Radiostereometric Analysis Examination - Translations
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Three-dimensional translations will be measured in millimetres.
Radiostereometric Analysis Examination - Translations
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Three-dimensional translations will be measured in millimetres.
Radiostereometric Analysis Examination - Translations
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Three-dimensional translations will be measured in millimetres.
Radiostereometric Analysis Examination - Translations
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Three-dimensional translations will be measured in millimetres.
Radiostereometric Analysis Examination - Translations
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Three-dimensional translations will be measured in millimetres.
Radiostereometric Analysis Examination - Translations
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Three-dimensional translations will be measured in millimetres.
Radiostereometric Analysis Examination - Translations
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Three-dimensional translations will be measured in millimetres.
Radiostereometric Analysis Examination - Rotations
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Three-dimensional rotations will be measured in degrees.
Radiostereometric Analysis Examination - Rotations
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Three-dimensional rotations will be measured in degrees.
Radiostereometric Analysis Examination - Rotations
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Three-dimensional rotations will be measured in degrees.
Radiostereometric Analysis Examination - Rotations
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Three-dimensional rotations will be measured in degrees.
Radiostereometric Analysis Examination - Rotations
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Three-dimensional rotations will be measured in degrees.
Radiostereometric Analysis Examination - Rotations
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Three-dimensional rotations will be measured in degrees.
Radiostereometric Analysis Examination - Rotations
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Three-dimensional rotations will be measured in degrees.
Radiostereometric Analysis Examination - Maximum Total Point Motion
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Maximum Total Point Motion (MTPM - defined as the length of the translation vector of the point of the component model that has migrated the most) will be measured in millimetres.
Radiostereometric Analysis Examination - Maximum Total Point Motion
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Maximum Total Point Motion (MTPM - defined as the length of the translation vector of the point of the component model that has migrated the most) will be measured in millimetres.
Radiostereometric Analysis Examination - Maximum Total Point Motion
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Maximum Total Point Motion (MTPM - defined as the length of the translation vector of the point of the component model that has migrated the most) will be measured in millimetres.
Radiostereometric Analysis Examination - Maximum Total Point Motion
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Maximum Total Point Motion (MTPM - defined as the length of the translation vector of the point of the component model that has migrated the most) will be measured in millimetres.
Radiostereometric Analysis Examination - Maximum Total Point Motion
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Maximum Total Point Motion (MTPM - defined as the length of the translation vector of the point of the component model that has migrated the most) will be measured in millimetres.
Radiostereometric Analysis Examination - Maximum Total Point Motion
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Maximum Total Point Motion (MTPM - defined as the length of the translation vector of the point of the component model that has migrated the most) will be measured in millimetres.
Radiostereometric Analysis Examination - Maximum Total Point Motion
Patients will have weight-bearing stereoradiographs. These stereoradiographs will be analysed using model-based radiostereometric analysis which will allow the migration of the components relative to the bone to be determined. Maximum Total Point Motion (MTPM - defined as the length of the translation vector of the point of the component model that has migrated the most) will be measured in millimetres.
Radiographic Examination
Fluoroscopic imaging will be used to study the occurence of radiolucencies beneath the components. Anteroposterior radiographs will be analysed to assess the presence and position of radiolucencies. Radiolucencies will be graded as either 'no radiolucency present', 'partial radiolucency', or 'complete radiolucency'.
Radiographic Examination
Fluoroscopic imaging will be used to study the occurence of radiolucencies beneath the components. Anteroposterior radiographs will be analysed to assess the presence and position of radiolucencies. Radiolucencies will be graded as either 'no radiolucency present', 'partial radiolucency', or 'complete radiolucency'.
Radiographic Examination
Fluoroscopic imaging will be used to study the occurence of radiolucencies beneath the components. Anteroposterior radiographs will be analysed to assess the presence and position of radiolucencies. Radiolucencies will be graded as either 'no radiolucency present', 'partial radiolucency', or 'complete radiolucency'.
Radiographic Examination
Fluoroscopic imaging will be used to study the occurence of radiolucencies beneath the components. Anteroposterior radiographs will be analysed to assess the presence and position of radiolucencies. Radiolucencies will be graded as either 'no radiolucency present', 'partial radiolucency', or 'complete radiolucency'.
Radiographic Examination
Fluoroscopic imaging will be used to study the occurence of radiolucencies beneath the components. Anteroposterior radiographs will be analysed to assess the presence and position of radiolucencies. Radiolucencies will be graded as either 'no radiolucency present', 'partial radiolucency', or 'complete radiolucency'.
Radiographic Examination
Fluoroscopic imaging will be used to study the occurence of radiolucencies beneath the components. Anteroposterior radiographs will be analysed to assess the presence and position of radiolucencies. Radiolucencies will be graded as either 'no radiolucency present', 'partial radiolucency', or 'complete radiolucency'.
Radiographic Examination
Fluoroscopic imaging will be used to study the occurence of radiolucencies beneath the components. Anteroposterior radiographs will be analysed to assess the presence and position of radiolucencies. Radiolucencies will be graded as either 'no radiolucency present', 'partial radiolucency', or 'complete radiolucency'.
Clinical Assessment
Clinical assessment will involve documentation with the Oxford Knee Score. The score will be calculated on a scale of 0 (worst) to 48 (best).
Clinical Assessment
Clinical assessment will involve documentation with the Oxford Knee Score. The score will be calculated on a scale of 0 (worst) to 48 (best).
Clinical Assessment
Clinical assessment will involve documentation with the Oxford Knee Score. The score will be calculated on a scale of 0 (worst) to 48 (best).
Clinical Assessment
Clinical assessment will involve documentation with the Oxford Knee Score. The score will be calculated on a scale of 0 (worst) to 48 (best).
Clinical Assessment
Clinical assessment will involve documentation with the Oxford Knee Score. The score will be calculated on a scale of 0 (worst) to 48 (best).