search
Back to results

Unravelling Tumour Biology In Ovarian Cancer With Precision Imaging (MR-O-MICS)

Primary Purpose

High Grade Serous Ovarian Cancer

Status
Not yet recruiting
Phase
Not Applicable
Locations
France
Study Type
Interventional
Intervention
Blood sample and tissue sample
Sponsored by
Institut du Cancer de Montpellier - Val d'Aurelle
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional other trial for High Grade Serous Ovarian Cancer focused on measuring Radiomics, Ovarian cancer, Genomics, Proteomics, Immune Tumor Microenvironment

Eligibility Criteria

18 Years - undefined (Adult, Older Adult)FemaleDoes not accept healthy volunteers

Inclusion Criteria: Patient aged >18 Pathologically proven HGSOC at an advanced stage (FIGO IIIB or IIIC) which can benefit from surgery with or without prior neoadjuvant treatment Willingness and ability to comply with planned visits, treatment plan, laboratory tests and other study procedures, Patient who has given informed, written and express consent, Patient affiliated with a French health insurance scheme. Exclusion Criteria: Early-stage disease (FIGO <IIIB) or presence of extraperitoneal metastases, Patient who will not have surgery Patient whose regular follow-up is impossible for psychological, family, social or geographical reasons, Patient under guardianship, curatorship or safeguarding of justice, Pregnant and/or nursing patient, Patient with a history of other cancers within 5 years/10 years prior to inclusion

Sites / Locations

  • NOUGARET Stephanie

Arms of the Study

Arm 1

Arm Type

Experimental

Arm Label

Single arm

Arm Description

single arm

Outcomes

Primary Outcome Measures

the integration of in vivo and ex vivo of MRI with histology and molecular assessments to advance non-invasive characterization of tumor heterogeneity in high-grade serous ovarian cancer.
The diagnostic performance of the radiomic and multiomic algorithm for the characterization of heterogeneity in the CSOHG.

Secondary Outcome Measures

the imaging phenotype of tumor heterogeneity with a multi-scale radiomic approach by obtaining the image mirror tumor at the in vivo scale
Correlation between radiomic maps and pathogenic maps of heterogeneity,
tumor heterogeneity based on phenotypic imaging supported by AI reflects and can predict sub-histologyunderlying by tumor stroma proportion and tumor density infiltrating lymphocytes and genomics through HRD
Correlation between radiomic algorithms and i/underlying histology and ii/ genomics
the heterogeneity of the tumor biology of CSOHG through non-invasive habitat imaging combined with an integrated Multi-O-Mics approach.
Correlation between radiomic maps and tumor biology (CYTOF, proteomics and transcriptomics),
To Correlate MRI results with hematological molecular biology results.
Correlation between radiomic algorithms for tumor detection and cDNA determination.

Full Information

First Posted
October 2, 2023
Last Updated
October 10, 2023
Sponsor
Institut du Cancer de Montpellier - Val d'Aurelle
search

1. Study Identification

Unique Protocol Identification Number
NCT06084195
Brief Title
Unravelling Tumour Biology In Ovarian Cancer With Precision Imaging
Acronym
MR-O-MICS
Official Title
Unravelling Tumour Biology In Ovarian Cancer With Precision Imaging
Study Type
Interventional

2. Study Status

Record Verification Date
October 2023
Overall Recruitment Status
Not yet recruiting
Study Start Date
October 2023 (Anticipated)
Primary Completion Date
October 2026 (Anticipated)
Study Completion Date
October 2029 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Sponsor
Name of the Sponsor
Institut du Cancer de Montpellier - Val d'Aurelle

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Data Monitoring Committee
No

5. Study Description

Brief Summary
The objective of this study is to explore the integration of in vivo and ex vivo of MRI with histology and molecular assessments to advance non-invasive characterization of tumor heterogeneity in high-grade serous ovarian cance
Detailed Description
After being informed about the study and potential risks, all patient giving wirtting informed consent. During surgery, tissue and blood samples will be conserved for the study. In this study will be compared images obtained in vivo before surgical management, ex vivo images obtained on excised tissues during surgery, histological data obtained during surgery.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
High Grade Serous Ovarian Cancer
Keywords
Radiomics, Ovarian cancer, Genomics, Proteomics, Immune Tumor Microenvironment

7. Study Design

Primary Purpose
Other
Study Phase
Not Applicable
Interventional Study Model
Single Group Assignment
Masking
None (Open Label)
Allocation
N/A
Enrollment
120 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
Single arm
Arm Type
Experimental
Arm Description
single arm
Intervention Type
Biological
Intervention Name(s)
Blood sample and tissue sample
Intervention Description
During the surgery : Tissus sample : primary tumor and metastasis blood sample : 3 EDTA tubes ex vivo MRI data
Primary Outcome Measure Information:
Title
the integration of in vivo and ex vivo of MRI with histology and molecular assessments to advance non-invasive characterization of tumor heterogeneity in high-grade serous ovarian cancer.
Description
The diagnostic performance of the radiomic and multiomic algorithm for the characterization of heterogeneity in the CSOHG.
Time Frame
one shoot at the surgery
Secondary Outcome Measure Information:
Title
the imaging phenotype of tumor heterogeneity with a multi-scale radiomic approach by obtaining the image mirror tumor at the in vivo scale
Description
Correlation between radiomic maps and pathogenic maps of heterogeneity,
Time Frame
one shoot at the surgery
Title
tumor heterogeneity based on phenotypic imaging supported by AI reflects and can predict sub-histologyunderlying by tumor stroma proportion and tumor density infiltrating lymphocytes and genomics through HRD
Description
Correlation between radiomic algorithms and i/underlying histology and ii/ genomics
Time Frame
one shoot at the surgery
Title
the heterogeneity of the tumor biology of CSOHG through non-invasive habitat imaging combined with an integrated Multi-O-Mics approach.
Description
Correlation between radiomic maps and tumor biology (CYTOF, proteomics and transcriptomics),
Time Frame
one shoot at the surgery
Title
To Correlate MRI results with hematological molecular biology results.
Description
Correlation between radiomic algorithms for tumor detection and cDNA determination.
Time Frame
one shoot at the surgery

10. Eligibility

Sex
Female
Minimum Age & Unit of Time
18 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: Patient aged >18 Pathologically proven HGSOC at an advanced stage (FIGO IIIB or IIIC) which can benefit from surgery with or without prior neoadjuvant treatment Willingness and ability to comply with planned visits, treatment plan, laboratory tests and other study procedures, Patient who has given informed, written and express consent, Patient affiliated with a French health insurance scheme. Exclusion Criteria: Early-stage disease (FIGO <IIIB) or presence of extraperitoneal metastases, Patient who will not have surgery Patient whose regular follow-up is impossible for psychological, family, social or geographical reasons, Patient under guardianship, curatorship or safeguarding of justice, Pregnant and/or nursing patient, Patient with a history of other cancers within 5 years/10 years prior to inclusion
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
MOUSSION Aurore
Phone
0467613102
Ext
+33
Email
aurore.moussion@icm.unicancer.fr
First Name & Middle Initial & Last Name or Official Title & Degree
Texier Emmanuelle
Phone
0467613102
Ext
+33
Email
emmanuelle.texier@icm.unicancer.fr
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
NOUGARET Stephanie, MD
Organizational Affiliation
INSTITUT REGIONAL DU CANCER DE MONTPELLIER Cancer de Montpellier
Official's Role
Study Director
Facility Information:
Facility Name
NOUGARET Stephanie
City
Montpellier
ZIP/Postal Code
34298
Country
France
Facility Contact:
First Name & Middle Initial & Last Name & Degree
NOUGARET Stephanie, MD
Email
stephanie.nougaret@icm.unicancer.fr

12. IPD Sharing Statement

Plan to Share IPD
No
Citations:
PubMed Identifier
29809280
Citation
Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018 Jul;68(4):284-296. doi: 10.3322/caac.21456. Epub 2018 May 29.
Results Reference
background
PubMed Identifier
16394300
Citation
Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen R, Lele S, Copeland LJ, Walker JL, Burger RA; Gynecologic Oncology Group. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med. 2006 Jan 5;354(1):34-43. doi: 10.1056/NEJMoa052985.
Results Reference
background
PubMed Identifier
20818904
Citation
Vergote I, Trope CG, Amant F, Kristensen GB, Ehlen T, Johnson N, Verheijen RH, van der Burg ME, Lacave AJ, Panici PB, Kenter GG, Casado A, Mendiola C, Coens C, Verleye L, Stuart GC, Pecorelli S, Reed NS; European Organization for Research and Treatment of Cancer-Gynaecological Cancer Group; NCIC Clinical Trials Group. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N Engl J Med. 2010 Sep 2;363(10):943-53. doi: 10.1056/NEJMoa0908806.
Results Reference
background
PubMed Identifier
29342393
Citation
van Driel WJ, Koole SN, Sikorska K, Schagen van Leeuwen JH, Schreuder HWR, Hermans RHM, de Hingh IHJT, van der Velden J, Arts HJ, Massuger LFAG, Aalbers AGJ, Verwaal VJ, Kieffer JM, Van de Vijver KK, van Tinteren H, Aaronson NK, Sonke GS. Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. N Engl J Med. 2018 Jan 18;378(3):230-240. doi: 10.1056/NEJMoa1708618.
Results Reference
background
PubMed Identifier
24767708
Citation
Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014 Oct 11;384(9951):1376-88. doi: 10.1016/S0140-6736(13)62146-7. Epub 2014 Apr 21.
Results Reference
background
PubMed Identifier
21720365
Citation
Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011 Jun 29;474(7353):609-15. doi: 10.1038/nature10166. Erratum In: Nature. 2012 Oct 11;490(7419):298.
Results Reference
background
PubMed Identifier
21742554
Citation
Cooke SL, Brenton JD. Evolution of platinum resistance in high-grade serous ovarian cancer. Lancet Oncol. 2011 Nov;12(12):1169-74. doi: 10.1016/S1470-2045(11)70123-1.
Results Reference
background
PubMed Identifier
27182968
Citation
McPherson A, Roth A, Laks E, Masud T, Bashashati A, Zhang AW, Ha G, Biele J, Yap D, Wan A, Prentice LM, Khattra J, Smith MA, Nielsen CB, Mullaly SC, Kalloger S, Karnezis A, Shumansky K, Siu C, Rosner J, Chan HL, Ho J, Melnyk N, Senz J, Yang W, Moore R, Mungall AJ, Marra MA, Bouchard-Cote A, Gilks CB, Huntsman DG, McAlpine JN, Aparicio S, Shah SP. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat Genet. 2016 Jul;48(7):758-67. doi: 10.1038/ng.3573. Epub 2016 May 16.
Results Reference
background
PubMed Identifier
25087573
Citation
Burrell RA, Swanton C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol Oncol. 2014 Sep 12;8(6):1095-111. doi: 10.1016/j.molonc.2014.06.005. Epub 2014 Jul 10.
Results Reference
background
PubMed Identifier
24221193
Citation
Hoogstraat M, de Pagter MS, Cirkel GA, van Roosmalen MJ, Harkins TT, Duran K, Kreeftmeijer J, Renkens I, Witteveen PO, Lee CC, Nijman IJ, Guy T, van 't Slot R, Jonges TN, Lolkema MP, Koudijs MJ, Zweemer RP, Voest EE, Cuppen E, Kloosterman WP. Genomic and transcriptomic plasticity in treatment-naive ovarian cancer. Genome Res. 2014 Feb;24(2):200-11. doi: 10.1101/gr.161026.113. Epub 2013 Nov 12.
Results Reference
background
PubMed Identifier
25881093
Citation
Lee JY, Yoon JK, Kim B, Kim S, Kim MA, Lim H, Bang D, Song YS. Tumor evolution and intratumor heterogeneity of an epithelial ovarian cancer investigated using next-generation sequencing. BMC Cancer. 2015 Feb 26;15:85. doi: 10.1186/s12885-015-1077-4.
Results Reference
background
PubMed Identifier
25710373
Citation
Schwarz RF, Ng CK, Cooke SL, Newman S, Temple J, Piskorz AM, Gale D, Sayal K, Murtaza M, Baldwin PJ, Rosenfeld N, Earl HM, Sala E, Jimenez-Linan M, Parkinson CA, Markowetz F, Brenton JD. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS Med. 2015 Feb 24;12(2):e1001789. doi: 10.1371/journal.pmed.1001789. eCollection 2015 Feb.
Results Reference
background
PubMed Identifier
23780408
Citation
Bashashati A, Ha G, Tone A, Ding J, Prentice LM, Roth A, Rosner J, Shumansky K, Kalloger S, Senz J, Yang W, McConechy M, Melnyk N, Anglesio M, Luk MT, Tse K, Zeng T, Moore R, Zhao Y, Marra MA, Gilks B, Yip S, Huntsman DG, McAlpine JN, Shah SP. Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling. J Pathol. 2013 Sep;231(1):21-34. doi: 10.1002/path.4230.
Results Reference
background
PubMed Identifier
22258609
Citation
Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012 Jan 18;481(7381):306-13. doi: 10.1038/nature10762.
Results Reference
background
PubMed Identifier
29754820
Citation
Zhang AW, McPherson A, Milne K, Kroeger DR, Hamilton PT, Miranda A, Funnell T, Little N, de Souza CPE, Laan S, LeDoux S, Cochrane DR, Lim JLP, Yang W, Roth A, Smith MA, Ho J, Tse K, Zeng T, Shlafman I, Mayo MR, Moore R, Failmezger H, Heindl A, Wang YK, Bashashati A, Grewal DS, Brown SD, Lai D, Wan ANC, Nielsen CB, Huebner C, Tessier-Cloutier B, Anglesio MS, Bouchard-Cote A, Yuan Y, Wasserman WW, Gilks CB, Karnezis AN, Aparicio S, McAlpine JN, Huntsman DG, Holt RA, Nelson BH, Shah SP. Interfaces of Malignant and Immunologic Clonal Dynamics in Ovarian Cancer. Cell. 2018 Jun 14;173(7):1755-1769.e22. doi: 10.1016/j.cell.2018.03.073. Epub 2018 May 10.
Results Reference
background
PubMed Identifier
28841418
Citation
Jimenez-Sanchez A, Memon D, Pourpe S, Veeraraghavan H, Li Y, Vargas HA, Gill MB, Park KJ, Zivanovic O, Konner J, Ricca J, Zamarin D, Walther T, Aghajanian C, Wolchok JD, Sala E, Merghoub T, Snyder A, Miller ML. Heterogeneous Tumor-Immune Microenvironments among Differentially Growing Metastases in an Ovarian Cancer Patient. Cell. 2017 Aug 24;170(5):927-938.e20. doi: 10.1016/j.cell.2017.07.025.
Results Reference
background
PubMed Identifier
32483290
Citation
Jimenez-Sanchez A, Cybulska P, Mager KL, Koplev S, Cast O, Couturier DL, Memon D, Selenica P, Nikolovski I, Mazaheri Y, Bykov Y, Geyer FC, Macintyre G, Gavarro LM, Drews RM, Gill MB, Papanastasiou AD, Sosa RE, Soslow RA, Walther T, Shen R, Chi DS, Park KJ, Hollmann T, Reis-Filho JS, Markowetz F, Beltrao P, Vargas HA, Zamarin D, Brenton JD, Snyder A, Weigelt B, Sala E, Miller ML. Unraveling tumor-immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy. Nat Genet. 2020 Jun;52(6):582-593. doi: 10.1038/s41588-020-0630-5. Epub 2020 Jun 1.
Results Reference
background
PubMed Identifier
28250960
Citation
Frey MK, Pothuri B. Homologous recombination deficiency (HRD) testing in ovarian cancer clinical practice: a review of the literature. Gynecol Oncol Res Pract. 2017 Feb 22;4:4. doi: 10.1186/s40661-017-0039-8. eCollection 2017.
Results Reference
background
PubMed Identifier
28601728
Citation
Yildirim N, Akman L, Acar K, Demir S, Ozkan S, Alan N, Zekioglu O, Terek MC, Ozdemir N, Ozsaran A. Do tumor-infiltrating lymphocytes really indicate favorable prognosis in epithelial ovarian cancer? Eur J Obstet Gynecol Reprod Biol. 2017 Aug;215:55-61. doi: 10.1016/j.ejogrb.2017.06.005. Epub 2017 Jun 4.
Results Reference
background
PubMed Identifier
29049607
Citation
Ovarian Tumor Tissue Analysis (OTTA) Consortium; Goode EL, Block MS, Kalli KR, Vierkant RA, Chen W, Fogarty ZC, Gentry-Maharaj A, Toloczko A, Hein A, Bouligny AL, Jensen A, Osorio A, Hartkopf A, Ryan A, Chudecka-Glaz A, Magliocco AM, Hartmann A, Jung AY, Gao B, Hernandez BY, Fridley BL, McCauley BM, Kennedy CJ, Wang C, Karpinskyj C, de Sousa CB, Tiezzi DG, Wachter DL, Herpel E, Taran FA, Modugno F, Nelson G, Lubinski J, Menkiszak J, Alsop J, Lester J, Garcia-Donas J, Nation J, Hung J, Palacios J, Rothstein JH, Kelley JL, de Andrade JM, Robles-Diaz L, Intermaggio MP, Widschwendter M, Beckmann MW, Ruebner M, Jimenez-Linan M, Singh N, Oszurek O, Harnett PR, Rambau PF, Sinn P, Wagner P, Ghatage P, Sharma R, Edwards RP, Ness RB, Orsulic S, Brucker SY, Johnatty SE, Longacre TA, Ursula E, McGuire V, Sieh W, Natanzon Y, Li Z, Whittemore AS, Anna A, Staebler A, Karlan BY, Gilks B, Bowtell DD, Hogdall E, Candido dos Reis FJ, Steed H, Campbell IG, Gronwald J, Benitez J, Koziak JM, Chang-Claude J, Moysich KB, Kelemen LE, Cook LS, Goodman MT, Garcia MJ, Fasching PA, Kommoss S, Deen S, Kjaer SK, Menon U, Brenton JD, Pharoah PDP, Chenevix-Trench G, Huntsman DG, Winham SJ, Kobel M, Ramus SJ. Dose-Response Association of CD8+ Tumor-Infiltrating Lymphocytes and Survival Time in High-Grade Serous Ovarian Cancer. JAMA Oncol. 2017 Dec 1;3(12):e173290. doi: 10.1001/jamaoncol.2017.3290.
Results Reference
background
PubMed Identifier
33718143
Citation
Dai D, Liu L, Huang H, Chen S, Chen B, Cao J, Luo X, Wang F, Luo R, Liu J. Nomograms to Predict the Density of Tumor-Infiltrating Lymphocytes in Patients With High-Grade Serous Ovarian Cancer. Front Oncol. 2021 Feb 25;11:590414. doi: 10.3389/fonc.2021.590414. eCollection 2021.
Results Reference
background
PubMed Identifier
31152668
Citation
Lou E, Vogel RI, Hoostal S, Klein M, Linden MA, Teoh D, Geller MA. Tumor-Stroma Proportion as a Predictive Biomarker of Resistance to Platinum-Based Chemotherapy in Patients With Ovarian Cancer. JAMA Oncol. 2019 Aug 1;5(8):1222-1224. doi: 10.1001/jamaoncol.2019.1943.
Results Reference
background
PubMed Identifier
15661212
Citation
Qayyum A, Coakley FV, Westphalen AC, Hricak H, Okuno WT, Powell B. Role of CT and MR imaging in predicting optimal cytoreduction of newly diagnosed primary epithelial ovarian cancer. Gynecol Oncol. 2005 Feb;96(2):301-6. doi: 10.1016/j.ygyno.2004.06.054.
Results Reference
background
PubMed Identifier
12740470
Citation
Pannu HK, Bristow RE, Montz FJ, Fishman EK. Multidetector CT of peritoneal carcinomatosis from ovarian cancer. Radiographics. 2003 May-Jun;23(3):687-701. doi: 10.1148/rg.233025105.
Results Reference
background
PubMed Identifier
32239470
Citation
Avesani G, Arshad M, Lu H, Fotopoulou C, Cannone F, Melotti R, Aboagye E, Rockall A. Radiological assessment of Peritoneal Cancer Index on preoperative CT in ovarian cancer is related to surgical outcome and survival. Radiol Med. 2020 Aug;125(8):770-776. doi: 10.1007/s11547-020-01170-6. Epub 2020 Apr 1.
Results Reference
background
PubMed Identifier
31005166
Citation
Engbersen MP, Van' T Sant I, Lok C, Lambregts DMJ, Sonke GS, Beets-Tan RGH, van Driel WJ, Lahaye MJ. MRI with diffusion-weighted imaging to predict feasibility of complete cytoreduction with the peritoneal cancer index (PCI) in advanced stage ovarian cancer patients. Eur J Radiol. 2019 May;114:146-151. doi: 10.1016/j.ejrad.2019.03.007. Epub 2019 Mar 15.
Results Reference
background
PubMed Identifier
35127479
Citation
Tardieu M, Lakhman Y, Khellaf L, Cardoso M, Sgarbura O, Colombo PE, Crispin-Ortuzar M, Sala E, Goze-Bac C, Nougaret S. Assessing Histology Structures by Ex Vivo MR Microscopy and Exploring the Link Between MRM-Derived Radiomic Features and Histopathology in Ovarian Cancer. Front Oncol. 2022 Jan 19;11:771848. doi: 10.3389/fonc.2021.771848. eCollection 2021.
Results Reference
background
PubMed Identifier
24322510
Citation
Michielsen K, Vergote I, Op de Beeck K, Amant F, Leunen K, Moerman P, Deroose C, Souverijns G, Dymarkowski S, De Keyzer F, Vandecaveye V. Whole-body MRI with diffusion-weighted sequence for staging of patients with suspected ovarian cancer: a clinical feasibility study in comparison to CT and FDG-PET/CT. Eur Radiol. 2014 Apr;24(4):889-901. doi: 10.1007/s00330-013-3083-8. Epub 2013 Dec 11.
Results Reference
background
PubMed Identifier
32154773
Citation
Zwanenburg A, Vallieres M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, Bogowicz M, Boldrini L, Buvat I, Cook GJR, Davatzikos C, Depeursinge A, Desseroit MC, Dinapoli N, Dinh CV, Echegaray S, El Naqa I, Fedorov AY, Gatta R, Gillies RJ, Goh V, Gotz M, Guckenberger M, Ha SM, Hatt M, Isensee F, Lambin P, Leger S, Leijenaar RTH, Lenkowicz J, Lippert F, Losnegard A, Maier-Hein KH, Morin O, Muller H, Napel S, Nioche C, Orlhac F, Pati S, Pfaehler EAG, Rahmim A, Rao AUK, Scherer J, Siddique MM, Sijtsema NM, Socarras Fernandez J, Spezi E, Steenbakkers RJHM, Tanadini-Lang S, Thorwarth D, Troost EGC, Upadhaya T, Valentini V, van Dijk LV, van Griethuysen J, van Velden FHP, Whybra P, Richter C, Lock S. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology. 2020 May;295(2):328-338. doi: 10.1148/radiol.2020191145. Epub 2020 Mar 10.
Results Reference
background
PubMed Identifier
28975929
Citation
Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017 Dec;14(12):749-762. doi: 10.1038/nrclinonc.2017.141. Epub 2017 Oct 4.
Results Reference
background
PubMed Identifier
29092951
Citation
van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts HJWL. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017 Nov 1;77(21):e104-e107. doi: 10.1158/0008-5472.CAN-17-0339.
Results Reference
background
PubMed Identifier
32914033
Citation
Himoto Y, Veeraraghavan H, Zheng J, Zamarin D, Snyder A, Capanu M, Nougaret S, Vargas HA, Shitano F, Callahan M, Wang W, Sala E, Lakhman Y. Computed Tomography-Derived Radiomic Metrics Can Identify Responders to Immunotherapy in Ovarian Cancer. JCO Precis Oncol. 2019 Aug 15;3:PO.19.00038. doi: 10.1200/PO.19.00038. eCollection 2019.
Results Reference
background
PubMed Identifier
29203879
Citation
Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG, James JA, Salto-Tellez M, Hamilton PW. QuPath: Open source software for digital pathology image analysis. Sci Rep. 2017 Dec 4;7(1):16878. doi: 10.1038/s41598-017-17204-5.
Results Reference
background
PubMed Identifier
31921281
Citation
Simidjievski N, Bodnar C, Tariq I, Scherer P, Andres Terre H, Shams Z, Jamnik M, Lio P. Variational Autoencoders for Cancer Data Integration: Design Principles and Computational Practice. Front Genet. 2019 Dec 11;10:1205. doi: 10.3389/fgene.2019.01205. eCollection 2019.
Results Reference
background
PubMed Identifier
32914032
Citation
Weigelt B, Vargas HA, Selenica P, Geyer FC, Mazaheri Y, Blecua P, Conlon N, Hoang LN, Jungbluth AA, Snyder A, Ng CKY, Papanastasiou AD, Sosa RE, Soslow RA, Chi DS, Gardner GJ, Shen R, Reis-Filho JS, Sala E. Radiogenomics Analysis of Intratumor Heterogeneity in a Patient With High-Grade Serous Ovarian Cancer. JCO Precis Oncol. 2019 Jun 6;3:PO.18.00410. doi: 10.1200/PO.18.00410. eCollection 2019. No abstract available.
Results Reference
background

Learn more about this trial

Unravelling Tumour Biology In Ovarian Cancer With Precision Imaging

We'll reach out to this number within 24 hrs