search
Back to results

Inspiratory Effort at Different Expiratory Cycling and Airway Resistance During Pressure Support Ventilation (CYCLOPES) (CYCLOPES)

Primary Purpose

Respiratory Failure

Status
Recruiting
Phase
Not Applicable
Locations
Italy
Study Type
Interventional
Intervention
Expiratory cycling change at different levels of pressure support ventilation
Sponsored by
Fondazione IRCCS San Gerardo dei Tintori
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional diagnostic trial for Respiratory Failure focused on measuring pressure support, esophageal pressure, pressure muscle index, expiratory cycling, inspiratory effort, plateau pressure, transpulmonary pressure, airway resistance, occlusion pressure

Eligibility Criteria

18 Years - undefined (Adult, Older Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria: Invasive mechanical ventilation in PSV Presence of spontaneous breathing activity (ventilator triggering), since 6 hours and no longer than 72 hours after Weaning from mechanical ventilation Patient for full active management Subject ≥ 18 years Informed consent Exclusion Criteria Age <18 years old Pregnancy Active air leaks Chronic Obstructive Pulmonary Disease and/or asthma Moribund state Neurological conditions potentially impairing the ventilatory drive (e.g. meningitis, encephalitis) and neuromuscular diseases impairing neuromuscular conduction (e.g. Guillain-Barre syndrome) Extracorporeal membrane oxygenation (ECMO)

Sites / Locations

  • Fondazione IRCCS San Gerardo dei TintoriRecruiting

Arms of the Study

Arm 1

Arm 2

Arm 3

Arm 4

Arm Type

Experimental

Experimental

Experimental

Experimental

Arm Label

Prolonged expiratory cycling

Late expiratory cycling

Medium expiratory cycling

Early expiratory cycling

Arm Description

15% expiratory cycling during pressure support ventilation

30% expiratory cycling during pressure support ventilation

45% expiratory cycling during pressure support ventilation

60% expiratory cycling during pressure support ventilation

Outcomes

Primary Outcome Measures

Pressure muscle index (PMI) as a bedside estimation of inspiratory effort at different expiratory cycling levels during different levels of pressure support.
To verify whether pressure muscle index (PMI) - obtained by the pressure time waveform on the ventilator and used as an estimation of the inspiratory effort - is differently correlated with esophageal pressure swing (i.e. gold standard to describe the inspiratory effort) by changing expiratory cycling, over different levels of pressure support ventilation.

Secondary Outcome Measures

Correlation between PMI and other measures of inspiratory effort (Pocc) and inspiratory drive (P0.1).
To evaluate the correlation between different measures of inspiratory effort (i.e. Pocc) and inspiratory drive (i.e. P0.1) with PMI obtained at various degree of expiratory cycling and different levels of pressure support.
Airway resistances during assisted mechanical ventilation.
To evaluate if airways resistance, evaluated by esophageal pressure, correlates with the estimation of airway resistance on the pressure-time waveform by a high percentage of expiratory cycling mimicking the interrupter technique.
Tidal volume variability
To evaluate tidal variability across different levels of pressure support ventilation and different levels of expiratory cycling and investigate how tidal variability different correlates with the inspiratory effort by using deltaPes, PMI and Pocc.

Full Information

First Posted
July 4, 2023
Last Updated
September 26, 2023
Sponsor
Fondazione IRCCS San Gerardo dei Tintori
search

1. Study Identification

Unique Protocol Identification Number
NCT05952726
Brief Title
Inspiratory Effort at Different Expiratory Cycling and Airway Resistance During Pressure Support Ventilation (CYCLOPES)
Acronym
CYCLOPES
Official Title
Inspiratory Effort and Airway Resistance Assessment During Assisted Mechanical Ventilation in Critically Ill Patients at Different Levels of Expiratory Cycling: a Cross-over Randomized Physiological Study (CYCLOPES)
Study Type
Interventional

2. Study Status

Record Verification Date
September 2023
Overall Recruitment Status
Recruiting
Study Start Date
August 1, 2023 (Actual)
Primary Completion Date
August 1, 2024 (Anticipated)
Study Completion Date
September 1, 2024 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Sponsor
Name of the Sponsor
Fondazione IRCCS San Gerardo dei Tintori

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No

5. Study Description

Brief Summary
The goal of this prospective interventional crossover randomized physiological study is to investigate the reliability of Pressure Muscle Index (PMI) - as an estimation of inspiratory effort - at different levels of expiratory cycling during pressure support ventilation. PMI will be compared with the esophageal pressure swing that is considered the gold standard technique. This study aims to answer to the following questions: which is the optimal expiratory cycling threshold where PMI better correlates with the esophageal pressure swing? what is the optimal correlation between the occlusion pressure (Poc) estimated by an expiratory occlusion manoeuvre and P0.1 with PMI obtained at various degrees of expiratory cycling threshold? does airway resistance - evaluated by using esophageal pressure - correlate with the estimation of airway resistance on the pressure-time waveform by a high percentage of expiratory cycling mimicking the interrupter technique?
Detailed Description
The concept of Patient-Self-Inflicted Lung Injury (P-SILI) defines the injury that a patient may cause to the lungs while exerting strong inspiratory efforts. During assisted spontaneous breathing, the alveolar distending pressure results from both the positive pressure delivered by the ventilator and the negative pressure generated by the patient. If the patient generates very low negative pleural pressure (Ppl), this may result in an elevated alveolar distending pressure (i.e. transpulmonary pressure). The assessment of esophageal pressure (Pes) - as a surrogate of Ppl - allows to estimate the transpulmonary pressure. However, oesophageal pressure monitoring is not commonly used across different Institutions and it is not often the standard of care to estimate the inspiratory effort and transpulmonary pressure. A manual inspiratory hold is a bedside available tool to potentially estimate a safe threshold of airway pressure, as it can reliably estimate plateau pressure (Pplat) during assisted mechanical ventilation and driving pressure (DP). The difference between peak (Ppeak) and plateau pressure (Pplat) during pressure support ventilation results in the pressure muscle index (PMI) which is considered a reliable measurement of the elastic contribution of patient's inspiratory effort. This index is a simple bedside tool able to uncover the "hidden pressure" that the patient generates during pressure support ventilation and it tightly correlates with the muscular pressure at end inspiration measured by a Pes catheter. Nowadays, in most ventilators, percentage of the peak flow can be adjusted from as low as 1% to as high as 80% resulting in longer or shorter inspiratory times, respectively. Therefore, Pplat can be equal or lower that Ppeak in the absence of inspiratory effort. In the presence of an inspiratory effort, after a manual inspiratory hold, the pressure generated by the patient will be released and the level of Pplat may be visible above Ppeak to an extent that may change based on the set expiratory cycling. We therefore aim to verifying whether pressure muscle index (PMI) - obtained by the pressure time waveform on the ventilator and used as an estimation of the inspiratory effort - is differently correlated with esophageal pressure swing (i.e. gold standard to describe the inspiratory effort) by changing expiratory cycling at different levels of pressure support. Furthermore, inspiratory effort estimated by PMI at different levels of pressure support and expiratory cycling will be compared with another estimator of patient's effort, the Pocc. Pocc is the pressure under assisted ventilation when the airway is briefly occluded during an expiratory manoeuvre. As last, during the steps at an early expiratory cycling (60%), the pressure-time waveform will be evaluated and airway resistance will be estimated by mimicking the interrupter technique. This will be compared to the estimation of the airway resistive component by using the esophageal catheter. Patients will be enrolled at least 6 hours after and within 72 hours since the switch to PSV from controlled mechanical ventilation modalities (CMV). At this time, the following parameters will be recorded: Patient demographics (including age, gender, height, weight, predicted body weight) Date/time of informed consent Date and time of hospital and ICU admission Comorbidities Smoking history and status Admission diagnoses Date/time of onset of mechanical ventilation Determinants of Sequential Organ Failure Assessment (SOFA) score at ICU admission Ventilation parameters, level of sedation (RASS scale), sedative drugs and arterial blood gas analysis on the day before the switch to PSV and at the study enrolment Prior use of adjunctive therapies including neuromuscular blocking agents (NMBA) and prone position Components of the SOFA score at the enrolment. Esophageal pressure will be measured by using a specific nasogastic feeding tube with an air-filled balloon. Three levels of pressure support will be explored randomly: a clinical pressure support, and 4 cmH2O of PS above and below the clinical pressure support At each level of pressure support, four sets of data will be recorded by randomly varying the expiratory cycling threshold: 15%, 30%, 45% and 60 % of peak inspiratory flow. After switching from one level of expiratory cycling to the new one, a ten minutes interval will be required before the data collection, in order to allow the patient to adapt to the new ventilation setting. For each degree of expiratory cycling, the following parameters will be recorded: Ventilation parameters: PEEP, PS, Inspiratory and expiratory trigger, Inspiratory rising time Ventilatory mechanics measurements (3 times each): RR, TV, Ppeak, Pplat, total PEEP, P0.1, occlusion pressure (Poc), end-inspiratory Pes and end-expiratory Pes after and inspiratory and expiratory occlusion maneuvers of 3 seconds, respectively Esophageal pressure swings evaluation - 20 breaths for each level of pressure support ventilation and each level of expiratory cycling at steady state considered at the end of the 10 minute step. In addition, the following parameters will be reported: Maximal Inspiratory Pressure (MIP) and Pes during MIP (one single measurement) Level of sedation (RASS scale) and type of sedative drugs Arterial blood gas analysis Determinants of SOFA Score. Patients will be followed up until ICU and hospital discharge. Data regarding ICU and hospital mortality will be collected, as well as total duration of mechanical ventilation, total duration of CMV and PSV.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Respiratory Failure
Keywords
pressure support, esophageal pressure, pressure muscle index, expiratory cycling, inspiratory effort, plateau pressure, transpulmonary pressure, airway resistance, occlusion pressure

7. Study Design

Primary Purpose
Diagnostic
Study Phase
Not Applicable
Interventional Study Model
Crossover Assignment
Model Description
Crossover randomisation of different levels of expiratory cycling during randomised levels of pressure support ventilation in critically ill patients undergoing assisted mechanical ventilation.
Masking
None (Open Label)
Allocation
Randomized
Enrollment
24 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
Prolonged expiratory cycling
Arm Type
Experimental
Arm Description
15% expiratory cycling during pressure support ventilation
Arm Title
Late expiratory cycling
Arm Type
Experimental
Arm Description
30% expiratory cycling during pressure support ventilation
Arm Title
Medium expiratory cycling
Arm Type
Experimental
Arm Description
45% expiratory cycling during pressure support ventilation
Arm Title
Early expiratory cycling
Arm Type
Experimental
Arm Description
60% expiratory cycling during pressure support ventilation
Intervention Type
Other
Intervention Name(s)
Expiratory cycling change at different levels of pressure support ventilation
Intervention Description
Four different levels of expiratory cycling will be randomly applied at 3 different degrees of pressure support. Three end-inspiratory and three end-expiratory occlusion manoeuvres will be carried out at the end of 10 minute steps of ventilation during each set value expiratory cycling and pressure support level. Total study time will be about 120 minutes. Levels of pressure support wil be clinical pressure support ± 4 cmH2O; expiratory cycling percentages applied for each pressure support step will be 15%, 30%, 45% and 60% of peak inspiratory flow.
Primary Outcome Measure Information:
Title
Pressure muscle index (PMI) as a bedside estimation of inspiratory effort at different expiratory cycling levels during different levels of pressure support.
Description
To verify whether pressure muscle index (PMI) - obtained by the pressure time waveform on the ventilator and used as an estimation of the inspiratory effort - is differently correlated with esophageal pressure swing (i.e. gold standard to describe the inspiratory effort) by changing expiratory cycling, over different levels of pressure support ventilation.
Time Frame
After at least 6 hours after and within 72 hours since switch from controlled ventilation to pressure support ventilation.
Secondary Outcome Measure Information:
Title
Correlation between PMI and other measures of inspiratory effort (Pocc) and inspiratory drive (P0.1).
Description
To evaluate the correlation between different measures of inspiratory effort (i.e. Pocc) and inspiratory drive (i.e. P0.1) with PMI obtained at various degree of expiratory cycling and different levels of pressure support.
Time Frame
After at least 6 hours after and within 72 hours since switch from controlled ventilation to pressure support ventilation
Title
Airway resistances during assisted mechanical ventilation.
Description
To evaluate if airways resistance, evaluated by esophageal pressure, correlates with the estimation of airway resistance on the pressure-time waveform by a high percentage of expiratory cycling mimicking the interrupter technique.
Time Frame
After at least 6 hours after and within 72 hours since switch from controlled ventilation to pressure support ventilation
Title
Tidal volume variability
Description
To evaluate tidal variability across different levels of pressure support ventilation and different levels of expiratory cycling and investigate how tidal variability different correlates with the inspiratory effort by using deltaPes, PMI and Pocc.
Time Frame
After at least 6 hours after and within 72 hours since switch from controlled ventilation to pressure support ventilation

10. Eligibility

Sex
All
Minimum Age & Unit of Time
18 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: Invasive mechanical ventilation in PSV Presence of spontaneous breathing activity (ventilator triggering), since 6 hours and no longer than 72 hours after Weaning from mechanical ventilation Patient for full active management Subject ≥ 18 years Informed consent Exclusion Criteria Age <18 years old Pregnancy Active air leaks Chronic Obstructive Pulmonary Disease and/or asthma Moribund state Neurological conditions potentially impairing the ventilatory drive (e.g. meningitis, encephalitis) and neuromuscular diseases impairing neuromuscular conduction (e.g. Guillain-Barre syndrome) Extracorporeal membrane oxygenation (ECMO)
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
Emanuele Rezoagli, MD, PHD
Phone
0392332127
Ext
+39
Email
emanuele.rezoagli@unimib.it
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Emanuele Rezoagli, MD, PhD
Organizational Affiliation
University of Milano-Bicocca, Monza, Italy
Official's Role
Principal Investigator
Facility Information:
Facility Name
Fondazione IRCCS San Gerardo dei Tintori
City
Monza
State/Province
MB
ZIP/Postal Code
20900
Country
Italy
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Emanuele Rezoagli, MD, PHD
Phone
0392332127
Ext
+39
Email
emanuele.rezoagli@unimib.it
First Name & Middle Initial & Last Name & Degree
Giuseppe Foti, MD
First Name & Middle Initial & Last Name & Degree
Giacomo Bellani, MD, PHD
First Name & Middle Initial & Last Name & Degree
Emanuele Rezoagli, MD, PHD

12. IPD Sharing Statement

Plan to Share IPD
No
Citations:
PubMed Identifier
9351624
Citation
Foti G, Cereda M, Banfi G, Pelosi P, Fumagalli R, Pesenti A. End-inspiratory airway occlusion: a method to assess the pressure developed by inspiratory muscles in patients with acute lung injury undergoing pressure support. Am J Respir Crit Care Med. 1997 Oct;156(4 Pt 1):1210-6. doi: 10.1164/ajrccm.156.4.96-02031.
Results Reference
background
PubMed Identifier
31335543
Citation
Bellani G, Grassi A, Sosio S, Gatti S, Kavanagh BP, Pesenti A, Foti G. Driving Pressure Is Associated with Outcome during Assisted Ventilation in Acute Respiratory Distress Syndrome. Anesthesiology. 2019 Sep;131(3):594-604. doi: 10.1097/ALN.0000000000002846.
Results Reference
background
PubMed Identifier
32678669
Citation
Teggia-Droghi M, Grassi A, Rezoagli E, Pozzi M, Foti G, Patroniti N, Bellani G. Comparison of Two Approaches to Estimate Driving Pressure during Assisted Ventilation. Am J Respir Crit Care Med. 2020 Dec 1;202(11):1595-1598. doi: 10.1164/rccm.202004-1281LE. No abstract available.
Results Reference
background
PubMed Identifier
31694692
Citation
Bertoni M, Telias I, Urner M, Long M, Del Sorbo L, Fan E, Sinderby C, Beck J, Liu L, Qiu H, Wong J, Slutsky AS, Ferguson ND, Brochard LJ, Goligher EC. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit Care. 2019 Nov 6;23(1):346. doi: 10.1186/s13054-019-2617-0.
Results Reference
background
PubMed Identifier
34952477
Citation
Bianchi I, Grassi A, Pham T, Telias I, Teggia Droghi M, Vieira F, Jonkman A, Brochard L, Bellani G. Reliability of plateau pressure during patient-triggered assisted ventilation. Analysis of a multicentre database. J Crit Care. 2022 Apr;68:96-103. doi: 10.1016/j.jcrc.2021.12.002. Epub 2021 Dec 21. Erratum In: J Crit Care. 2022 Apr 1;:154030.
Results Reference
background
PubMed Identifier
1516422
Citation
Pesenti A, Pelosi P, Foti G, D'Andrea L, Rossi N. An interrupter technique for measuring respiratory mechanics and the pressure generated by respiratory muscles during partial ventilatory support. Chest. 1992 Sep;102(3):918-23. doi: 10.1378/chest.102.3.918.
Results Reference
background

Learn more about this trial

Inspiratory Effort at Different Expiratory Cycling and Airway Resistance During Pressure Support Ventilation (CYCLOPES)

We'll reach out to this number within 24 hrs