search
Back to results

Effect of Virtual Reality-based Training on Balance and Walking in Youth With Autism Spectrum Disorder

Primary Purpose

Autism Spectrum Disorder

Status
Recruiting
Phase
Not Applicable
Locations
United States
Study Type
Interventional
Intervention
Virtual reality active video gaming using Nintendo switch sports
Standard physical therapy balance exercises
Sponsored by
Indiana University
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional treatment trial for Autism Spectrum Disorder focused on measuring Autism Spectrum Disorder, Balance exercises, Virtual reality, Active video gaming, Gait

Eligibility Criteria

7 Years - 22 Years (Child, Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria: age 7-22 years, existing ASD DSM-5 level 1 or 2 diagnosis confirmed by medical record/ educational services categorized under ASD/ therapeutic services categorized under ASD/ any other official document indicating the diagnosis of ASD, able to follow instructions and able to stand unsupported for at least 20 minutes. Exclusion Criteria: epilepsy or other medical conditions which can be exacerbated by looking at a screen, Uncorrected vision loss or any other eye condition prohibiting looking at the screen for a prolong time, co-occurring musculoskeletal conditions such as joint or muscle pain or stiffness that limits mobility, implanted plates, pins, or screws that limit mobility, fractures or recent surgeries or any other physical condition that could interfere with the ability to play an active video game co-occurring neurological conditions such as numbness or muscle weakness, temporary loss of vision, speech or strength, loss of consciousness (black out), Dizziness or lightheadedness, Impaired memory or confusion, any other cooccurring diagnosis that could be negatively impacted by playing an active video game any other health conditions that are contraindicated to or may interfere with physical activity such as impaired hearing (uncorrected), medically documented balance disorder, Any heart condition prohibiting exercise, chronic pain or any pain at the time of testing, need assistance to stand for 20 minutes or more, aggression or other severe behaviors that may limit the ability to safely participate in the intervention.

Sites / Locations

  • Indiana University BloomingtonRecruiting

Arms of the Study

Arm 1

Arm 2

Arm Type

Experimental

Active Comparator

Arm Label

Virtual reality active video gaming

Standard balance exercises

Arm Description

The participants in this group will engage in VR active gaming using Nintendo Switch Sports under supervision via Zoom, for 6 sessions over 2 weeks.

The participants in this group will engage in standard physical therapy exercises for balance and walking under supervision via Zoom, for 6 sessions over 2 weeks.

Outcomes

Primary Outcome Measures

Change in the center of pressure movement
High resolution pressure mat containing multiple integrated sensors is used to detect center of pressure movement of the person standing on it recorded at 100 Hz
Change in Pediatric Berg's Balance Scale score
14-component battery that evaluates daily living tasks such as sitting to standing, transferring from one chair to another, and sitting and standing without support. This scale is reliable and valid clinical balance assessment tool for children and youth with motor impairments. Maximum total score is 56 points and minimum total score is 0 points. Higher score indicates better balance such that increase in total score by 3.7 points indicates minimal clinically important difference.
Change in step length (meters) of the gait
13-infra red camera system with 19-light reflecting passive markers recording at 100 Hz are used to measure the gait parameter: step length (meters).
Change in step width (meters) of the gait
13-infra red camera system with 19-light reflecting passive markers recording at 100 Hz are used to measure the gait parameter: step width (meters).
Change in stride length (meters) of the gait
13-infra red camera system with 19-light reflecting passive markers recording at 100 Hz are used to measure the gait parameter: stride length (meters).
Change in double support period (seconds) of the gait
13-infra red camera system with 19-light reflecting passive markers recording at 100 Hz are used to measure the gait parameter: double support period (seconds).
Change in the cadence (steps/minute) of the gait
13-infra red camera system with 19-light reflecting passive markers recording at 100 Hz are used to measure the gait parameter: cadence (number of steps/minute).
Change in gait velocity (meters/second)
13-infra red camera system with 19-light reflecting passive markers recording at 100 Hz are used to measure the gait parameter: gait velocity (meters/second).

Secondary Outcome Measures

Full Information

First Posted
July 17, 2023
Last Updated
September 26, 2023
Sponsor
Indiana University
search

1. Study Identification

Unique Protocol Identification Number
NCT06023563
Brief Title
Effect of Virtual Reality-based Training on Balance and Walking in Youth With Autism Spectrum Disorder
Official Title
Effect of Virtual Reality-based Training on Postural Control in Youth With Autism Spectrum Disorder
Study Type
Interventional

2. Study Status

Record Verification Date
September 2023
Overall Recruitment Status
Recruiting
Study Start Date
May 15, 2023 (Actual)
Primary Completion Date
November 2023 (Anticipated)
Study Completion Date
November 2023 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Principal Investigator
Name of the Sponsor
Indiana University

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
Yes
Data Monitoring Committee
No

5. Study Description

Brief Summary
The goal of this clinical trial is to assess the effect of short-term (3 days/week for 2 weeks) Virtual Reality (VR) active video gaming intervention on static and dynamic balance, versus traditional balance training exercises, in youth with ASD. The participants in the intervention group will engage in VR active video gaming using the Nintendo Switch Sports under supervision via Zoom for 6 sessions occurring over 2 weeks, from their home. While, the participants in the control group will engage in standard physical therapy exercises for balance and walking under supervision via Zoom, for 6 sessions occurring over 2 weeks, from their home. Their balance and walking will be assessed 3 times, 3-5 days before the intervention, 3-5 days after the intervention and 4-weeks after the intervention. Participants static balance will be assessed by standing on pressure mat, under 2 conditions, eyes open and eyes closed for 30 seconds each. The Pediatric Berg's balance Scale (PBS), a 14-point scale containing everyday activities, will be used as a clinical measure for assessing the static and dynamic balance. 13-infra-red camera motion capture system, Qualisys, will be used for assessing the walking. The difference in the balance and walking parameters will be assessed and compared.
Detailed Description
Postural control deficits, also referred to as balance deficits, are a noted example of impaired motor-skills and are increasingly considered as one of the primary markers for autism spectrum disorder (ASD)1-5. However, there are very few controlled clinical trials examining effects of balance interventions in individuals with ASD. Moreover, to date there exist few effective interventions based on well-designed research that address balance deficits in youth with ASD and are home-implemented, cost-effective, generalizable, and enjoyable and that promote adherence. Virtual reality (VR) active gaming is one such intervention that incorporates scientific mechanisms for improving balance. But, there exist few, evidence-based best practices that use this method to address balance in youth with ASD. In addition to being based on principles of motor learning/control, commercially available VR active gaming can be affordable, enjoyable, at-home intervention. Thus, the aim of this study is to assess the effect of short-term (3 days/week for 2 weeks) Virtual Reality (VR) active video gaming intervention on static and dynamic balance, versus traditional balance training exercises, in youth with ASD. This study will take place at the Physical Activity and Biomechanics Labs at School of Public Health, Indiana University, Bloomington, and participants home for total of 9 sessions occurring over 7-8 weeks. Before participants come to the lab: Participants' parent/guardian will complete a couple of questionnaires that will ask questions about any medications that participant takes and about participants' physical health to make sure it is safe for the participant to participate in the study. They will also answer questions that are used to determine if someone might have ASD. Participants will be shown a video which will give them information about the lab they will be coming to do some of the study activities, and information about the people that will be working with them during the study. Participants will then be randomly assigned (like flipping a coin) to one of two groups: the Virtual Reality Group, or the Exercise Group. This will determine what activities or exercise they will do for the upcoming sessions. Session #1, about 90 minutes: Researchers measure participants height, weight, and length of arm and leg. Researchers will also measure which hand participants prefer to perform daily activities using Edinburgh Handedness Inventory- short form (EHI-SF). Participants will also stand on a large mat containing sensors that will measure how much their body moves back and forth while they are standing. Participants will stand on the mat for 30 seconds with their eyes open, and then for 30 seconds with their eyes closed. Then, researchers will measure how well participants are able to balance by having them do some activities like sitting and standing without help, standing with their eyes closed, reaching forward with their arms stretched in front, placing their right then left foot on a stool, standing with alternating foot in front, and standing on one foot, alternating right and left. The researcher will show the participants how to do each of these, and they can practice a couple of times before the test begins. Participants will then do some walking in the lab with special sensors that are attached to their lower back and feet. This will measure how participants walk. The sensors are attached with special tape to the cloths and shoes, and are not painful. A special camera will take pictures as the participants walk, and video recording will be done as well. Participants will do this several times and will be reminded to walk at a normal pace. Lastly, if the participants are in the Virtual Reality Group, their parent/guardian will receive the Nintendo switch™ console and the sports game to take home. At home, 3 times a week for two weeks for 30-40 minutes (Sessions 2-7): If participants are in the Virtual Reality Group, they will choose 2 video games on the Nintendo Switch from golf, Frisbee, beach tennis, soccer, Volleyball, badminton, bowling, and Chambara. Games will be played for 10 minutes each with a 5-minute break in-between. The same 2 games will be played at each session in the same sequence. Researchers will provide verbal prompts and encouragement during the games as they watch participants via Zoom. Each session will take approximately 30-40 minutes. Ideally, each session will occur with an off day in between, however this may not be realistic depending on participants schedules and so sessions will occur at their convenience. If participants are in the Exercise Group, they will perform balance exercises for 15 minutes with 5 minutes of warm and cool down each. Some of the exercises are standing with one foot in front of the other for 10 seconds, standing on 1 foot for 10 seconds, standing with feet together etc. Breaks will be given, and they will be given instructions and encouragement by the researcher who will be watching via Zoom. Sessions 8 and 9 (in the lab), about an hour: Session #8: 3-5 days after session 7, Participants will complete all the balance and walking measurements that they did in session #1 excluding parameters such as EHI-SF, leg and arm length, weight, height. It will take approximately 1 hour. On session #9: 4 weeks after session #7, participants will once again complete all the same activities they completed during visit #8. It will take approximately 1 hour.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Autism Spectrum Disorder
Keywords
Autism Spectrum Disorder, Balance exercises, Virtual reality, Active video gaming, Gait

7. Study Design

Primary Purpose
Treatment
Study Phase
Not Applicable
Interventional Study Model
Parallel Assignment
Model Description
Two groups, intervention and the control, will be compared within and between longitudinally 3 times. Before-, after- and 4 weeks after the intervention.
Masking
None (Open Label)
Allocation
Randomized
Enrollment
28 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
Virtual reality active video gaming
Arm Type
Experimental
Arm Description
The participants in this group will engage in VR active gaming using Nintendo Switch Sports under supervision via Zoom, for 6 sessions over 2 weeks.
Arm Title
Standard balance exercises
Arm Type
Active Comparator
Arm Description
The participants in this group will engage in standard physical therapy exercises for balance and walking under supervision via Zoom, for 6 sessions over 2 weeks.
Intervention Type
Device
Intervention Name(s)
Virtual reality active video gaming using Nintendo switch sports
Intervention Description
Playing 2 pre-selected VR active video games from beach tennis, soccer, volleyball, badminton, bowling, and chambara for 10 minutes each with a 5 minute break in-between. Total duration 30-40 minutes.
Intervention Type
Behavioral
Intervention Name(s)
Standard physical therapy balance exercises
Intervention Description
Balance exercises: Standing with feet together for 10 seconds 5 times, standing with 1 foot in front of other for 10 seconds 5 times on both sides, standing on one leg for 10 seconds 5 times on both sides, walking with one foot in front of other on a 1-meter-long line for 5 repetitions and standing on a balance board for 30 seconds for 3 repetitions. 5 minutes each of warm-up and cool down exercises. Total duration 20-30 minutes.
Primary Outcome Measure Information:
Title
Change in the center of pressure movement
Description
High resolution pressure mat containing multiple integrated sensors is used to detect center of pressure movement of the person standing on it recorded at 100 Hz
Time Frame
3-5 days before the intervention, 3-5 days after the intervention and 4 weeks after the intervention
Title
Change in Pediatric Berg's Balance Scale score
Description
14-component battery that evaluates daily living tasks such as sitting to standing, transferring from one chair to another, and sitting and standing without support. This scale is reliable and valid clinical balance assessment tool for children and youth with motor impairments. Maximum total score is 56 points and minimum total score is 0 points. Higher score indicates better balance such that increase in total score by 3.7 points indicates minimal clinically important difference.
Time Frame
3-5 days before the intervention, 3-5 days after the intervention, 4 weeks after the intervention
Title
Change in step length (meters) of the gait
Description
13-infra red camera system with 19-light reflecting passive markers recording at 100 Hz are used to measure the gait parameter: step length (meters).
Time Frame
3-5 days before the intervention, 3-5 days after the intervention, 4 weeks after the intervention
Title
Change in step width (meters) of the gait
Description
13-infra red camera system with 19-light reflecting passive markers recording at 100 Hz are used to measure the gait parameter: step width (meters).
Time Frame
3-5 days before the intervention, 3-5 days after the intervention, 4 weeks after the intervention
Title
Change in stride length (meters) of the gait
Description
13-infra red camera system with 19-light reflecting passive markers recording at 100 Hz are used to measure the gait parameter: stride length (meters).
Time Frame
3-5 days before the intervention, 3-5 days after the intervention, 4 weeks after the intervention
Title
Change in double support period (seconds) of the gait
Description
13-infra red camera system with 19-light reflecting passive markers recording at 100 Hz are used to measure the gait parameter: double support period (seconds).
Time Frame
3-5 days before the intervention, 3-5 days after the intervention, 4 weeks after the intervention
Title
Change in the cadence (steps/minute) of the gait
Description
13-infra red camera system with 19-light reflecting passive markers recording at 100 Hz are used to measure the gait parameter: cadence (number of steps/minute).
Time Frame
3-5 days before the intervention, 3-5 days after the intervention, 4 weeks after the intervention
Title
Change in gait velocity (meters/second)
Description
13-infra red camera system with 19-light reflecting passive markers recording at 100 Hz are used to measure the gait parameter: gait velocity (meters/second).
Time Frame
3-5 days before the intervention, 3-5 days after the intervention, 4 weeks after the intervention

10. Eligibility

Sex
All
Minimum Age & Unit of Time
7 Years
Maximum Age & Unit of Time
22 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: age 7-22 years, existing ASD DSM-5 level 1 or 2 diagnosis confirmed by medical record/ educational services categorized under ASD/ therapeutic services categorized under ASD/ any other official document indicating the diagnosis of ASD, able to follow instructions and able to stand unsupported for at least 20 minutes. Exclusion Criteria: epilepsy or other medical conditions which can be exacerbated by looking at a screen, Uncorrected vision loss or any other eye condition prohibiting looking at the screen for a prolong time, co-occurring musculoskeletal conditions such as joint or muscle pain or stiffness that limits mobility, implanted plates, pins, or screws that limit mobility, fractures or recent surgeries or any other physical condition that could interfere with the ability to play an active video game co-occurring neurological conditions such as numbness or muscle weakness, temporary loss of vision, speech or strength, loss of consciousness (black out), Dizziness or lightheadedness, Impaired memory or confusion, any other cooccurring diagnosis that could be negatively impacted by playing an active video game any other health conditions that are contraindicated to or may interfere with physical activity such as impaired hearing (uncorrected), medically documented balance disorder, Any heart condition prohibiting exercise, chronic pain or any pain at the time of testing, need assistance to stand for 20 minutes or more, aggression or other severe behaviors that may limit the ability to safely participate in the intervention.
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
Surabhi Date, M.P.T.
Phone
812-603-8031
Email
dates@iu.edu
First Name & Middle Initial & Last Name or Official Title & Degree
Georgia Frey, Ph.D.
Phone
812-369-9800
Email
gfrey@indiana.edu
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Georgia Frey, Ph.D.
Organizational Affiliation
Indiana University, Bloomington
Official's Role
Principal Investigator
Facility Information:
Facility Name
Indiana University Bloomington
City
Bloomington
State/Province
Indiana
ZIP/Postal Code
47405
Country
United States
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Surabhi Date, M.P.T.
Phone
812-603-8031
Email
dates@iu.edu

12. IPD Sharing Statement

Plan to Share IPD
No
IPD Sharing Plan Description
Individual participant data will not be shared to maintain the confidentiality of the participants.
Citations:
PubMed Identifier
21478224
Citation
Nobile M, Perego P, Piccinini L, Mani E, Rossi A, Bellina M, Molteni M. Further evidence of complex motor dysfunction in drug naive children with autism using automatic motion analysis of gait. Autism. 2011 May;15(3):263-83. doi: 10.1177/1362361309356929. Epub 2011 Apr 8.
Results Reference
background
PubMed Identifier
28508177
Citation
Lim YH, Partridge K, Girdler S, Morris SL. Standing Postural Control in Individuals with Autism Spectrum Disorder: Systematic Review and Meta-analysis. J Autism Dev Disord. 2017 Jul;47(7):2238-2253. doi: 10.1007/s10803-017-3144-y.
Results Reference
background
PubMed Identifier
28660313
Citation
Harris SR. Early motor delays as diagnostic clues in autism spectrum disorder. Eur J Pediatr. 2017 Sep;176(9):1259-1262. doi: 10.1007/s00431-017-2951-7. Epub 2017 Jun 28.
Results Reference
background
PubMed Identifier
34414860
Citation
Li Y, Liu T, Venuti CE. Development of postural stability in children with autism spectrum disorder: a cross-sectional study. Int Biomech. 2021 Dec;8(1):54-62. doi: 10.1080/23335432.2021.1968316.
Results Reference
background
PubMed Identifier
15596750
Citation
Minshew NJ, Sung K, Jones BL, Furman JM. Underdevelopment of the postural control system in autism. Neurology. 2004 Dec 14;63(11):2056-61. doi: 10.1212/01.wnl.0000145771.98657.62.
Results Reference
background
PubMed Identifier
22160370
Citation
Mazurek MO, Shattuck PT, Wagner M, Cooper BP. Prevalence and correlates of screen-based media use among youths with autism spectrum disorders. J Autism Dev Disord. 2012 Aug;42(8):1757-67. doi: 10.1007/s10803-011-1413-8.
Results Reference
background
PubMed Identifier
30205483
Citation
Ye S, Lee JE, Stodden DF, Gao Z. Impact of Exergaming on Children's Motor Skill Competence and Health-Related Fitness: A Quasi-Experimental Study. J Clin Med. 2018 Sep 7;7(9):261. doi: 10.3390/jcm7090261.
Results Reference
background
PubMed Identifier
21546566
Citation
Bhat AN, Landa RJ, Galloway JC. Current perspectives on motor functioning in infants, children, and adults with autism spectrum disorders. Phys Ther. 2011 Jul;91(7):1116-29. doi: 10.2522/ptj.20100294. Epub 2011 May 5.
Results Reference
background
PubMed Identifier
31782658
Citation
Ruggeri A, Dancel A, Johnson R, Sargent B. The effect of motor and physical activity intervention on motor outcomes of children with autism spectrum disorder: A systematic review. Autism. 2020 Apr;24(3):544-568. doi: 10.1177/1362361319885215. Epub 2019 Nov 29.
Results Reference
background
PubMed Identifier
34387753
Citation
Zampella CJ, Wang LAL, Haley M, Hutchinson AG, de Marchena A. Motor Skill Differences in Autism Spectrum Disorder: a Clinically Focused Review. Curr Psychiatry Rep. 2021 Aug 13;23(10):64. doi: 10.1007/s11920-021-01280-6.
Results Reference
background
PubMed Identifier
24444657
Citation
Jelsma D, Geuze RH, Mombarg R, Smits-Engelsman BC. The impact of Wii Fit intervention on dynamic balance control in children with probable Developmental Coordination Disorder and balance problems. Hum Mov Sci. 2014 Feb;33:404-18. doi: 10.1016/j.humov.2013.12.007. Epub 2014 Jan 18.
Results Reference
background
PubMed Identifier
33370161
Citation
Rafiei Milajerdi H, Sheikh M, Najafabadi MG, Saghaei B, Naghdi N, Dewey D. The Effects of Physical Activity and Exergaming on Motor Skills and Executive Functions in Children with Autism Spectrum Disorder. Games Health J. 2021 Feb;10(1):33-42. doi: 10.1089/g4h.2019.0180. Epub 2020 Dec 23.
Results Reference
background
PubMed Identifier
28921103
Citation
Travers BG, Mason AH, Mrotek LA, Ellertson A, Dean DC 3rd, Engel C, Gomez A, Dadalko OI, McLaughlin K. Biofeedback-Based, Videogame Balance Training in Autism. J Autism Dev Disord. 2018 Jan;48(1):163-175. doi: 10.1007/s10803-017-3310-2.
Results Reference
background
PubMed Identifier
32404919
Citation
Caldani S, Atzori P, Peyre H, Delorme R, Bucci MP. Short rehabilitation training program may improve postural control in children with autism spectrum disorders: preliminary evidences. Sci Rep. 2020 May 13;10(1):7917. doi: 10.1038/s41598-020-64922-4.
Results Reference
background
PubMed Identifier
17057441
Citation
Franjoine MR, Gunther JS, Taylor MJ. Pediatric balance scale: a modified version of the berg balance scale for the school-age child with mild to moderate motor impairment. Pediatr Phys Ther. 2003 Summer;15(2):114-28. doi: 10.1097/01.PEP.0000068117.48023.18.
Results Reference
background
PubMed Identifier
28714837
Citation
Goetschius J, Feger MA, Hertel J, Hart JM. Validating Center-of-Pressure Balance Measurements Using the MatScan(R) Pressure Mat. J Sport Rehabil. 2018 Jan 1;27(1). doi: 10.1123/jsr.2017-0152. Epub 2018 Jan 24.
Results Reference
background
PubMed Identifier
23291508
Citation
Chen CL, Shen IH, Chen CY, Wu CY, Liu WY, Chung CY. Validity, responsiveness, minimal detectable change, and minimal clinically important change of Pediatric Balance Scale in children with cerebral palsy. Res Dev Disabil. 2013 Mar;34(3):916-22. doi: 10.1016/j.ridd.2012.11.006. Epub 2013 Jan 3.
Results Reference
background

Learn more about this trial

Effect of Virtual Reality-based Training on Balance and Walking in Youth With Autism Spectrum Disorder

We'll reach out to this number within 24 hrs