search
Back to results

Comparing the Efficacy of tDCS and tRNS to Improve Reading Skills in Children and Adolescents With Dyslexia

Primary Purpose

Developmental Dyslexia

Status
Enrolling by invitation
Phase
Not Applicable
Locations
Italy
Study Type
Interventional
Intervention
Active tDCS
Active tRNS
Sham tRNS or tDCS
Sponsored by
Bambino Gesù Hospital and Research Institute
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional treatment trial for Developmental Dyslexia focused on measuring Children, Adolescents, tRNS, transcranial random noise stimulation, tDCS, transcranial direct current stimulation, neurodevelopmental disorders, non-invasive brain stimulation, transcranial electrical stimulation, EEG, reading abilities

Eligibility Criteria

8 Years - 13 Years (Child)All SexesAccepts Healthy Volunteers

Inclusion Criteria: Children and adolescents with dyslexia (DSM-5, APA 2013) IQ ≥ 85 Exclusion Criteria: Having a comorbidity with an important medical conditions; Having neurological diseases; Having Epilepsy o family history of epilepsy; Receiving a treatment for dyslexia in the previous three months before the baseline screening.

Sites / Locations

  • Bambino Gesù Hospital and Research Institute

Arms of the Study

Arm 1

Arm 2

Arm 3

Arm 4

Arm 5

Arm 6

Arm Type

Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Arm Label

tDCS, tRNS, Sham

tDCS, Sham, tRNS

tRNS, tDCS, Sham

tRNS, Sham, tDCS

Sham, tDCS, tRNS

Sham, tRNS, tDCS

Arm Description

Active left anodal/right cathodal tDCS over TPC Active tRNS over bilateral TPC Sham tRNS or tDCS over bilateral TPC

Active left anodal/right cathodal tDCS over TPC Sham tRNS or tDCS over bilateral TPC Active tRNS over bilateral TPC

Active tRNS over bilateral TPC Active left anodal/right cathodal tDCS over TPC Sham tRNS or tDCS over bilateral TPC

Active tRNS over bilateral TPC Sham tRNS or tDCS over bilateral TPC Active left anodal/right cathodal tDCS over TPC

Sham tRNS or tDCS over bilateral TPC Active left anodal/right cathodal tDCS over TPC Active tRNS over bilateral TPC

Sham tRNS or tDCS over bilateral TPC Active tRNS over bilateral TPC Active left anodal/right cathodal tDCS over TPC

Outcomes

Primary Outcome Measures

Text reading accuracy (Experimental reading task)
Change from baseline in text reading accuracy during Active tDCS and Active tRNS sessions than during Sham tDCS and Sham tRNS sessions. Text reading accuracy is considered as the percentage (%) of accuracy and computed as the ratio between the number of correctly read stimuli and the total number of stimuli presented multiplied by 100.

Secondary Outcome Measures

Text reading speed (Experimental reading task)
Change from baseline in text reading speed during Active tDCS and Active tRNS sessions than during Sham tDCS and Sham tRNS sessions. Text reading speed is considered as the syllables/seconds ratio and calculated dividing the total number of syllables pronounced by the total time spent to complete the reading (in seconds).
Experimental reading task: high-frequency word reading accuracy
Change from baseline in high-frequency word reading accuracy during Active tDCS and Active tRNS sessions than during Sham tDCS and Sham tRNS sessions. High-frequency word reading accuracy is considered as the percentage (%) of accuracy and computed as the ratio between the number of correctly read stimuli and the total number of stimuli presented multiplied by 100.
Experimental reading task: high-frequency word reading speed
Change from baseline in high-frequency word reading speed during Active tDCS and Active tRNS sessions than during Sham tDCS and Sham tRNS sessions. High-frequency word reading speed is considered as the syllables/seconds ratio and calculated dividing the total number of syllables pronounced by the total time spent to complete the reading (in seconds).
Experimental reading task: low-frequency word reading accuracy
Change from baseline in low-frequency word reading accuracy during Active tDCS and Active tRNS sessions than during Sham tDCS and Sham tRNS sessions. Low-frequency word reading accuracy is considered as the percentage (%) of accuracy and computed as the ratio between the number of correctly read stimuli and the total number of stimuli presented multiplied by 100.
Experimental reading task: low-frequency word reading speed
Change from baseline in low-frequency word reading speed during Active tDCS and Active tRNS sessions than during Sham tDCS and Sham tRNS sessions. Low-frequency word reading speed is considered as the syllables/seconds ratio and calculated dividing the total number of syllables pronounced by the total time spent to complete the reading (in seconds).
Experimental reading task: non-word reading accuracy
Change from baseline in non-word reading accuracy during Active tDCS and Active tRNS sessions than during Sham tDCS and Sham tRNS sessions. Non-word reading accuracy is considered as the percentage (%) of accuracy and computed as the ratio between the number of correctly read stimuli and the total number of stimuli presented multiplied by 100.
Experimental reading task: non-word reading speed
Change from baseline in non-word reading speed during Active tDCS and Active tRNS sessions than during Sham tDCS and Sham tRNS sessions. Non-word reading speed is considered as the syllables/seconds ratio and calculated dividing the total number of syllables pronounced by the total time spent to complete the reading (in seconds).

Full Information

First Posted
April 3, 2023
Last Updated
September 14, 2023
Sponsor
Bambino Gesù Hospital and Research Institute
search

1. Study Identification

Unique Protocol Identification Number
NCT05832060
Brief Title
Comparing the Efficacy of tDCS and tRNS to Improve Reading Skills in Children and Adolescents With Dyslexia
Official Title
Comparing the Efficacy of tDCS and tRNS to Improve Reading Skills in Children and Adolescents With Dyslexia
Study Type
Interventional

2. Study Status

Record Verification Date
September 2023
Overall Recruitment Status
Enrolling by invitation
Study Start Date
May 1, 2023 (Actual)
Primary Completion Date
March 1, 2025 (Anticipated)
Study Completion Date
March 1, 2025 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Principal Investigator
Name of the Sponsor
Bambino Gesù Hospital and Research Institute

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Data Monitoring Committee
No

5. Study Description

Brief Summary
The present study grounds on the absence of evidence-based treatment in individuals with developmental dyslexia (DD). At this topic, the present study will explore the potential effect of transcranial random noise stimulation (tRNS) and transcranial direct current stimulation (tDCS) over bilateral temporo-parietal cortex (TPC), cerebral areas usually disrupted in individuals with DD. The investigators hypothesized that active tRNS and tDCS over TPC will boost reading skills in children and adolescents with DD. On the contrary, sham (placebo) tRNS and tDCS over TPC will not have significant effect in improving reading skills. Further, both active and sham tRNS and tDCS will be safe and well tolerated.
Detailed Description
The study design is within-subject, randomized stratified, double blind, placebo-controlled. A group of children and adolescents with DD will be selected and exposed to three different conditions with an interval-session of at least 6 days: 1. tRNS over bilateral TPC; 2. anodal tDCS over left TPC (cathode over right TPC); 3. sham tRNS or tDCS. During stimulation (both real and sham), participants will undergo a concomitant reading task. In this project, the investigators will work to understand whether a brain-based intervention, with the use of tRNS and tDCS, can improve the outcome of individuals with DD. The protocol will allow the investigators to: comparing the efficacy of tDCS and tRNS over TPC in improving reading abilities, comparing the safety and tolerability of tDCS and tRNS in children and adolescents. The investigator's overarching goal is to provide a scientific foundation for devising new rehabilitation strategies in DD, based on the two most used brain stimulation techniques in pediatric population.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Developmental Dyslexia
Keywords
Children, Adolescents, tRNS, transcranial random noise stimulation, tDCS, transcranial direct current stimulation, neurodevelopmental disorders, non-invasive brain stimulation, transcranial electrical stimulation, EEG, reading abilities

7. Study Design

Primary Purpose
Treatment
Study Phase
Not Applicable
Interventional Study Model
Crossover Assignment
Masking
ParticipantOutcomes Assessor
Allocation
Randomized
Enrollment
24 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
tDCS, tRNS, Sham
Arm Type
Experimental
Arm Description
Active left anodal/right cathodal tDCS over TPC Active tRNS over bilateral TPC Sham tRNS or tDCS over bilateral TPC
Arm Title
tDCS, Sham, tRNS
Arm Type
Experimental
Arm Description
Active left anodal/right cathodal tDCS over TPC Sham tRNS or tDCS over bilateral TPC Active tRNS over bilateral TPC
Arm Title
tRNS, tDCS, Sham
Arm Type
Experimental
Arm Description
Active tRNS over bilateral TPC Active left anodal/right cathodal tDCS over TPC Sham tRNS or tDCS over bilateral TPC
Arm Title
tRNS, Sham, tDCS
Arm Type
Experimental
Arm Description
Active tRNS over bilateral TPC Sham tRNS or tDCS over bilateral TPC Active left anodal/right cathodal tDCS over TPC
Arm Title
Sham, tDCS, tRNS
Arm Type
Experimental
Arm Description
Sham tRNS or tDCS over bilateral TPC Active left anodal/right cathodal tDCS over TPC Active tRNS over bilateral TPC
Arm Title
Sham, tRNS, tDCS
Arm Type
Experimental
Arm Description
Sham tRNS or tDCS over bilateral TPC Active tRNS over bilateral TPC Active left anodal/right cathodal tDCS over TPC
Intervention Type
Device
Intervention Name(s)
Active tDCS
Intervention Description
Active tDCS will be delivered over TPC for a stimulation session. The anodal electrode will be placed on the left TPC, T7/TP7 position according to the 10-20 International EEG 10-20 System for electrode placement. The cathodal electrode will be placed on the right TPC, T8/TP8 position. Intensity will be set at 1 mA, the duration of stimulation will be 20 min.
Intervention Type
Device
Intervention Name(s)
Active tRNS
Intervention Description
Active tRNS will be delivered to bilateral TPC for a stimulation session. The electrodes will be placed on the left and right TPC, respectively T7/TP7 and T8/TP8 position, at 0.75 mA (100-500 Hz) for 20 min.
Intervention Type
Device
Intervention Name(s)
Sham tRNS or tDCS
Intervention Description
Sham tRNS or tDCS will be delivered over bilateral TPC for a stimulation session. The same electrodes placement as well as the stimulation set-up will be used as in the active stimulation conditions, but the current will be applied for 30 s and will be ramped down without the participants awareness.
Primary Outcome Measure Information:
Title
Text reading accuracy (Experimental reading task)
Description
Change from baseline in text reading accuracy during Active tDCS and Active tRNS sessions than during Sham tDCS and Sham tRNS sessions. Text reading accuracy is considered as the percentage (%) of accuracy and computed as the ratio between the number of correctly read stimuli and the total number of stimuli presented multiplied by 100.
Time Frame
during procedure
Secondary Outcome Measure Information:
Title
Text reading speed (Experimental reading task)
Description
Change from baseline in text reading speed during Active tDCS and Active tRNS sessions than during Sham tDCS and Sham tRNS sessions. Text reading speed is considered as the syllables/seconds ratio and calculated dividing the total number of syllables pronounced by the total time spent to complete the reading (in seconds).
Time Frame
during procedure
Title
Experimental reading task: high-frequency word reading accuracy
Description
Change from baseline in high-frequency word reading accuracy during Active tDCS and Active tRNS sessions than during Sham tDCS and Sham tRNS sessions. High-frequency word reading accuracy is considered as the percentage (%) of accuracy and computed as the ratio between the number of correctly read stimuli and the total number of stimuli presented multiplied by 100.
Time Frame
during procedure
Title
Experimental reading task: high-frequency word reading speed
Description
Change from baseline in high-frequency word reading speed during Active tDCS and Active tRNS sessions than during Sham tDCS and Sham tRNS sessions. High-frequency word reading speed is considered as the syllables/seconds ratio and calculated dividing the total number of syllables pronounced by the total time spent to complete the reading (in seconds).
Time Frame
during procedure
Title
Experimental reading task: low-frequency word reading accuracy
Description
Change from baseline in low-frequency word reading accuracy during Active tDCS and Active tRNS sessions than during Sham tDCS and Sham tRNS sessions. Low-frequency word reading accuracy is considered as the percentage (%) of accuracy and computed as the ratio between the number of correctly read stimuli and the total number of stimuli presented multiplied by 100.
Time Frame
during procedure
Title
Experimental reading task: low-frequency word reading speed
Description
Change from baseline in low-frequency word reading speed during Active tDCS and Active tRNS sessions than during Sham tDCS and Sham tRNS sessions. Low-frequency word reading speed is considered as the syllables/seconds ratio and calculated dividing the total number of syllables pronounced by the total time spent to complete the reading (in seconds).
Time Frame
during procedure
Title
Experimental reading task: non-word reading accuracy
Description
Change from baseline in non-word reading accuracy during Active tDCS and Active tRNS sessions than during Sham tDCS and Sham tRNS sessions. Non-word reading accuracy is considered as the percentage (%) of accuracy and computed as the ratio between the number of correctly read stimuli and the total number of stimuli presented multiplied by 100.
Time Frame
during procedure
Title
Experimental reading task: non-word reading speed
Description
Change from baseline in non-word reading speed during Active tDCS and Active tRNS sessions than during Sham tDCS and Sham tRNS sessions. Non-word reading speed is considered as the syllables/seconds ratio and calculated dividing the total number of syllables pronounced by the total time spent to complete the reading (in seconds).
Time Frame
during procedure

10. Eligibility

Sex
All
Minimum Age & Unit of Time
8 Years
Maximum Age & Unit of Time
13 Years
Accepts Healthy Volunteers
Accepts Healthy Volunteers
Eligibility Criteria
Inclusion Criteria: Children and adolescents with dyslexia (DSM-5, APA 2013) IQ ≥ 85 Exclusion Criteria: Having a comorbidity with an important medical conditions; Having neurological diseases; Having Epilepsy o family history of epilepsy; Receiving a treatment for dyslexia in the previous three months before the baseline screening.
Facility Information:
Facility Name
Bambino Gesù Hospital and Research Institute
City
Roma
ZIP/Postal Code
00165
Country
Italy

12. IPD Sharing Statement

Plan to Share IPD
No
Citations:
PubMed Identifier
12114001
Citation
Shaywitz BA, Shaywitz SE, Pugh KR, Mencl WE, Fulbright RK, Skudlarski P, Constable RT, Marchione KE, Fletcher JM, Lyon GR, Gore JC. Disruption of posterior brain systems for reading in children with developmental dyslexia. Biol Psychiatry. 2002 Jul 15;52(2):101-10. doi: 10.1016/s0006-3223(02)01365-3.
Results Reference
result
PubMed Identifier
12604786
Citation
Temple E, Deutsch GK, Poldrack RA, Miller SL, Tallal P, Merzenich MM, Gabrieli JD. Neural deficits in children with dyslexia ameliorated by behavioral remediation: evidence from functional MRI. Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2860-5. doi: 10.1073/pnas.0030098100. Epub 2003 Feb 25.
Results Reference
result
PubMed Identifier
21173250
Citation
Hoeft F, McCandliss BD, Black JM, Gantman A, Zakerani N, Hulme C, Lyytinen H, Whitfield-Gabrieli S, Glover GH, Reiss AL, Gabrieli JD. Neural systems predicting long-term outcome in dyslexia. Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):361-6. doi: 10.1073/pnas.1008950108. Epub 2010 Dec 20.
Results Reference
result
PubMed Identifier
17050709
Citation
Hoeft F, Hernandez A, McMillon G, Taylor-Hill H, Martindale JL, Meyler A, Keller TA, Siok WT, Deutsch GK, Just MA, Whitfield-Gabrieli S, Gabrieli JD. Neural basis of dyslexia: a comparison between dyslexic and nondyslexic children equated for reading ability. J Neurosci. 2006 Oct 18;26(42):10700-8. doi: 10.1523/JNEUROSCI.4931-05.2006.
Results Reference
result
PubMed Identifier
9482939
Citation
Shaywitz SE, Shaywitz BA, Pugh KR, Fulbright RK, Constable RT, Mencl WE, Shankweiler DP, Liberman AM, Skudlarski P, Fletcher JM, Katz L, Marchione KE, Lacadie C, Gatenby C, Gore JC. Functional disruption in the organization of the brain for reading in dyslexia. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2636-41. doi: 10.1073/pnas.95.5.2636.
Results Reference
result
PubMed Identifier
16352500
Citation
Bakker DJ. Treatment of developmental dyslexia: a review. Pediatr Rehabil. 2006 Jan-Mar;9(1):3-13. doi: 10.1080/13638490500065392.
Results Reference
result
PubMed Identifier
11971088
Citation
Simos PG, Fletcher JM, Bergman E, Breier JI, Foorman BR, Castillo EM, Davis RN, Fitzgerald M, Papanicolaou AC. Dyslexia-specific brain activation profile becomes normal following successful remedial training. Neurology. 2002 Apr 23;58(8):1203-13. doi: 10.1212/wnl.58.8.1203.
Results Reference
result
PubMed Identifier
21950776
Citation
Stuss DT. The future of cognitive neurorehabilitation. Neuropsychol Rehabil. 2011 Oct;21(5):755-68. doi: 10.1080/09602011.2011.605590. Epub 2011 Sep 27.
Results Reference
result
PubMed Identifier
28680099
Citation
Looi CY, Lim J, Sella F, Lolliot S, Duta M, Avramenko AA, Cohen Kadosh R. Transcranial random noise stimulation and cognitive training to improve learning and cognition of the atypically developing brain: A pilot study. Sci Rep. 2017 Jul 5;7(1):4633. doi: 10.1038/s41598-017-04649-x.
Results Reference
result
PubMed Identifier
12803972
Citation
Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W, Tergau F. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci. 2003 May 15;15(4):619-26. doi: 10.1162/089892903321662994.
Results Reference
result
PubMed Identifier
15999258
Citation
Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, Marcolin MA, Rigonatti SP, Silva MT, Paulus W, Pascual-Leone A. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005 Sep;166(1):23-30. doi: 10.1007/s00221-005-2334-6. Epub 2005 Jul 6.
Results Reference
result
PubMed Identifier
21477637
Citation
Cattaneo Z, Pisoni A, Papagno C. Transcranial direct current stimulation over Broca's region improves phonemic and semantic fluency in healthy individuals. Neuroscience. 2011 Jun 2;183:64-70. doi: 10.1016/j.neuroscience.2011.03.058. Epub 2011 Apr 6.
Results Reference
result
PubMed Identifier
19064743
Citation
Schlaug G, Renga V, Nair D. Transcranial direct current stimulation in stroke recovery. Arch Neurol. 2008 Dec;65(12):1571-6. doi: 10.1001/archneur.65.12.1571.
Results Reference
result
PubMed Identifier
20395612
Citation
Baker JM, Rorden C, Fridriksson J. Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke. 2010 Jun;41(6):1229-36. doi: 10.1161/STROKEAHA.109.576785. Epub 2010 Apr 15.
Results Reference
result
PubMed Identifier
18096677
Citation
Monti A, Cogiamanian F, Marceglia S, Ferrucci R, Mameli F, Mrakic-Sposta S, Vergari M, Zago S, Priori A. Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry. 2008 Apr;79(4):451-3. doi: 10.1136/jnnp.2007.135277. Epub 2007 Dec 20.
Results Reference
result
PubMed Identifier
21631313
Citation
Schneider HD, Hopp JP. The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism. Clin Linguist Phon. 2011 Jun;25(6-7):640-54. doi: 10.3109/02699206.2011.570852. Epub 2011 Jun 1.
Results Reference
result
PubMed Identifier
21980313
Citation
Vines BW, Norton AC, Schlaug G. Non-invasive brain stimulation enhances the effects of melodic intonation therapy. Front Psychol. 2011 Sep 26;2:230. doi: 10.3389/fpsyg.2011.00230. eCollection 2011.
Results Reference
result
PubMed Identifier
21462081
Citation
Miniussi C, Rossini PM. Transcranial magnetic stimulation in cognitive rehabilitation. Neuropsychol Rehabil. 2011 Oct;21(5):579-601. doi: 10.1080/09602011.2011.562689. Epub 2011 Jun 24.
Results Reference
result
PubMed Identifier
18525028
Citation
Ferrucci R, Mameli F, Guidi I, Mrakic-Sposta S, Vergari M, Marceglia S, Cogiamanian F, Barbieri S, Scarpini E, Priori A. Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology. 2008 Aug 12;71(7):493-8. doi: 10.1212/01.wnl.0000317060.43722.a3. Epub 2008 Jun 4.
Results Reference
result
PubMed Identifier
30826318
Citation
Rufener KS, Krauel K, Meyer M, Heinze HJ, Zaehle T. Transcranial electrical stimulation improves phoneme processing in developmental dyslexia. Brain Stimul. 2019 Jul-Aug;12(4):930-937. doi: 10.1016/j.brs.2019.02.007. Epub 2019 Feb 13.
Results Reference
result
PubMed Identifier
25701796
Citation
Heth I, Lavidor M. Improved reading measures in adults with dyslexia following transcranial direct current stimulation treatment. Neuropsychologia. 2015 Apr;70:107-13. doi: 10.1016/j.neuropsychologia.2015.02.022. Epub 2015 Feb 19.
Results Reference
result
PubMed Identifier
26890096
Citation
Costanzo F, Varuzza C, Rossi S, Sdoia S, Varvara P, Oliveri M, Giacomo K, Vicari S, Menghini D. Evidence for reading improvement following tDCS treatment in children and adolescents with Dyslexia. Restor Neurol Neurosci. 2016;34(2):215-26. doi: 10.3233/RNN-150561.
Results Reference
result
PubMed Identifier
17452283
Citation
Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007 May 30;72(4-6):208-14. doi: 10.1016/j.brainresbull.2007.01.004. Epub 2007 Jan 24.
Results Reference
result
PubMed Identifier
16045502
Citation
Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, Paulus W, Rothwell JC, Lemon RN, Frackowiak RS. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci. 2005 Jul;22(2):495-504. doi: 10.1111/j.1460-9568.2005.04233.x.
Results Reference
result
PubMed Identifier
21068427
Citation
Lindenberg R, Renga V, Zhu LL, Nair D, Schlaug G. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology. 2010 Dec 14;75(24):2176-84. doi: 10.1212/WNL.0b013e318202013a. Epub 2010 Nov 10.
Results Reference
result
PubMed Identifier
21197418
Citation
Schlaug G, Marchina S, Norton A. From Singing to Speaking: Why Singing May Lead to Recovery of Expressive Language Function in Patients with Broca's Aphasia. Music Percept. 2008 Apr 1;25(4):315-323. doi: 10.1525/MP.2008.25.4.315.
Results Reference
result
PubMed Identifier
21780073
Citation
Rubio-Morell B, Rotenberg A, Hernandez-Exposito S, Pascual-Leone A. [The use of noninvasive brain stimulation in childhood psychiatric disorders: new diagnostic and therapeutic opportunities and challenges]. Rev Neurol. 2011 Aug 16;53(4):209-25. Spanish.
Results Reference
result
PubMed Identifier
19753097
Citation
Jancke L, Cheetham M, Baumgartner T. Virtual reality and the role of the prefrontal cortex in adults and children. Front Neurosci. 2009 May 1;3(1):52-9. doi: 10.3389/neuro.01.006.2009. eCollection 2009 May.
Results Reference
result
PubMed Identifier
22032743
Citation
Mattai A, Miller R, Weisinger B, Greenstein D, Bakalar J, Tossell J, David C, Wassermann EM, Rapoport J, Gogtay N. Tolerability of transcranial direct current stimulation in childhood-onset schizophrenia. Brain Stimul. 2011 Oct;4(4):275-80. doi: 10.1016/j.brs.2011.01.001. Epub 2011 Feb 1.
Results Reference
result
PubMed Identifier
21320389
Citation
Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 2011 Sep;14(8):1133-45. doi: 10.1017/S1461145710001690. Epub 2011 Feb 15.
Results Reference
result
PubMed Identifier
19109497
Citation
Terney D, Chaieb L, Moliadze V, Antal A, Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci. 2008 Dec 24;28(52):14147-55. doi: 10.1523/JNEUROSCI.4248-08.2008.
Results Reference
result
PubMed Identifier
24027289
Citation
Cappelletti M, Gessaroli E, Hithersay R, Mitolo M, Didino D, Kanai R, Cohen Kadosh R, Walsh V. Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe. J Neurosci. 2013 Sep 11;33(37):14899-907. doi: 10.1523/JNEUROSCI.1692-13.2013.
Results Reference
result
PubMed Identifier
24064065
Citation
Chaieb L, Antal A, Pisoni A, Saiote C, Opitz A, Ambrus GG, Focke N, Paulus W. Safety of 5 kHz tACS. Brain Stimul. 2014 Jan-Feb;7(1):92-6. doi: 10.1016/j.brs.2013.08.004. Epub 2013 Sep 13.
Results Reference
result
PubMed Identifier
22820638
Citation
Costanzo F, Menghini D, Caltagirone C, Oliveri M, Vicari S. High frequency rTMS over the left parietal lobule increases non-word reading accuracy. Neuropsychologia. 2012 Sep;50(11):2645-51. doi: 10.1016/j.neuropsychologia.2012.07.017. Epub 2012 Jul 20.
Results Reference
result
PubMed Identifier
29550525
Citation
Costanzo F, Rossi S, Varuzza C, Varvara P, Vicari S, Menghini D. Long-lasting improvement following tDCS treatment combined with a training for reading in children and adolescents with dyslexia. Neuropsychologia. 2019 Jul;130:38-43. doi: 10.1016/j.neuropsychologia.2018.03.016. Epub 2018 Mar 14.
Results Reference
result
PubMed Identifier
26848997
Citation
Costanzo F, Varuzza C, Rossi S, Sdoia S, Varvara P, Oliveri M, Koch G, Vicari S, Menghini D. Reading changes in children and adolescents with dyslexia after transcranial direct current stimulation. Neuroreport. 2016 Mar 23;27(5):295-300. doi: 10.1097/WNR.0000000000000536.
Results Reference
result
PubMed Identifier
22031888
Citation
Fertonani A, Pirulli C, Miniussi C. Random noise stimulation improves neuroplasticity in perceptual learning. J Neurosci. 2011 Oct 26;31(43):15416-23. doi: 10.1523/JNEUROSCI.2002-11.2011.
Results Reference
result
PubMed Identifier
23684971
Citation
Snowball A, Tachtsidis I, Popescu T, Thompson J, Delazer M, Zamarian L, Zhu T, Cohen Kadosh R. Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Curr Biol. 2013 Jun 3;23(11):987-92. doi: 10.1016/j.cub.2013.04.045. Epub 2013 May 16.
Results Reference
result
PubMed Identifier
22305346
Citation
Turkeltaub PE, Benson J, Hamilton RH, Datta A, Bikson M, Coslett HB. Left lateralizing transcranial direct current stimulation improves reading efficiency. Brain Stimul. 2012 Jul;5(3):201-207. doi: 10.1016/j.brs.2011.04.002. Epub 2011 May 5.
Results Reference
result
PubMed Identifier
22916214
Citation
Linkersdorfer J, Lonnemann J, Lindberg S, Hasselhorn M, Fiebach CJ. Grey matter alterations co-localize with functional abnormalities in developmental dyslexia: an ALE meta-analysis. PLoS One. 2012;7(8):e43122. doi: 10.1371/journal.pone.0043122. Epub 2012 Aug 20.
Results Reference
result
PubMed Identifier
16427357
Citation
Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006 Apr;117(4):845-50. doi: 10.1016/j.clinph.2005.12.003. Epub 2006 Jan 19.
Results Reference
result
PubMed Identifier
20471313
Citation
Ambrus GG, Paulus W, Antal A. Cutaneous perception thresholds of electrical stimulation methods: comparison of tDCS and tRNS. Clin Neurophysiol. 2010 Nov;121(11):1908-14. doi: 10.1016/j.clinph.2010.04.020. Epub 2010 May 14.
Results Reference
result
PubMed Identifier
33561725
Citation
Berger I, Dakwar-Kawar O, Grossman ES, Nahum M, Cohen Kadosh R. Scaffolding the attention-deficit/hyperactivity disorder brain using transcranial direct current and random noise stimulation: A randomized controlled trial. Clin Neurophysiol. 2021 Mar;132(3):699-707. doi: 10.1016/j.clinph.2021.01.005. Epub 2021 Jan 27.
Results Reference
result
PubMed Identifier
32029377
Citation
Breitling C, Zaehle T, Dannhauer M, Tegelbeckers J, Flechtner HH, Krauel K. Comparison between conventional and HD-tDCS of the right inferior frontal gyrus in children and adolescents with ADHD. Clin Neurophysiol. 2020 May;131(5):1146-1154. doi: 10.1016/j.clinph.2019.12.412. Epub 2020 Jan 24.
Results Reference
result
PubMed Identifier
25426043
Citation
Paulesu E, Danelli L, Berlingeri M. Reading the dyslexic brain: multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies. Front Hum Neurosci. 2014 Nov 11;8:830. doi: 10.3389/fnhum.2014.00830. eCollection 2014.
Results Reference
result
PubMed Identifier
22711189
Citation
Richlan F, Kronbichler M, Wimmer H. Structural abnormalities in the dyslexic brain: a meta-analysis of voxel-based morphometry studies. Hum Brain Mapp. 2013 Nov;34(11):3055-65. doi: 10.1002/hbm.22127. Epub 2012 Jun 19.
Results Reference
result
PubMed Identifier
22516793
Citation
Vandermosten M, Boets B, Wouters J, Ghesquiere P. A qualitative and quantitative review of diffusion tensor imaging studies in reading and dyslexia. Neurosci Biobehav Rev. 2012 Jul;36(6):1532-52. doi: 10.1016/j.neubiorev.2012.04.002. Epub 2012 Apr 17. Erratum In: Neurosci Biobehav Rev. 2019 Mar;98:334.
Results Reference
result

Learn more about this trial

Comparing the Efficacy of tDCS and tRNS to Improve Reading Skills in Children and Adolescents With Dyslexia

We'll reach out to this number within 24 hrs