treatment of Knee Osteoarthritis: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Arthroscopy. 2021 Jan;37(1):340-358. doi: 10.1016/j.arthro.2020.10.016. Epub 2020 Oct 21.
    Results Reference
    background
    PubMed Identifier
    26202898
    Citation
    Lee SY, Kim W, Lim C, Chung SG. Treatment of Lateral Epicondylosis by Using Allogeneic Adipose-Derived Mesenchymal Stem Cells: A Pilot Study. Stem Cells. 2015 Oct;33(10):2995-3005. doi: 10.1002/stem.2110. Epub 2015 Aug 6.
    Results Reference
    background
    PubMed Identifier
    28251260
    Citation
    Usuelli FG, Grassi M, Maccario C, Vigano' M, Lanfranchi L, Alfieri Montrasio U, de Girolamo L. Intratendinous adipose-derived stromal vascular fraction (SVF) injection provides a safe, efficacious treatment for Achilles tendinopathy: results of a randomized controlled clinical trial at a 6-month follow-up. Knee Surg Sports Traumatol Arthrosc. 2018 Jul;26(7):2000-2010. doi: 10.1007/s00167-017-4479-9. Epub 2017 Mar 1.
    Results Reference
    background
    PubMed Identifier
    25795246
    Citation
    Stein BE, Stroh DA, Schon LC. Outcomes of acute Achilles tendon rupture repair with bone marrow aspirate concentrate augmentation. Int Orthop. 2015 May;39(5):901-5. doi: 10.1007/s00264-015-2725-7. Epub 2015 Mar 22.
    Results Reference
    background
    PubMed Identifier
    28448728
    Citation
    Kim YS, Sung CH, Chung SH, Kwak SJ, Koh YG. Does an Injection of Adipose-Derived Mesenchymal Stem Cells Loaded in Fibrin Glue Influence Rotator Cuff Repair Outcomes? A Clinical and Magnetic Resonance Imaging Study. Am J Sports Med. 2017 Jul;45(9):2010-2018. doi: 10.1177/0363546517702863. Epub 2017 Apr 27.
    Results Reference
    background
    PubMed Identifier
    30705536
    Citation
    Michalek J, Vrablikova A, Darinskas A, Lukac L, Prucha J, Skopalik J, Travnik J, Cibulka M, Dudasova Z. Stromal vascular fraction cell therapy for osteoarthritis in elderly: Multicenter case-control study. J Clin Orthop Trauma. 2019 Jan-Feb;10(1):76-80. doi: 10.1016/j.jcot.2018.11.010. Epub 2018 Nov 23. No abstract available.
    Results Reference
    background
    PubMed Identifier
    22759409
    Citation
    Al Faqeh H, Nor Hamdan BM, Chen HC, Aminuddin BS, Ruszymah BH. The potential of intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model. Exp Gerontol. 2012 Jun;47(6):458-64. doi: 10.1016/j.exger.2012.03.018. Epub 2012 Apr 10.
    Results Reference
    background
    PubMed Identifier
    12706014
    Citation
    Awad HA, Boivin GP, Dressler MR, Smith FN, Young RG, Butler DL. Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res. 2003 May;21(3):420-31. doi: 10.1016/S0736-0266(02)00163-8.
    Results Reference
    background
    PubMed Identifier
    28914207
    Citation
    Borakati A, Mafi R, Mafi P, Khan WS. A Systematic Review And Meta-Analysis of Clinical Trials of Mesenchymal Stem Cell Therapy for Cartilage Repair. Curr Stem Cell Res Ther. 2018 Feb 23;13(3):215-225. doi: 10.2174/1574888X12666170915120620.
    Results Reference
    background
    PubMed Identifier
    26915044
    Citation
    Chiang ER, Ma HL, Wang JP, Liu CL, Chen TH, Hung SC. Allogeneic Mesenchymal Stem Cells in Combination with Hyaluronic Acid for the Treatment of Osteoarthritis in Rabbits. PLoS One. 2016 Feb 25;11(2):e0149835. doi: 10.1371/journal.pone.0149835. eCollection 2016.
    Results Reference
    background
    PubMed Identifier
    17200313
    Citation
    Chong AK, Ang AD, Goh JC, Hui JH, Lim AY, Lee EH, Lim BH. Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model. J Bone Joint Surg Am. 2007 Jan;89(1):74-81. doi: 10.2106/JBJS.E.01396.
    Results Reference
    background
    PubMed Identifier
    29038672
    Citation
    Comella K, Parlo M, Daly R, Depasquale V, Edgerton E, Mallory P, Schmidt R, Drake WP. Safety Analysis of Autologous Stem Cell Therapy in a Variety of Degenerative Diseases and Injuries Using the Stromal Vascular Fraction. J Clin Med Res. 2017 Nov;9(11):935-942. doi: 10.14740/jocmr3187w. Epub 2017 Oct 2.
    Results Reference
    background
    PubMed Identifier
    17682895
    Citation
    Crovace A, Lacitignola L, De Siena R, Rossi G, Francioso E. Cell therapy for tendon repair in horses: an experimental study. Vet Res Commun. 2007 Aug;31 Suppl 1:281-3. doi: 10.1007/s11259-007-0047-y. No abstract available.
    Results Reference
    background
    PubMed Identifier
    29966351
    Citation
    Damia E, Chicharro D, Lopez S, Cuervo B, Rubio M, Sopena JJ, Vilar JM, Carrillo JM. Adipose-Derived Mesenchymal Stem Cells: Are They a Good Therapeutic Strategy for Osteoarthritis? Int J Mol Sci. 2018 Jun 30;19(7):1926. doi: 10.3390/ijms19071926.
    Results Reference
    background
    PubMed Identifier
    21518322
    Citation
    Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis. 2011 May;14(2):211-5. doi: 10.1111/j.1756-185X.2011.01599.x. Epub 2011 Mar 4.
    Results Reference
    background
    PubMed Identifier
    28600828
    Citation
    de Windt TS, Vonk LA, Slaper-Cortenbach ICM, Nizak R, van Rijen MHP, Saris DBF. Allogeneic MSCs and Recycled Autologous Chondrons Mixed in a One-Stage Cartilage Cell Transplantion: A First-in-Man Trial in 35 Patients. Stem Cells. 2017 Aug;35(8):1984-1993. doi: 10.1002/stem.2657. Epub 2017 Jun 23.
    Results Reference
    background
    PubMed Identifier
    18683070
    Citation
    Del Bue M, Ricco S, Ramoni R, Conti V, Gnudi G, Grolli S. Equine adipose-tissue derived mesenchymal stem cells and platelet concentrates: their association in vitro and in vivo. Vet Res Commun. 2008 Sep;32 Suppl 1:S51-5. doi: 10.1007/s11259-008-9093-3.
    Results Reference
    background
    PubMed Identifier
    23360790
    Citation
    Desando G, Cavallo C, Sartoni F, Martini L, Parrilli A, Veronesi F, Fini M, Giardino R, Facchini A, Grigolo B. Intra-articular delivery of adipose derived stromal cells attenuates osteoarthritis progression in an experimental rabbit model. Arthritis Res Ther. 2013 Jan 29;15(1):R22. doi: 10.1186/ar4156.
    Results Reference
    background
    PubMed Identifier
    22889498
    Citation
    Diekman BO, Wu CL, Louer CR, Furman BD, Huebner JL, Kraus VB, Olson SA, Guilak F. Intra-articular delivery of purified mesenchymal stem cells from C57BL/6 or MRL/MpJ superhealer mice prevents posttraumatic arthritis. Cell Transplant. 2013;22(8):1395-408. doi: 10.3727/096368912X653264. Epub 2012 Aug 10.
    Results Reference
    background
    PubMed Identifier
    32006075
    Citation
    Doyle EC, Wragg NM, Wilson SL. Intraarticular injection of bone marrow-derived mesenchymal stem cells enhances regeneration in knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2020 Dec;28(12):3827-3842. doi: 10.1007/s00167-020-05859-z. Epub 2020 Jan 31.
    Results Reference
    background
    PubMed Identifier
    21773831
    Citation
    Ellera Gomes JL, da Silva RC, Silla LM, Abreu MR, Pellanda R. Conventional rotator cuff repair complemented by the aid of mononuclear autologous stem cells. Knee Surg Sports Traumatol Arthrosc. 2012 Feb;20(2):373-7. doi: 10.1007/s00167-011-1607-9. Epub 2011 Jul 20.
    Results Reference
    background
    PubMed Identifier
    22724879
    Citation
    Emadedin M, Aghdami N, Taghiyar L, Fazeli R, Moghadasali R, Jahangir S, Farjad R, Baghaban Eslaminejad M. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iran Med. 2012 Jul;15(7):422-8.
    Results Reference
    background
    PubMed Identifier
    26058927
    Citation
    Emadedin M, Ghorbani Liastani M, Fazeli R, Mohseni F, Moghadasali R, Mardpour S, Hosseini SE, Niknejadi M, Moeininia F, Aghahossein Fanni A, Baghban Eslaminejhad R, Vosough Dizaji A, Labibzadeh N, Mirazimi Bafghi A, Baharvand H, Aghdami N. Long-Term Follow-up of Intra-articular Injection of Autologous Mesenchymal Stem Cells in Patients with Knee, Ankle, or Hip Osteoarthritis. Arch Iran Med. 2015 Jun;18(6):336-44.
    Results Reference
    background
    PubMed Identifier
    30762487
    Citation
    Freitag J, Bates D, Wickham J, Shah K, Huguenin L, Tenen A, Paterson K, Boyd R. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: a randomized controlled trial. Regen Med. 2019 Mar;14(3):213-230. doi: 10.2217/rme-2018-0161. Epub 2019 Feb 14.
    Results Reference
    background
    PubMed Identifier
    19544397
    Citation
    Frisbie DD, Kisiday JD, Kawcak CE, Werpy NM, McIlwraith CW. Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. J Orthop Res. 2009 Dec;27(12):1675-80. doi: 10.1002/jor.20933.
    Results Reference
    background
    PubMed Identifier
    27993154
    Citation
    Gupta PK, Chullikana A, Rengasamy M, Shetty N, Pandey V, Agarwal V, Wagh SY, Vellotare PK, Damodaran D, Viswanathan P, Thej C, Balasubramanian S, Majumdar AS. Efficacy and safety of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (Stempeucel(R)): preclinical and clinical trial in osteoarthritis of the knee joint. Arthritis Res Ther. 2016 Dec 20;18(1):301. doi: 10.1186/s13075-016-1195-7.
    Results Reference
    background
    PubMed Identifier
    32141308
    Citation
    Han X, Yang B, Zou F, Sun J. Clinical therapeutic efficacy of mesenchymal stem cells derived from adipose or bone marrow for knee osteoarthritis: a meta-analysis of randomized controlled trials. J Comp Eff Res. 2020 Apr;9(5):361-374. doi: 10.2217/cer-2019-0187. Epub 2020 Mar 6.
    Results Reference
    background
    PubMed Identifier
    24913770
    Citation
    Hernigou P, Flouzat Lachaniette CH, Delambre J, Zilber S, Duffiet P, Chevallier N, Rouard H. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int Orthop. 2014 Sep;38(9):1811-8. doi: 10.1007/s00264-014-2391-1. Epub 2014 Jun 7.
    Results Reference
    background
    PubMed Identifier
    32176071
    Citation
    Huang R, Li W, Zhao Y, Yang F, Xu M. Clinical efficacy and safety of stem cell therapy for knee osteoarthritis: A meta-analysis. Medicine (Baltimore). 2020 Mar;99(11):e19434. doi: 10.1097/MD.0000000000019434.
    Results Reference
    background
    PubMed Identifier
    24449146
    Citation
    Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, Kim JE, Shim H, Shin JS, Shin IS, Ra JC, Oh S, Yoon KS. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014 May;32(5):1254-66. doi: 10.1002/stem.1634. Erratum In: Stem Cells. 2017 Jun;35(6):1651-1652.
    Results Reference
    background
    PubMed Identifier
    29725971
    Citation
    Kalamegam G, Memic A, Budd E, Abbas M, Mobasheri A. A Comprehensive Review of Stem Cells for Cartilage Regeneration in Osteoarthritis. Adv Exp Med Biol. 2018;1089:23-36. doi: 10.1007/5584_2018_205.
    Results Reference
    background
    PubMed Identifier
    31874044
    Citation
    Kim SH, Djaja YP, Park YB, Park JG, Ko YB, Ha CW. Intra-articular Injection of Culture-Expanded Mesenchymal Stem Cells Without Adjuvant Surgery in Knee Osteoarthritis: A Systematic Review and Meta-analysis. Am J Sports Med. 2020 Sep;48(11):2839-2849. doi: 10.1177/0363546519892278. Epub 2019 Dec 24.
    Results Reference
    background
    PubMed Identifier
    30756165
    Citation
    Kim SH, Ha CW, Park YB, Nam E, Lee JE, Lee HJ. Intra-articular injection of mesenchymal stem cells for clinical outcomes and cartilage repair in osteoarthritis of the knee: a meta-analysis of randomized controlled trials. Arch Orthop Trauma Surg. 2019 Jul;139(7):971-980. doi: 10.1007/s00402-019-03140-8. Epub 2019 Feb 11.
    Results Reference
    background
    PubMed Identifier
    26318655
    Citation
    Kim YS, Choi YJ, Lee SW, Kwon OR, Suh DS, Heo DB, Koh YG. Assessment of clinical and MRI outcomes after mesenchymal stem cell implantation in patients with knee osteoarthritis: a prospective study. Osteoarthritis Cartilage. 2016 Feb;24(2):237-45. doi: 10.1016/j.joca.2015.08.009. Epub 2015 Aug 28.
    Results Reference
    background
    PubMed Identifier
    25349263
    Citation
    Kim YS, Choi YJ, Suh DS, Heo DB, Kim YI, Ryu JS, Koh YG. Mesenchymal stem cell implantation in osteoarthritic knees: is fibrin glue effective as a scaffold? Am J Sports Med. 2015 Jan;43(1):176-85. doi: 10.1177/0363546514554190. Epub 2014 Oct 27.
    Results Reference
    background
    PubMed Identifier
    26993668
    Citation
    Kim YS, Koh YG. Injection of Mesenchymal Stem Cells as a Supplementary Strategy of Marrow Stimulation Improves Cartilage Regeneration After Lateral Sliding Calcaneal Osteotomy for Varus Ankle Osteoarthritis: Clinical and Second-Look Arthroscopic Results. Arthroscopy. 2016 May;32(5):878-89. doi: 10.1016/j.arthro.2016.01.020. Epub 2016 Mar 15.
    Results Reference
    background
    PubMed Identifier
    26337418
    Citation
    Kim YS, Kwon OR, Choi YJ, Suh DS, Heo DB, Koh YG. Comparative Matched-Pair Analysis of the Injection Versus Implantation of Mesenchymal Stem Cells for Knee Osteoarthritis. Am J Sports Med. 2015 Nov;43(11):2738-46. doi: 10.1177/0363546515599632. Epub 2015 Sep 3.
    Results Reference
    background
    PubMed Identifier
    27206975
    Citation
    Kim YS, Lee M, Koh YG. Additional mesenchymal stem cell injection improves the outcomes of marrow stimulation combined with supramalleolar osteotomy in varus ankle osteoarthritis: short-term clinical results with second-look arthroscopic evaluation. J Exp Orthop. 2016 Dec;3(1):12. doi: 10.1186/s40634-016-0048-2. Epub 2016 May 20.
    Results Reference
    background
    PubMed Identifier
    22583627
    Citation
    Koh YG, Choi YJ. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee. 2012 Dec;19(6):902-7. doi: 10.1016/j.knee.2012.04.001. Epub 2012 May 14.
    Results Reference
    background
    PubMed Identifier
    25108907
    Citation
    Koh YG, Kwon OR, Kim YS, Choi YJ. Comparative outcomes of open-wedge high tibial osteotomy with platelet-rich plasma alone or in combination with mesenchymal stem cell treatment: a prospective study. Arthroscopy. 2014 Nov;30(11):1453-60. doi: 10.1016/j.arthro.2014.05.036. Epub 2014 Aug 6.
    Results Reference
    background
    PubMed Identifier
    18686004
    Citation
    Lacitignola L, Crovace A, Rossi G, Francioso E. Cell therapy for tendinitis, experimental and clinical report. Vet Res Commun. 2008 Sep;32 Suppl 1:S33-8. doi: 10.1007/s11259-008-9085-3.
    Results Reference
    background
    PubMed Identifier
    30064455
    Citation
    Lamo-Espinosa JM, Mora G, Blanco JF, Granero-Molto F, Nunez-Cordoba JM, Lopez-Elio S, Andreu E, Sanchez-Guijo F, Aquerreta JD, Bondia JM, Valenti-Azcarate A, Del Consuelo Del Canizo M, Villaron EM, Valenti-Nin JR, Prosper F. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: long-term follow up of a multicenter randomized controlled clinical trial (phase I/II). J Transl Med. 2018 Jul 31;16(1):213. doi: 10.1186/s12967-018-1591-7.
    Results Reference
    background
    PubMed Identifier
    22189147
    Citation
    Lee JM, Im GI. SOX trio-co-transduced adipose stem cells in fibrin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat. Biomaterials. 2012 Mar;33(7):2016-24. doi: 10.1016/j.biomaterials.2011.11.050. Epub 2011 Dec 19.
    Results Reference
    background
    PubMed Identifier
    17656639
    Citation
    Lee KB, Hui JH, Song IC, Ardany L, Lee EH. Injectable mesenchymal stem cell therapy for large cartilage defects--a porcine model. Stem Cells. 2007 Nov;25(11):2964-71. doi: 10.1634/stemcells.2006-0311. Epub 2007 Jul 26.
    Results Reference
    background
    PubMed Identifier
    30835956
    Citation
    Lee WS, Kim HJ, Kim KI, Kim GB, Jin W. Intra-Articular Injection of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells for the Treatment of Knee Osteoarthritis: A Phase IIb, Randomized, Placebo-Controlled Clinical Trial. Stem Cells Transl Med. 2019 Jun;8(6):504-511. doi: 10.1002/sctm.18-0122. Epub 2019 Mar 5.
    Results Reference
    background
    PubMed Identifier
    32677876
    Citation
    Lu L, Dai C, Du H, Li S, Ye P, Zhang L, Wang X, Song Y, Togashi R, Vangsness CT, Bao C. Intra-articular injections of allogeneic human adipose-derived mesenchymal progenitor cells in patients with symptomatic bilateral knee osteoarthritis: a Phase I pilot study. Regen Med. 2020 May;15(5):1625-1636. doi: 10.2217/rme-2019-0106. Epub 2020 Jul 17.
    Results Reference
    background
    PubMed Identifier
    31113476
    Citation
    Lu L, Dai C, Zhang Z, Du H, Li S, Ye P, Fu Q, Zhang L, Wu X, Dong Y, Song Y, Zhao D, Pang Y, Bao C. Treatment of knee osteoarthritis with intra-articular injection of autologous adipose-derived mesenchymal progenitor cells: a prospective, randomized, double-blind, active-controlled, phase IIb clinical trial. Stem Cell Res Ther. 2019 May 21;10(1):143. doi: 10.1186/s13287-019-1248-3.
    Results Reference
    background
    PubMed Identifier
    32497658
    Citation
    Maheshwer B, Polce EM, Paul K, Williams BT, Wolfson TS, Yanke A, Verma NN, Cole BJ, Chahla J. Regenerative Potential of Mesenchymal Stem Cells for the Treatment of Knee Osteoarthritis and Chondral Defects: A Systematic Review and Meta-analysis. Arthroscopy. 2021 Jan;37(1):362-378. doi: 10.1016/j.arthro.2020.05.037. Epub 2020 Jun 1.
    Results Reference
    background
    PubMed Identifier
    31753036
    Citation
    Mianehsaz E, Mirzaei HR, Mahjoubin-Tehran M, Rezaee A, Sahebnasagh R, Pourhanifeh MH, Mirzaei H, Hamblin MR. Mesenchymal stem cell-derived exosomes: a new therapeutic approach to osteoarthritis? Stem Cell Res Ther. 2019 Nov 21;10(1):340. doi: 10.1186/s13287-019-1445-0.
    Results Reference
    background
    PubMed Identifier
    19845155
    Citation
    Mizuno K, Muneta T, Morito T, Ichinose S, Koga H, Nimura A, Mochizuki T, Sekiya I. Exogenous synovial stem cells adhere to defect of meniscus and differentiate into cartilage cells. J Med Dent Sci. 2008 Mar;55(1):101-11.
    Results Reference
    background
    PubMed Identifier
    30084022
    Citation
    Muhammad SA, Nordin N, Mehat MZ, Fakurazi S. Comparative efficacy of stem cells and secretome in articular cartilage regeneration: a systematic review and meta-analysis. Cell Tissue Res. 2019 Feb;375(2):329-344. doi: 10.1007/s00441-018-2884-0. Epub 2018 Aug 6.
    Results Reference
    background
    PubMed Identifier
    14673997
    Citation
    Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003 Dec;48(12):3464-74. doi: 10.1002/art.11365.
    Results Reference
    background
    PubMed Identifier
    23680930
    Citation
    Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, Sentis J, Sanchez A, Garcia-Sancho J. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation. 2013 Jun 27;95(12):1535-41. doi: 10.1097/TP.0b013e318291a2da.
    Results Reference
    background
    PubMed Identifier
    12857411
    Citation
    Ouyang HW, Goh JC, Thambyah A, Teoh SH, Lee EH. Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon. Tissue Eng. 2003 Jun;9(3):431-9. doi: 10.1089/107632703322066615.
    Results Reference
    background
    PubMed Identifier
    27789339
    Citation
    Park YB, Ha CW, Kim JA, Han WJ, Rhim JH, Lee HJ, Kim KJ, Park YG, Chung JY. Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite. Osteoarthritis Cartilage. 2017 Apr;25(4):570-580. doi: 10.1016/j.joca.2016.10.012. Epub 2016 Oct 24.
    Results Reference
    background
    PubMed Identifier
    22220180
    Citation
    Pascual-Garrido C, Rolon A, Makino A. Treatment of chronic patellar tendinopathy with autologous bone marrow stem cells: a 5-year-followup. Stem Cells Int. 2012;2012:953510. doi: 10.1155/2012/953510. Epub 2011 Dec 18.
    Results Reference
    background
    PubMed Identifier
    16896152
    Citation
    Ruster B, Gottig S, Ludwig RJ, Bistrian R, Muller S, Seifried E, Gille J, Henschler R. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood. 2006 Dec 1;108(12):3938-44. doi: 10.1182/blood-2006-05-025098. Epub 2006 Aug 8.
    Results Reference
    background
    PubMed Identifier
    31309317
    Citation
    Shariatzadeh M, Song J, Wilson SL. The efficacy of different sources of mesenchymal stem cells for the treatment of knee osteoarthritis. Cell Tissue Res. 2019 Dec;378(3):399-410. doi: 10.1007/s00441-019-03069-9. Epub 2019 Jul 15. Erratum In: Cell Tissue Res. 2019 Aug 3;:
    Results Reference
    background
    PubMed Identifier
    16118291
    Citation
    Smith RK, Webbon PM. Harnessing the stem cell for the treatment of tendon injuries: heralding a new dawn? Br J Sports Med. 2005 Sep;39(9):582-4. doi: 10.1136/bjsm.2005.015834. No abstract available.
    Results Reference
    background
    PubMed Identifier
    29417902
    Citation
    Song Y, Du H, Dai C, Zhang L, Li S, Hunter DJ, Lu L, Bao C. Human adipose-derived mesenchymal stem cells for osteoarthritis: a pilot study with long-term follow-up and repeated injections. Regen Med. 2018 Apr;13(3):295-307. doi: 10.2217/rme-2017-0152. Epub 2018 Feb 8.
    Results Reference
    background
    PubMed Identifier
    29243283
    Citation
    Spasovski D, Spasovski V, Bascarevic Z, Stojiljkovic M, Vreca M, Andelkovic M, Pavlovic S. Intra-articular injection of autologous adipose-derived mesenchymal stem cells in the treatment of knee osteoarthritis. J Gene Med. 2018 Jan;20(1). doi: 10.1002/jgm.3002. Epub 2018 Jan 22.
    Results Reference
    background
    PubMed Identifier
    18462748
    Citation
    Steingen C, Brenig F, Baumgartner L, Schmidt J, Schmidt A, Bloch W. Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells. J Mol Cell Cardiol. 2008 Jun;44(6):1072-1084. doi: 10.1016/j.yjmcc.2008.03.010. Epub 2008 Mar 19.
    Results Reference
    background
    PubMed Identifier
    22734248
    Citation
    Suhaeb AM, Naveen S, Mansor A, Kamarul T. Hyaluronic acid with or without bone marrow derived-mesenchymal stem cells improves osteoarthritic knee changes in rat model: a preliminary report. Indian J Exp Biol. 2012 Jun;50(6):383-90.
    Results Reference
    background
    PubMed Identifier
    22961401
    Citation
    ter Huurne M, Schelbergen R, Blattes R, Blom A, de Munter W, Grevers LC, Jeanson J, Noel D, Casteilla L, Jorgensen C, van den Berg W, van Lent PL. Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis. Arthritis Rheum. 2012 Nov;64(11):3604-13. doi: 10.1002/art.34626.
    Results Reference
    background
    PubMed Identifier
    22827787
    Citation
    Toghraie F, Razmkhah M, Gholipour MA, Faghih Z, Chenari N, Torabi Nezhad S, Nazhvani Dehghani S, Ghaderi A. Scaffold-free adipose-derived stem cells (ASCs) improve experimentally induced osteoarthritis in rabbits. Arch Iran Med. 2012 Aug;15(8):495-9.
    Results Reference
    background
    PubMed Identifier
    20591677
    Citation
    Toghraie FS, Chenari N, Gholipour MA, Faghih Z, Torabinejad S, Dehghani S, Ghaderi A. Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in Rabbit. Knee. 2011 Mar;18(2):71-5. doi: 10.1016/j.knee.2010.03.001. Epub 2010 Jun 29.
    Results Reference
    background
    PubMed Identifier
    24911365
    Citation
    Ude CC, Sulaiman SB, Min-Hwei N, Hui-Cheng C, Ahmad J, Yahaya NM, Saim AB, Idrus RB. Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model. PLoS One. 2014 Jun 9;9(6):e98770. doi: 10.1371/journal.pone.0098770. eCollection 2014.
    Results Reference
    background
    PubMed Identifier
    27006923
    Citation
    Van Pham P, Hong-Thien Bui K, Quoc Ngo D, Tan Khuat L, Kim Phan N. Transplantation of Nonexpanded Adipose Stromal Vascular Fraction and Platelet-Rich Plasma for Articular Cartilage Injury Treatment in Mice Model. J Med Eng. 2013;2013:832396. doi: 10.1155/2013/832396. Epub 2013 Jan 16.
    Results Reference
    background
    PubMed Identifier
    24430407
    Citation
    Vangsness CT Jr, Farr J 2nd, Boyd J, Dellaero DT, Mills CR, LeRoux-Williams M. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. J Bone Joint Surg Am. 2014 Jan 15;96(2):90-8. doi: 10.2106/JBJS.M.00058.
    Results Reference
    background
    PubMed Identifier
    25822648
    Citation
    Vega A, Martin-Ferrero MA, Del Canto F, Alberca M, Garcia V, Munar A, Orozco L, Soler R, Fuertes JJ, Huguet M, Sanchez A, Garcia-Sancho J. Treatment of Knee Osteoarthritis With Allogeneic Bone Marrow Mesenchymal Stem Cells: A Randomized Controlled Trial. Transplantation. 2015 Aug;99(8):1681-90. doi: 10.1097/TP.0000000000000678.
    Results Reference
    background
    PubMed Identifier
    11869080
    Citation
    Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage. 2002 Mar;10(3):199-206. doi: 10.1053/joca.2001.0504.
    Results Reference
    background
    PubMed Identifier
    32364765
    Citation
    Wang J, Guo X, Kang Z, Qi L, Yang Y, Wang J, Xu J, Gao S. Roles of Exosomes from Mesenchymal Stem Cells in Treating Osteoarthritis. Cell Reprogram. 2020 Jun;22(3):107-117. doi: 10.1089/cell.2019.0098. Epub 2020 May 4.
    Results Reference
    background
    PubMed Identifier
    24286801
    Citation
    Wong KL, Lee KB, Tai BC, Law P, Lee EH, Hui JH. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years' follow-up. Arthroscopy. 2013 Dec;29(12):2020-8. doi: 10.1016/j.arthro.2013.09.074.
    Results Reference
    background
    PubMed Identifier
    25944079
    Citation
    Xia P, Wang X, Lin Q, Li X. Efficacy of mesenchymal stem cells injection for the management of knee osteoarthritis: a systematic review and meta-analysis. Int Orthop. 2015 Dec;39(12):2363-72. doi: 10.1007/s00264-015-2785-8. Epub 2015 May 6.
    Results Reference
    background
    PubMed Identifier
    31100005
    Citation
    Zhou W, Lin J, Zhao K, Jin K, He Q, Hu Y, Feng G, Cai Y, Xia C, Liu H, Shen W, Hu X, Ouyang H. Single-Cell Profiles and Clinically Useful Properties of Human Mesenchymal Stem Cells of Adipose and Bone Marrow Origin. Am J Sports Med. 2019 Jun;47(7):1722-1733. doi: 10.1177/0363546519848678. Epub 2019 May 17.
    Results Reference
    background
    PubMed Identifier
    29046476
    Citation
    Zwolanek D, Satue M, Proell V, Godoy JR, Odorfer KI, Flicker M, Hoffmann SC, Rulicke T, Erben RG. Tracking mesenchymal stem cell contributions to regeneration in an immunocompetent cartilage regeneration model. JCI Insight. 2017 Oct 19;2(20):e87322. doi: 10.1172/jci.insight.87322.
    Results Reference
    background
    PubMed Identifier
    33275908
    Citation
    Cieza A, Causey K, Kamenov K, Hanson SW, Chatterji S, Vos T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2021 Dec 19;396(10267):2006-2017. doi: 10.1016/S0140-6736(20)32340-0. Epub 2020 Dec 1. Erratum In: Lancet. 2020 Dec 4;:
    Results Reference
    background
    PubMed Identifier
    25785564
    Citation
    Musumeci G, Aiello FC, Szychlinska MA, Di Rosa M, Castrogiovanni P, Mobasheri A. Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression. Int J Mol Sci. 2015 Mar 16;16(3):6093-112. doi: 10.3390/ijms16036093.
    Results Reference
    background
    PubMed Identifier
    22341021
    Citation
    Skjong CC, Meininger AK, Ho SS. Tendinopathy treatment: where is the evidence? Clin Sports Med. 2012 Apr;31(2):329-50. doi: 10.1016/j.csm.2011.11.003.
    Results Reference
    background
    PubMed Identifier
    20602715
    Citation
    Chappell AS, Desaiah D, Liu-Seifert H, Zhang S, Skljarevski V, Belenkov Y, Brown JP. A double-blind, randomized, placebo-controlled study of the efficacy and safety of duloxetine for the treatment of chronic pain due to osteoarthritis of the knee. Pain Pract. 2011 Jan-Feb;11(1):33-41. doi: 10.1111/j.1533-2500.2010.00401.x.
    Results Reference
    background
    PubMed Identifier
    26962464
    Citation
    Zhang W, Ouyang H, Dass CR, Xu J. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 2016 Mar 1;4:15040. doi: 10.1038/boneres.2015.40. eCollection 2016.
    Results Reference
    background
    PubMed Identifier
    32647968
    Citation
    Boffa A, Previtali D, Di Laura Frattura G, Vannini F, Candrian C, Filardo G. Evidence on ankle injections for osteochondral lesions and osteoarthritis: a systematic review and meta-analysis. Int Orthop. 2021 Feb;45(2):509-523. doi: 10.1007/s00264-020-04689-5. Epub 2020 Jul 9.
    Results Reference
    background
    PubMed Identifier
    18981040
    Citation
    Rees JD, Wolman RL, Wilson A. Eccentric exercises; why do they work, what are the problems and how can we improve them? Br J Sports Med. 2009 Apr;43(4):242-6. doi: 10.1136/bjsm.2008.052910. Epub 2008 Nov 3.
    Results Reference
    background
    PubMed Identifier
    16156339
    Citation
    Wilson JJ, Best TM. Common overuse tendon problems: A review and recommendations for treatment. Am Fam Physician. 2005 Sep 1;72(5):811-8.
    Results Reference
    background
    PubMed Identifier
    19553221
    Citation
    McCallum SD, Paoloni JA, Murrell GA. Five-year prospective comparison study of topical glyceryl trinitrate treatment of chronic lateral epicondylosis at the elbow. Br J Sports Med. 2011 Apr;45(5):416-20. doi: 10.1136/bjsm.2009.061002. Epub 2009 Jun 23.
    Results Reference
    background
    PubMed Identifier
    31361101
    Citation
    Kane SF, Olewinski LH, Tamminga KS. Management of Chronic Tendon Injuries. Am Fam Physician. 2019 Aug 1;100(3):147-157.
    Results Reference
    background
    PubMed Identifier
    20970844
    Citation
    Coombes BK, Bisset L, Vicenzino B. Efficacy and safety of corticosteroid injections and other injections for management of tendinopathy: a systematic review of randomised controlled trials. Lancet. 2010 Nov 20;376(9754):1751-67. doi: 10.1016/S0140-6736(10)61160-9. Epub 2010 Oct 21.
    Results Reference
    background
    PubMed Identifier
    24074644
    Citation
    Dean BJ, Lostis E, Oakley T, Rombach I, Morrey ME, Carr AJ. The risks and benefits of glucocorticoid treatment for tendinopathy: a systematic review of the effects of local glucocorticoid on tendon. Semin Arthritis Rheum. 2014 Feb;43(4):570-6. doi: 10.1016/j.semarthrit.2013.08.006. Epub 2013 Sep 26.
    Results Reference
    background
    PubMed Identifier
    7593077
    Citation
    Wiggins ME, Fadale PD, Ehrlich MG, Walsh WR. Effects of local injection of corticosteroids on the healing of ligaments. A follow-up report. J Bone Joint Surg Am. 1995 Nov;77(11):1682-91. doi: 10.2106/00004623-199511000-00006.
    Results Reference
    background
    PubMed Identifier
    24363098
    Citation
    Moraes VY, Lenza M, Tamaoki MJ, Faloppa F, Belloti JC. Platelet-rich therapies for musculoskeletal soft tissue injuries. Cochrane Database Syst Rev. 2013 Dec 23;(12):CD010071. doi: 10.1002/14651858.CD010071.pub2.
    Results Reference
    background
    PubMed Identifier
    30201082
    Citation
    Franchini M, Cruciani M, Mengoli C, Marano G, Pupella S, Veropalumbo E, Masiello F, Pati I, Vaglio S, Liumbruno GM. Efficacy of platelet-rich plasma as conservative treatment in orthopaedics: a systematic review and meta-analysis. Blood Transfus. 2018 Nov;16(6):502-513. doi: 10.2450/2018.0111-18. Epub 2018 Sep 3.
    Results Reference
    background
    PubMed Identifier
    27268111
    Citation
    Fitzpatrick J, Bulsara M, Zheng MH. The Effectiveness of Platelet-Rich Plasma in the Treatment of Tendinopathy: A Meta-analysis of Randomized Controlled Clinical Trials. Am J Sports Med. 2017 Jan;45(1):226-233. doi: 10.1177/0363546516643716. Epub 2016 Jul 21.
    Results Reference
    background
    PubMed Identifier
    27257167
    Citation
    Krogh TP, Ellingsen T, Christensen R, Jensen P, Fredberg U. Ultrasound-Guided Injection Therapy of Achilles Tendinopathy With Platelet-Rich Plasma or Saline: A Randomized, Blinded, Placebo-Controlled Trial. Am J Sports Med. 2016 Aug;44(8):1990-7. doi: 10.1177/0363546516647958. Epub 2016 Jun 2.
    Results Reference
    background
    PubMed Identifier
    27663654
    Citation
    Jacobson JA, Yablon CM, Henning PT, Kazmers IS, Urquhart A, Hallstrom B, Bedi A, Parameswaran A. Greater Trochanteric Pain Syndrome: Percutaneous Tendon Fenestration Versus Platelet-Rich Plasma Injection for Treatment of Gluteal Tendinosis. J Ultrasound Med. 2016 Nov;35(11):2413-2420. doi: 10.7863/ultra.15.11046. Epub 2016 Sep 23.
    Results Reference
    background
    PubMed Identifier
    17062655
    Citation
    Woodley BL, Newsham-West RJ, Baxter GD. Chronic tendinopathy: effectiveness of eccentric exercise. Br J Sports Med. 2007 Apr;41(4):188-98; discussion 199. doi: 10.1136/bjsm.2006.029769. Epub 2006 Oct 24.
    Results Reference
    background
    PubMed Identifier
    23918444
    Citation
    Speed C. A systematic review of shockwave therapies in soft tissue conditions: focusing on the evidence. Br J Sports Med. 2014 Nov;48(21):1538-42. doi: 10.1136/bjsports-2012-091961. Epub 2013 Aug 5.
    Results Reference
    background
    PubMed Identifier
    32791694
    Citation
    Zheng C, Zeng D, Chen J, Liu S, Li J, Ruan Z, Liang W. Effectiveness of extracorporeal shock wave therapy in patients with tennis elbow: A meta-analysis of randomized controlled trials. Medicine (Baltimore). 2020 Jul 24;99(30):e21189. doi: 10.1097/MD.0000000000021189.
    Results Reference
    background
    PubMed Identifier
    24817008
    Citation
    Mani-Babu S, Morrissey D, Waugh C, Screen H, Barton C. The effectiveness of extracorporeal shock wave therapy in lower limb tendinopathy: a systematic review. Am J Sports Med. 2015 Mar;43(3):752-61. doi: 10.1177/0363546514531911. Epub 2014 May 9.
    Results Reference
    background
    PubMed Identifier
    30623767
    Citation
    Maumus M, Pers YM, Ruiz M, Jorgensen C, Noel D. [Mesenchymal stem cells and regenerative medicine: future perspectives in osteoarthritis]. Med Sci (Paris). 2018 Dec;34(12):1092-1099. doi: 10.1051/medsci/2018294. Epub 2019 Jan 9. French.
    Results Reference
    background
    PubMed Identifier
    29118440
    Citation
    McGonagle D, Baboolal TG, Jones E. Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis. Nat Rev Rheumatol. 2017 Dec;13(12):719-730. doi: 10.1038/nrrheum.2017.182. Epub 2017 Nov 9.
    Results Reference
    background
    PubMed Identifier
    26565755
    Citation
    Nguyen A, Guo J, Banyard DA, Fadavi D, Toranto JD, Wirth GA, Paydar KZ, Evans GR, Widgerow AD. Stromal vascular fraction: A regenerative reality? Part 1: Current concepts and review of the literature. J Plast Reconstr Aesthet Surg. 2016 Feb;69(2):170-9. doi: 10.1016/j.bjps.2015.10.015. Epub 2015 Oct 31.
    Results Reference
    background
    PubMed Identifier
    25792486
    Citation
    You D, Jang MJ, Kim BH, Song G, Lee C, Suh N, Jeong IG, Ahn TY, Kim CS. Comparative study of autologous stromal vascular fraction and adipose-derived stem cells for erectile function recovery in a rat model of cavernous nerve injury. Stem Cells Transl Med. 2015 Apr;4(4):351-8. doi: 10.5966/sctm.2014-0161.
    Results Reference
    background
    Citation
    112. U.S. DOHAHS. Common Terminology Criteria for Adverse Events (CTCAE) v5.0. November 27, 2017 ed2017.
    Results Reference
    background

    Learn more about this trial

    Effectiveness of Stromal Vascular Fraction (SVF) and Platelets Rich Plasma (PRP) in Osteoarthritis and Tendinopathy

    We'll reach out to this number within 24 hrs