search
Back to results

Transcranial Alternating Current Stimulation (tACS) for the Recovery of Phonological Short-Term Memory in Patients With Aphasia After Stroke

Primary Purpose

Stroke, Aphasia

Status
Recruiting
Phase
Not Applicable
Locations
United States
Study Type
Interventional
Intervention
HD-tACS
Sham HD-tACS
Sponsored by
Medical College of Wisconsin
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional treatment trial for Stroke

Eligibility Criteria

18 Years - undefined (Adult, Older Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria: Diagnosed with left hemisphere stroke/aphasia Consent date >= 1 month after stroke onset Fluent in English 18 years of age or older Exclusion Criteria: Severe cognitive, auditory or visual impairments that would preclude cognitive and language testing Presence of major untreated or unstable psychiatric disease A chronic medical condition that is not treated or is unstable The presence of cardiac stimulators or pacemakers Contraindications to MRI or tACS, e.g. patients with metallic implants, and/or history of skull fractures, pregnancy, skin diseases History of ongoing or unmanaged seizures History of dyslexia or other developmental learning disabilities

Sites / Locations

  • Medical College of WisconsinRecruiting

Arms of the Study

Arm 1

Arm 2

Arm Type

Experimental

Sham Comparator

Arm Label

High Definition tACS with Short-term Memory Focused Speech Therapy

Sham-High Definition tACS with Short-term Memory Focused Speech Therapy

Arm Description

High-Definition-tACS will be delivered via a battery operated alternating current stimulator (Soterix) using two 3x1 center-surround montages.The current is turned on and increased in a ramplike fashion over approximately 30 seconds. Participants will undergo tACS stimulation for 20-minutes with 2 milliampere (mA) peak-to-peak intensity. Stimulation will be maintained no longer than 20 minutes. This will be paired with short-term memory focused speech therapy.

High-Definition-tACS will be delivered via a battery operated alternating current stimulator (Soterix) using two 3x1 center-surround montages. The current is turned on and increased in a ramplike fashion for 10 to 30 seconds and then ramped down. In this way, the participants experience the same initial sensations (mild tingling) as the active tACS groups. This will be paired with short-term memory focused speech therapy.

Outcomes

Primary Outcome Measures

Accuracy on a phonological STM task
Accuracy changes in a delayed sample-to-match task assessing phonological STM after tACS.
fMRI measures of language network activation after tACS
Activation in the language network regions involved in phonological STM will be assessed before and after tACS

Secondary Outcome Measures

Functional Communication Outcome
Improvements in using language in daily life or functional communication as assessed by patient reported measure of Communication Effectiveness Index (CETI)

Full Information

First Posted
August 18, 2023
Last Updated
October 17, 2023
Sponsor
Medical College of Wisconsin
search

1. Study Identification

Unique Protocol Identification Number
NCT06048159
Brief Title
Transcranial Alternating Current Stimulation (tACS) for the Recovery of Phonological Short-Term Memory in Patients With Aphasia After Stroke
Official Title
TACS for the Recovery of Phonological STM After Stroke
Study Type
Interventional

2. Study Status

Record Verification Date
October 2023
Overall Recruitment Status
Recruiting
Study Start Date
November 2023 (Anticipated)
Primary Completion Date
January 2033 (Anticipated)
Study Completion Date
January 2033 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Principal Investigator
Name of the Sponsor
Medical College of Wisconsin

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
Yes
Product Manufactured in and Exported from the U.S.
No

5. Study Description

Brief Summary
This study will assess the effects of transcranial alternating current stimulation (tACS) on language recovery after stroke.
Detailed Description
Aphasia is a debilitating disorder, typically resulting from damage to the left hemisphere, that can impair a range of communication abilities, including language production and comprehension, reading, and writing. Approximately 180,000 new cases of aphasia are identified per year, and approximately 1 million or 1 in 250 are living with aphasia in the United States. Treatments are limited and provide modest benefits at best. The current emphasis in aphasia rehabilitation is to formulate intensive speech and language therapies and augment therapeutic benefits, potentially with brain stimulation concurrent with therapies. The current study will investigate the efficacy of high-definition tACS (HD-tACS) to help restore neural oscillatory activity in stroke survivors with aphasia. TACS differs from trancranial direct current stimulation (tDCS), a widely used brain stimulation paradigm, in that sinusoidal or alternating currents are delivered rather than direct currents. TACS is shown to manipulate ongoing oscillatory brain activity and also to modulate synchronization (or connectivity) between targeted brain areas. This feature of tACS is quite attractive, given the new body of evidence suggesting that language impairments stem from diminished brain connectivity and ensuing disruptions in the language network due to stroke. The study will employ high-definition tACS (HD-tACS) in a parallel, double-blinded, sham-controlled design combined with language therapy targeting phonological short-term memory (STM) function in stroke survivors with aphasia. Magnetoencephalography (MEG) and fMRI BOLD data collection will occur to determine tACS parameters and to evaluate stimulation-induced neural changes, respectively. The investigators plan to recruit 120 stroke survivors with aphasia in a 2-group tACS study design.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Stroke, Aphasia

7. Study Design

Primary Purpose
Treatment
Study Phase
Not Applicable
Interventional Study Model
Parallel Assignment
Masking
ParticipantCare ProviderOutcomes Assessor
Allocation
Randomized
Enrollment
120 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
High Definition tACS with Short-term Memory Focused Speech Therapy
Arm Type
Experimental
Arm Description
High-Definition-tACS will be delivered via a battery operated alternating current stimulator (Soterix) using two 3x1 center-surround montages.The current is turned on and increased in a ramplike fashion over approximately 30 seconds. Participants will undergo tACS stimulation for 20-minutes with 2 milliampere (mA) peak-to-peak intensity. Stimulation will be maintained no longer than 20 minutes. This will be paired with short-term memory focused speech therapy.
Arm Title
Sham-High Definition tACS with Short-term Memory Focused Speech Therapy
Arm Type
Sham Comparator
Arm Description
High-Definition-tACS will be delivered via a battery operated alternating current stimulator (Soterix) using two 3x1 center-surround montages. The current is turned on and increased in a ramplike fashion for 10 to 30 seconds and then ramped down. In this way, the participants experience the same initial sensations (mild tingling) as the active tACS groups. This will be paired with short-term memory focused speech therapy.
Intervention Type
Device
Intervention Name(s)
HD-tACS
Intervention Description
High definition tACS will be applied during speech therapy.
Intervention Type
Device
Intervention Name(s)
Sham HD-tACS
Intervention Description
Sham high definition tACS will be applied during speech therapy.
Primary Outcome Measure Information:
Title
Accuracy on a phonological STM task
Description
Accuracy changes in a delayed sample-to-match task assessing phonological STM after tACS.
Time Frame
Upon the completion of therapy cycle (a cycle consists of 10 intervention days) and 10 weeks post
Title
fMRI measures of language network activation after tACS
Description
Activation in the language network regions involved in phonological STM will be assessed before and after tACS
Time Frame
Upon the completion of therapy cycle (a cycle consists of 10 intervention days) and 10 weeks post
Secondary Outcome Measure Information:
Title
Functional Communication Outcome
Description
Improvements in using language in daily life or functional communication as assessed by patient reported measure of Communication Effectiveness Index (CETI)
Time Frame
Upon the completion of therapy cycle (a cycle consists of 10 intervention days) and 10 weeks post

10. Eligibility

Sex
All
Minimum Age & Unit of Time
18 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: Diagnosed with left hemisphere stroke/aphasia Consent date >= 1 month after stroke onset Fluent in English 18 years of age or older Exclusion Criteria: Severe cognitive, auditory or visual impairments that would preclude cognitive and language testing Presence of major untreated or unstable psychiatric disease A chronic medical condition that is not treated or is unstable The presence of cardiac stimulators or pacemakers Contraindications to MRI or tACS, e.g. patients with metallic implants, and/or history of skull fractures, pregnancy, skin diseases History of ongoing or unmanaged seizures History of dyslexia or other developmental learning disabilities
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
Sidney E Schoenrock, MA
Phone
414-955-7579
Email
sschoenrock@mcw.edu
First Name & Middle Initial & Last Name or Official Title & Degree
Priyanka Shah-Basak, PhD
Phone
414-955-5752
Email
prishah@mcw.edu
Facility Information:
Facility Name
Medical College of Wisconsin
City
Milwaukee
State/Province
Wisconsin
ZIP/Postal Code
53226
Country
United States
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Sidney E Schoenrock, MA
Phone
414-955-7579
Email
sschoenrock@mcw.edu
First Name & Middle Initial & Last Name & Degree
Priyanka Shah-Basak, PhD
Phone
414-955-5752
Email
prishah@mcw.edu

12. IPD Sharing Statement

Plan to Share IPD
No
Citations:
PubMed Identifier
7574464
Citation
Pedersen PM, Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Aphasia in acute stroke: incidence, determinants, and recovery. Ann Neurol. 1995 Oct;38(4):659-66. doi: 10.1002/ana.410380416.
Results Reference
background
PubMed Identifier
16690899
Citation
Engelter ST, Gostynski M, Papa S, Frei M, Born C, Ajdacic-Gross V, Gutzwiller F, Lyrer PA. Epidemiology of aphasia attributable to first ischemic stroke: incidence, severity, fluency, etiology, and thrombolysis. Stroke. 2006 Jun;37(6):1379-84. doi: 10.1161/01.STR.0000221815.64093.8c. Epub 2006 May 11.
Results Reference
background
PubMed Identifier
25954178
Citation
Shah-Basak PP, Norise C, Garcia G, Torres J, Faseyitan O, Hamilton RH. Individualized treatment with transcranial direct current stimulation in patients with chronic non-fluent aphasia due to stroke. Front Hum Neurosci. 2015 Apr 21;9:201. doi: 10.3389/fnhum.2015.00201. eCollection 2015.
Results Reference
background
PubMed Identifier
27163249
Citation
Shah-Basak PP, Wurzman R, Purcell JB, Gervits F, Hamilton R. Fields or flows? A comparative metaanalysis of transcranial magnetic and direct current stimulation to treat post-stroke aphasia. Restor Neurol Neurosci. 2016 May 2;34(4):537-58. doi: 10.3233/RNN-150616.
Results Reference
background
PubMed Identifier
15339233
Citation
Boyle M. Semantic feature analysis treatment for anomia in two fluent aphasia syndromes. Am J Speech Lang Pathol. 2004 Aug;13(3):236-49. doi: 10.1044/1058-0360(2004/025).
Results Reference
background
Citation
Leonard, C., Rochon, E., & Laird, L. (2008). Treating naming impairments in aphasia: Findings from a phonological components analysis treatment. Aphasiology, 22, 923-947. https://doi.org/10.1080/02687030701831474
Results Reference
background
PubMed Identifier
8455719
Citation
Paulesu E, Frith CD, Frackowiak RS. The neural correlates of the verbal component of working memory. Nature. 1993 Mar 25;362(6418):342-5. doi: 10.1038/362342a0.
Results Reference
background
PubMed Identifier
16301183
Citation
Buchsbaum BR, Olsen RK, Koch P, Berman KF. Human dorsal and ventral auditory streams subserve rehearsal-based and echoic processes during verbal working memory. Neuron. 2005 Nov 23;48(4):687-97. doi: 10.1016/j.neuron.2005.09.029.
Results Reference
background
PubMed Identifier
21256582
Citation
Buchsbaum BR, Baldo J, Okada K, Berman KF, Dronkers N, D'Esposito M, Hickok G. Conduction aphasia, sensory-motor integration, and phonological short-term memory - an aggregate analysis of lesion and fMRI data. Brain Lang. 2011 Dec;119(3):119-28. doi: 10.1016/j.bandl.2010.12.001. Epub 2011 Jan 21.
Results Reference
background
PubMed Identifier
23825454
Citation
Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci. 2013 Jun 28;7:317. doi: 10.3389/fnhum.2013.00317. Print 2013.
Results Reference
background
PubMed Identifier
24461998
Citation
Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol. 2014 Feb 3;24(3):333-9. doi: 10.1016/j.cub.2013.12.041. Epub 2014 Jan 23.
Results Reference
background
PubMed Identifier
28288700
Citation
Violante IR, Li LM, Carmichael DW, Lorenz R, Leech R, Hampshire A, Rothwell JC, Sharp DJ. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. Elife. 2017 Mar 14;6:e22001. doi: 10.7554/eLife.22001.
Results Reference
background
PubMed Identifier
23785325
Citation
Herrmann CS, Rach S, Neuling T, Struber D. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci. 2013 Jun 14;7:279. doi: 10.3389/fnhum.2013.00279. eCollection 2013.
Results Reference
background
Citation
Benson, D. F., & Ardila, A. (1996). Aphasia: A Clinical Perspective. Oxford University Press.
Results Reference
background
PubMed Identifier
21329405
Citation
Code C, Petheram B. Delivering for aphasia. Int J Speech Lang Pathol. 2011 Feb;13(1):3-10. doi: 10.3109/17549507.2010.520090.
Results Reference
background
PubMed Identifier
32112714
Citation
Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, Rubin GJ. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020 Mar 14;395(10227):912-920. doi: 10.1016/S0140-6736(20)30460-8. Epub 2020 Feb 26.
Results Reference
background
PubMed Identifier
33013572
Citation
Pietrabissa G, Simpson SG. Psychological Consequences of Social Isolation During COVID-19 Outbreak. Front Psychol. 2020 Sep 9;11:2201. doi: 10.3389/fpsyg.2020.02201. eCollection 2020.
Results Reference
background
PubMed Identifier
23227818
Citation
Pollock A, St George B, Fenton M, Firkins L. Top 10 research priorities relating to life after stroke--consensus from stroke survivors, caregivers, and health professionals. Int J Stroke. 2014 Apr;9(3):313-20. doi: 10.1111/j.1747-4949.2012.00942.x. Epub 2012 Dec 11.
Results Reference
background
PubMed Identifier
22343643
Citation
Ellis C, Simpson AN, Bonilha H, Mauldin PD, Simpson KN. The one-year attributable cost of poststroke aphasia. Stroke. 2012 May;43(5):1429-31. doi: 10.1161/STROKEAHA.111.647339. Epub 2012 Feb 16.
Results Reference
background
PubMed Identifier
25164766
Citation
Pillay SB, Stengel BC, Humphries C, Book DS, Binder JR. Cerebral localization of impaired phonological retrieval during rhyme judgment. Ann Neurol. 2014 Nov;76(5):738-46. doi: 10.1002/ana.24266. Epub 2014 Sep 19.
Results Reference
background
PubMed Identifier
25879574
Citation
Mirman D, Chen Q, Zhang Y, Wang Z, Faseyitan OK, Coslett HB, Schwartz MF. Neural organization of spoken language revealed by lesion-symptom mapping. Nat Commun. 2015 Apr 16;6:6762. doi: 10.1038/ncomms7762.
Results Reference
background
PubMed Identifier
905501
Citation
Saffran EM, Marin OS. Reading without phonology: evidence from aphasia. Q J Exp Psychol. 1977 Aug;29(3):515-25. doi: 10.1080/14640747708400627. No abstract available.
Results Reference
background
PubMed Identifier
6204712
Citation
Friedrich FJ, Glenn CG, Marin OS. Interruption of phonological coding in conduction aphasia. Brain Lang. 1984 Jul;22(2):266-91. doi: 10.1016/0093-934x(84)90094-4.
Results Reference
background
PubMed Identifier
35933744
Citation
Pillay SB, Gross WL, Heffernan J, Book DS, Binder JR. Semantic network activation facilitates oral word reading in chronic aphasia. Brain Lang. 2022 Oct;233:105164. doi: 10.1016/j.bandl.2022.105164. Epub 2022 Aug 4.
Results Reference
background
PubMed Identifier
29211656
Citation
Pillay SB, Gross WL, Graves WW, Humphries C, Book DS, Binder JR. The Neural Basis of Successful Word Reading in Aphasia. J Cogn Neurosci. 2018 Apr;30(4):514-525. doi: 10.1162/jocn_a_01214. Epub 2017 Dec 6.
Results Reference
background
PubMed Identifier
19329570
Citation
Binder JR, Desai RH, Graves WW, Conant LL. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex. 2009 Dec;19(12):2767-96. doi: 10.1093/cercor/bhp055. Epub 2009 Mar 27.
Results Reference
background
Citation
Baddeley, A. D. (1986). Working memory. Clarendon Press ; Oxford University Press.
Results Reference
background
PubMed Identifier
9450375
Citation
Baddeley A, Gathercole S, Papagno C. The phonological loop as a language learning device. Psychol Rev. 1998 Jan;105(1):158-73. doi: 10.1037/0033-295x.105.1.158.
Results Reference
background
PubMed Identifier
21072168
Citation
Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One. 2010 Nov 1;5(11):e13766. doi: 10.1371/journal.pone.0013766.
Results Reference
background
PubMed Identifier
30962628
Citation
Reinhart RMG, Nguyen JA. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat Neurosci. 2019 May;22(5):820-827. doi: 10.1038/s41593-019-0371-x. Epub 2019 Apr 8.
Results Reference
background
PubMed Identifier
33887251
Citation
Riddle J, Frohlich F. Targeting neural oscillations with transcranial alternating current stimulation. Brain Res. 2021 Aug 15;1765:147491. doi: 10.1016/j.brainres.2021.147491. Epub 2021 Apr 20.
Results Reference
background
PubMed Identifier
33980854
Citation
Frohlich F, Riddle J. Conducting double-blind placebo-controlled clinical trials of transcranial alternating current stimulation (tACS). Transl Psychiatry. 2021 May 12;11(1):284. doi: 10.1038/s41398-021-01391-x.
Results Reference
background
PubMed Identifier
23416101
Citation
Brittain JS, Probert-Smith P, Aziz TZ, Brown P. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol. 2013 Mar 4;23(5):436-40. doi: 10.1016/j.cub.2013.01.068. Epub 2013 Feb 14.
Results Reference
background
PubMed Identifier
16427357
Citation
Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006 Apr;117(4):845-50. doi: 10.1016/j.clinph.2005.12.003. Epub 2006 Jan 19.
Results Reference
background
PubMed Identifier
29398575
Citation
Bikson M, Brunoni AR, Charvet LE, Clark VP, Cohen LG, Deng ZD, Dmochowski J, Edwards DJ, Frohlich F, Kappenman ES, Lim KO, Loo C, Mantovani A, McMullen DP, Parra LC, Pearson M, Richardson JD, Rumsey JM, Sehatpour P, Sommers D, Unal G, Wassermann EM, Woods AJ, Lisanby SH. Rigor and reproducibility in research with transcranial electrical stimulation: An NIMH-sponsored workshop. Brain Stimul. 2018 May-Jun;11(3):465-480. doi: 10.1016/j.brs.2017.12.008. Epub 2017 Dec 29.
Results Reference
background
PubMed Identifier
29425241
Citation
Wilson SM, Eriksson DK, Schneck SM, Lucanie JM. A quick aphasia battery for efficient, reliable, and multidimensional assessment of language function. PLoS One. 2018 Feb 9;13(2):e0192773. doi: 10.1371/journal.pone.0192773. eCollection 2018. Erratum In: PLoS One. 2018 Jun 15;13(6):e0199469.
Results Reference
background
Citation
Pillay, S. B., & Binder, J. R. (n.d.). Language Imaging Lab (LIL) Aphasia Battery. https://wwwneuromcwedu/aphasiabattery/indexhtml
Results Reference
background
PubMed Identifier
21253357
Citation
Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869. doi: 10.1155/2011/156869. Epub 2010 Dec 23.
Results Reference
background
PubMed Identifier
24431986
Citation
Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L, Hamalainen M. MEG and EEG data analysis with MNE-Python. Front Neurosci. 2013 Dec 26;7:267. doi: 10.3389/fnins.2013.00267. eCollection 2013 Dec 26.
Results Reference
background
PubMed Identifier
23893039
Citation
Villamar MF, Volz MS, Bikson M, Datta A, Dasilva AF, Fregni F. Technique and considerations in the use of 4x1 ring high-definition transcranial direct current stimulation (HD-tDCS). J Vis Exp. 2013 Jul 14;(77):e50309. doi: 10.3791/50309.
Results Reference
background
PubMed Identifier
25770991
Citation
Pruim RHR, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage. 2015 May 15;112:267-277. doi: 10.1016/j.neuroimage.2015.02.064. Epub 2015 Mar 11.
Results Reference
background
PubMed Identifier
25463470
Citation
Kielar A, Panamsky L, Links KA, Meltzer JA. Localization of electrophysiological responses to semantic and syntactic anomalies in language comprehension with MEG. Neuroimage. 2015 Jan 15;105:507-24. doi: 10.1016/j.neuroimage.2014.11.016. Epub 2014 Nov 14.
Results Reference
background
PubMed Identifier
17517438
Citation
Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods. 2007 Aug 15;164(1):177-90. doi: 10.1016/j.jneumeth.2007.03.024. Epub 2007 Apr 10.
Results Reference
background
PubMed Identifier
31725247
Citation
Saturnino GB, Puonti O, Nielsen JD, Antonenko D, Madsen KH, Thielscher A. SimNIBS 2.1: A Comprehensive Pipeline for Individualized Electric Field Modelling for Transcranial Brain Stimulation. 2019 Aug 28. In: Makarov S, Horner M, Noetscher G, editors. Brain and Human Body Modeling: Computational Human Modeling at EMBC 2018 [Internet]. Cham (CH): Springer; 2019. Chapter 1. Available from http://www.ncbi.nlm.nih.gov/books/NBK549569/
Results Reference
background
PubMed Identifier
21320389
Citation
Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 2011 Sep;14(8):1133-45. doi: 10.1017/S1461145710001690. Epub 2011 Feb 15.
Results Reference
background
PubMed Identifier
27372845
Citation
Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, Mourdoukoutas AP, Kronberg G, Truong D, Boggio P, Brunoni AR, Charvet L, Fregni F, Fritsch B, Gillick B, Hamilton RH, Hampstead BM, Jankord R, Kirton A, Knotkova H, Liebetanz D, Liu A, Loo C, Nitsche MA, Reis J, Richardson JD, Rotenberg A, Turkeltaub PE, Woods AJ. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016 Sep-Oct;9(5):641-661. doi: 10.1016/j.brs.2016.06.004. Epub 2016 Jun 15.
Results Reference
background
PubMed Identifier
28709880
Citation
Antal A, Alekseichuk I, Bikson M, Brockmoller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Floel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, McCaig CD, Miniussi C, Miranda PC, Moliadze V, Nitsche MA, Nowak R, Padberg F, Pascual-Leone A, Poppendieck W, Priori A, Rossi S, Rossini PM, Rothwell J, Rueger MA, Ruffini G, Schellhorn K, Siebner HR, Ugawa Y, Wexler A, Ziemann U, Hallett M, Paulus W. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017 Sep;128(9):1774-1809. doi: 10.1016/j.clinph.2017.06.001. Epub 2017 Jun 19.
Results Reference
background
PubMed Identifier
29784589
Citation
Reckow J, Rahman-Filipiak A, Garcia S, Schlaefflin S, Calhoun O, DaSilva AF, Bikson M, Hampstead BM. Tolerability and blinding of 4x1 high-definition transcranial direct current stimulation (HD-tDCS) at two and three milliamps. Brain Stimul. 2018 Sep-Oct;11(5):991-997. doi: 10.1016/j.brs.2018.04.022. Epub 2018 May 4.
Results Reference
background
PubMed Identifier
31774818
Citation
Schuhmann T, Kemmerer SK, Duecker F, de Graaf TA, Ten Oever S, De Weerd P, Sack AT. Left parietal tACS at alpha frequency induces a shift of visuospatial attention. PLoS One. 2019 Nov 27;14(11):e0217729. doi: 10.1371/journal.pone.0217729. eCollection 2019.
Results Reference
background
PubMed Identifier
31782732
Citation
Deng Y, Reinhart RM, Choi I, Shinn-Cunningham BG. Causal links between parietal alpha activity and spatial auditory attention. Elife. 2019 Nov 29;8:e51184. doi: 10.7554/eLife.51184.
Results Reference
background
PubMed Identifier
30214966
Citation
Matsumoto H, Ugawa Y. Adverse events of tDCS and tACS: A review. Clin Neurophysiol Pract. 2016 Dec 21;2:19-25. doi: 10.1016/j.cnp.2016.12.003. eCollection 2017.
Results Reference
background
Citation
National Aphasia Association survey. (2020).
Results Reference
background

Learn more about this trial

Transcranial Alternating Current Stimulation (tACS) for the Recovery of Phonological Short-Term Memory in Patients With Aphasia After Stroke

We'll reach out to this number within 24 hrs