Vertical position of soft tissue (VPS)
A tooth-supported Essix stent will be used to record the distance from three reference marks (mesial papilla, midbuccal margin, and distal papilla) to the free gingival margin using a color-coded probe (15mm, UNC). The same stent will be used for measurements at the different follow-up visits. (Bittner et al. 2020)
Vertical position of soft tissue (VPS)
A tooth-supported Essix stent will be used to record the distance from three reference marks (mesial papilla, midbuccal margin, and distal papilla) to the free gingival margin using a color-coded probe (15mm, UNC). The same stent will be used for measurements at the different follow-up visits. (Bittner et al. 2020)
Vertical position of soft tissue (VPS)
A tooth-supported Essix stent will be used to record the distance from three reference marks (mesial papilla, midbuccal margin, and distal papilla) to the free gingival margin using a color-coded probe (15mm, UNC). The same stent will be used for measurements at the different follow-up visits. (Bittner et al. 2020)
Vertical position of soft tissue (VPS)
A tooth-supported Essix stent will be used to record the distance from three reference marks (mesial papilla, midbuccal margin, and distal papilla) to the free gingival margin using a color-coded probe (15mm, UNC). The same stent will be used for measurements at the different follow-up visits. (Bittner et al. 2020)
Vertical position of soft tissue (VPS)
A tooth-supported Essix stent will be used to record the distance from three reference marks (mesial papilla, midbuccal margin, and distal papilla) to the free gingival margin using a color-coded probe (15mm, UNC). The same stent will be used for measurements at the different follow-up visits. (Bittner et al. 2020)
Vertical position of soft tissue (VPS)
A tooth-supported Essix stent will be used to record the distance from three reference marks (mesial papilla, midbuccal margin, and distal papilla) to the free gingival margin using a color-coded probe (15mm, UNC). The same stent will be used for measurements at the different follow-up visits. (Bittner et al. 2020)
Assessment of the linear volumetric changes
Impressions of the grafted sites will be taken including at least the two neighboring teeth and using a silicone impression material. Dental stone casts will be fabricated and optically scanned with a desktop 3D scanner. Digital models of each time-point per patient will be captured as stereolithography (STL) files. The images of the baseline and follow-up datasets will be superimposed and matched using the best-fit algorithm at the adjacent tooth surfaces. After definition of specific regions of interest (ROI), the software will calculated the volumetric changes measured in mm, which will correspond to the mean distance between the three surfaces representing the evaluated time-points. One buccal ROI will be defined: a trapezoid shape area between the gingival margins of the adjacent teeth, the mucogingival junction as apical and the interproximal areas as lateral borders. The measured will be kept constant in each patient and site over time. (Zeltner 2017)
Assessment of the linear volumetric changes
Impressions of the grafted sites will be taken including at least the two neighboring teeth and using a silicone impression material. Dental stone casts will be fabricated and optically scanned with a desktop 3D scanner. Digital models of each time-point per patient will be captured as stereolithography (STL) files. The images of the baseline and follow-up datasets will be superimposed and matched using the best-fit algorithm at the adjacent tooth surfaces. After definition of specific regions of interest (ROI), the software will calculated the volumetric changes measured in mm, which will correspond to the mean distance between the three surfaces representing the evaluated time-points. One buccal ROI will be defined: a trapezoid shape area between the gingival margins of the adjacent teeth, the mucogingival junction as apical and the interproximal areas as lateral borders. The measured will be kept constant in each patient and site over time. (Zeltner 2017)
Assessment of the linear volumetric changes
Impressions of the grafted sites will be taken including at least the two neighboring teeth and using a silicone impression material. Dental stone casts will be fabricated and optically scanned with a desktop 3D scanner. Digital models of each time-point per patient will be captured as stereolithography (STL) files. The images of the baseline and follow-up datasets will be superimposed and matched using the best-fit algorithm at the adjacent tooth surfaces. After definition of specific regions of interest (ROI), the software will calculated the volumetric changes measured in mm, which will correspond to the mean distance between the three surfaces representing the evaluated time-points. One buccal ROI will be defined: a trapezoid shape area between the gingival margins of the adjacent teeth, the mucogingival junction as apical and the interproximal areas as lateral borders. The measured will be kept constant in each patient and site over time. (Zeltner 2017)
Assessment of the linear volumetric changes
Impressions of the grafted sites will be taken including at least the two neighboring teeth and using a silicone impression material. Dental stone casts will be fabricated and optically scanned with a desktop 3D scanner. Digital models of each time-point per patient will be captured as stereolithography (STL) files. The images of the baseline and follow-up datasets will be superimposed and matched using the best-fit algorithm at the adjacent tooth surfaces. After definition of specific regions of interest (ROI), the software will calculated the volumetric changes measured in mm, which will correspond to the mean distance between the three surfaces representing the evaluated time-points. One buccal ROI will be defined: a trapezoid shape area between the gingival margins of the adjacent teeth, the mucogingival junction as apical and the interproximal areas as lateral borders. The measured will be kept constant in each patient and site over time. (Zeltner 2017)
Assessment of the linear volumetric changes
Impressions of the grafted sites will be taken including at least the two neighboring teeth and using a silicone impression material. Dental stone casts will be fabricated and optically scanned with a desktop 3D scanner. Digital models of each time-point per patient will be captured as stereolithography (STL) files. The images of the baseline and follow-up datasets will be superimposed and matched using the best-fit algorithm at the adjacent tooth surfaces. After definition of specific regions of interest (ROI), the software will calculated the volumetric changes measured in mm, which will correspond to the mean distance between the three surfaces representing the evaluated time-points. One buccal ROI will be defined: a trapezoid shape area between the gingival margins of the adjacent teeth, the mucogingival junction as apical and the interproximal areas as lateral borders. The measured will be kept constant in each patient and site over time. (Zeltner 2017)
Pink Esthetic Score (PES)
PES is based on seven variables: mesial papilla, distal papilla, soft-tissue level, soft- tissue contour, alveolar process deficiency, soft-tissue colour and texture. Each variable will be assessed with a 2-1-0 score, with 2 being the best and 0 being the poorest score. The papillae values will be evaluated for completeness, incompleteness or absence. Other variables will be assessed by comparison with a reference tooth. The highest possible score reflecting a perfect match of the peri-implant soft tissue with that of the reference tooth will be 14. (Furhauser et al. 2005)
Pink Esthetic Score (PES)
PES is based on seven variables: mesial papilla, distal papilla, soft-tissue level, soft- tissue contour, alveolar process deficiency, soft-tissue colour and texture. Each variable will be assessed with a 2-1-0 score, with 2 being the best and 0 being the poorest score. The papillae values will be evaluated for completeness, incompleteness or absence. Other variables will be assessed by comparison with a reference tooth. The highest possible score reflecting a perfect match of the peri-implant soft tissue with that of the reference tooth will be 14. (Furhauser et al. 2005)
Pink Esthetic Score (PES)
PES is based on seven variables: mesial papilla, distal papilla, soft-tissue level, soft- tissue contour, alveolar process deficiency, soft-tissue colour and texture. Each variable will be assessed with a 2-1-0 score, with 2 being the best and 0 being the poorest score. The papillae values will be evaluated for completeness, incompleteness or absence. Other variables will be assessed by comparison with a reference tooth. The highest possible score reflecting a perfect match of the peri-implant soft tissue with that of the reference tooth will be 14. (Furhauser et al. 2005)
Pink Esthetic Score (PES)
PES is based on seven variables: mesial papilla, distal papilla, soft-tissue level, soft- tissue contour, alveolar process deficiency, soft-tissue colour and texture. Each variable will be assessed with a 2-1-0 score, with 2 being the best and 0 being the poorest score. The papillae values will be evaluated for completeness, incompleteness or absence. Other variables will be assessed by comparison with a reference tooth. The highest possible score reflecting a perfect match of the peri-implant soft tissue with that of the reference tooth will be 14. (Furhauser et al. 2005)
Papillae index (PI)
The statuses of the mesial and distal papilla will be assessed using the Papillae index (from 0 to 3). (Jemt et al. 1997)
Papillae index (PI)
The statuses of the mesial and distal papilla will be assessed using the Papillae index (from 0 to 3). (Jemt et al. 1997)
Papillae index (PI)
The statuses of the mesial and distal papilla will be assessed using the Papillae index (from 0 to 3). (Jemt et al. 1997)
Papillae index (PI)
The statuses of the mesial and distal papilla will be assessed using the Papillae index (from 0 to 3). (Jemt et al. 1997)
Papillae index (PI)
The statuses of the mesial and distal papilla will be assessed using the Papillae index (from 0 to 3). (Jemt et al. 1997)
Papillae index (PI)
The statuses of the mesial and distal papilla will be assessed using the Papillae index (from 0 to 3). (Jemt et al. 1997)
Width of keratinized tissue (WKT)
WKT will be measured, with a periodontal probe (mm), mid-facially from the gingival margin to the muco-gingival junction of the intended extracted tooth or the implant supported restoration.
Width of keratinized tissue (WKT)
WKT will be measured, with a periodontal probe (mm), mid-facially from the gingival margin to the muco-gingival junction of the intended extracted tooth or the implant supported restoration.
Width of keratinized tissue (WKT)
WKT will be measured, with a periodontal probe (mm), mid-facially from the gingival margin to the muco-gingival junction of the intended extracted tooth or the implant supported restoration.
Width of keratinized tissue (WKT)
WKT will be measured, with a periodontal probe (mm), mid-facially from the gingival margin to the muco-gingival junction of the intended extracted tooth or the implant supported restoration.
Width of keratinized tissue (WKT)
WKT will be measured, with a periodontal probe (mm), mid-facially from the gingival margin to the muco-gingival junction of the intended extracted tooth or the implant supported restoration.
Peri-implant marginal bone level (MBL)
MBL will be measured on intraoral radiographs at the mesial and distal aspects (m and d). It will be set as the distance between the reference point and the most apical point of contact between the implant surface and the bone. The reference point will be the fixture-abutment interface. Digital intraoral periapical radiographs will be taken using a parallel cone technique with digital sensor. A paralleling device and individualized bite blocks made of polyvinyl siloxane impression material will be used for the standardization of the X-ray geometry. Calibration will be performed using the known thread-pitch distance of the implants. Measurements will be taken to the nearest millimeter using computer software.
Peri-implant marginal bone level (MBL)
MBL will be measured on intraoral radiographs at the mesial and distal aspects (m and d). It will be set as the distance between the reference point and the most apical point of contact between the implant surface and the bone. The reference point will be the fixture-abutment interface. Digital intraoral periapical radiographs will be taken using a parallel cone technique with digital sensor. A paralleling device and individualized bite blocks made of polyvinyl siloxane impression material will be used for the standardization of the X-ray geometry. Calibration will be performed using the known thread-pitch distance of the implants. Measurements will be taken to the nearest millimeter using computer software.
Peri-implant marginal bone level (MBL)
MBL will be measured on intraoral radiographs at the mesial and distal aspects (m and d). It will be set as the distance between the reference point and the most apical point of contact between the implant surface and the bone. The reference point will be the fixture-abutment interface. Digital intraoral periapical radiographs will be taken using a parallel cone technique with digital sensor. A paralleling device and individualized bite blocks made of polyvinyl siloxane impression material will be used for the standardization of the X-ray geometry. Calibration will be performed using the known thread-pitch distance of the implants. Measurements will be taken to the nearest millimeter using computer software.
Peri-implant marginal bone level (MBL)
MBL will be measured on intraoral radiographs at the mesial and distal aspects (m and d). It will be set as the distance between the reference point and the most apical point of contact between the implant surface and the bone. The reference point will be the fixture-abutment interface. Digital intraoral periapical radiographs will be taken using a parallel cone technique with digital sensor. A paralleling device and individualized bite blocks made of polyvinyl siloxane impression material will be used for the standardization of the X-ray geometry. Calibration will be performed using the known thread-pitch distance of the implants. Measurements will be taken to the nearest millimeter using computer software.
Peri-implant marginal bone level (MBL)
MBL will be measured on intraoral radiographs at the mesial and distal aspects (m and d). It will be set as the distance between the reference point and the most apical point of contact between the implant surface and the bone. The reference point will be the fixture-abutment interface. Digital intraoral periapical radiographs will be taken using a parallel cone technique with digital sensor. A paralleling device and individualized bite blocks made of polyvinyl siloxane impression material will be used for the standardization of the X-ray geometry. Calibration will be performed using the known thread-pitch distance of the implants. Measurements will be taken to the nearest millimeter using computer software.
Phenotype
It will be based on the lack of transparency of a periodontal probe through the gingival margin when probing the buccal sulcus of the failing tooth (De Rouck et al. 2009).
Phenotype
It will be based on the lack of transparency of a periodontal probe through the gingival margin when probing the buccal sulcus of the failing tooth (De Rouck et al. 2009).
Phenotype
It will be based on the lack of transparency of a periodontal probe through the gingival margin when probing the buccal sulcus of the failing tooth (De Rouck et al. 2009).
Phenotype
It will be based on the lack of transparency of a periodontal probe through the gingival margin when probing the buccal sulcus of the failing tooth (De Rouck et al. 2009).
Phenotype
It will be based on the lack of transparency of a periodontal probe through the gingival margin when probing the buccal sulcus of the failing tooth (De Rouck et al. 2009).
Probing pocket depth (PD)
probing pocket depth using a manual periodontal probe at the mesio-buccal, mid-buccal, and disto-buccal and mid-palatal aspect. The distance measured from the base of the pocket to the most apical point on the gingival margin, expressed in millimeters (Mombelli et al., 1987).
Probing pocket depth (PD)
probing pocket depth using a manual periodontal probe at the mesio-buccal, mid-buccal, and disto-buccal and mid-palatal aspect.The distance measured from the base of the pocket to the most apical point on the gingival margin, expressed in millimeters (Mombelli et al., 1987).
Probing pocket depth (PD)
probing pocket depth using a manual periodontal probe at the mesio-buccal, mid-buccal, and disto-buccal and mid-palatal aspect.The distance measured from the base of the pocket to the most apical point on the gingival margin, expressed in millimeters (Mombelli et al., 1987).
Probing pocket depth (PD)
probing pocket depth using a manual periodontal probe at the mesio-buccal, mid-buccal, and disto-buccal and mid-palatal aspect.The distance measured from the base of the pocket to the most apical point on the gingival margin, expressed in millimeters (Mombelli et al., 1987).
Probing pocket depth (PD)
probing pocket depth using a manual periodontal probe at the mesio-buccal, mid-buccal, and disto-buccal and mid-palatal aspect.The distance measured from the base of the pocket to the most apical point on the gingival margin, expressed in millimeters (Mombelli et al., 1987).
Modified Plaque Index (mPI)
Modified Plaque Index (mPI) is a dental plaque scale as follows 0 = No plaque,
1 = Separate flecks of plaque at the cervical margin;2 = Plaque can be seen by naked eye.3 = Abundance of soft matter. The lower the number the less plaque is present on the tooth. (Mombelli et al., 1987);
Modified Plaque Index (mPI)
Modified Plaque Index (mPI) is a dental plaque scale as follows 0 = No plaque,
1 = Separate flecks of plaque at the cervical margin;2 = Plaque can be seen by naked eye.3 = Abundance of soft matter. The lower the number the less plaque is present on the tooth. (Mombelli et al., 1987);
Modified Plaque Index (mPI)
Modified Plaque Index (mPI) is a dental plaque scale as follows 0 = No plaque,
1 = Separate flecks of plaque at the cervical margin;2 = Plaque can be seen by naked eye.3 = Abundance of soft matter. The lower the number the less plaque is present on the tooth. (Mombelli et al., 1987);
Modified Plaque Index (mPI)
Modified Plaque Index (mPI) is a dental plaque scale as follows 0 = No plaque,
1 = Separate flecks of plaque at the cervical margin;2 = Plaque can be seen by naked eye.3 = Abundance of soft matter. The lower the number the less plaque is present on the tooth. (Mombelli et al., 1987);
Modified Plaque Index (mPI)
Modified Plaque Index (mPI) is a dental plaque scale as follows 0 = No plaque,
1 = Separate flecks of plaque at the cervical margin;2 = Plaque can be seen by naked eye.3 = Abundance of soft matter. The lower the number the less plaque is present on the tooth. (Mombelli et al., 1987);
Gingival bleeding on probing (BoP)
Gingival bleeding on probing (BOP) using the modified sulcus bleeding index for implants. Scale equals 0 = No bleeding when periodontal probe is passed along the gingival margin;1 = Isolated bleeding spots visible;2 = Blood forms a confluent red line on the gingival margin;3 = Heavy or profuse bleeding. (Mombelli et al., 1987).
Gingival bleeding on probing (BoP)
Gingival bleeding on probing (BOP) using the modified sulcus bleeding index for implants. Scale equals 0 = No bleeding when periodontal probe is passed along the gingival margin;1 = Isolated bleeding spots visible;2 = Blood forms a confluent red line on the gingival margin;3 = Heavy or profuse bleeding. (Mombelli et al., 1987).
Gingival bleeding on probing (BoP)
Gingival bleeding on probing (BOP) using the modified sulcus bleeding index for implants. Scale equals 0 = No bleeding when periodontal probe is passed along the gingival margin;1 = Isolated bleeding spots visible;2 = Blood forms a confluent red line on the gingival margin;3 = Heavy or profuse bleeding. (Mombelli et al., 1987).
Gingival bleeding on probing (BoP)
Gingival bleeding on probing (BOP) using the modified sulcus bleeding index for implants. Scale equals 0 = No bleeding when periodontal probe is passed along the gingival margin;1 = Isolated bleeding spots visible;2 = Blood forms a confluent red line on the gingival margin;3 = Heavy or profuse bleeding. (Mombelli et al., 1987).
Gingival bleeding on probing (BoP)
Gingival bleeding on probing (BOP) using the modified sulcus bleeding index for implants. Scale equals 0 = No bleeding when periodontal probe is passed along the gingival margin;1 = Isolated bleeding spots visible;2 = Blood forms a confluent red line on the gingival margin;3 = Heavy or profuse bleeding. (Mombelli et al., 1987).
Implant success
Implant failure and Implant success criteria will be recorded according to Buser et al.1990.
Implant success
Implant failure and Implant success criteria will be recorded according to Buser et al.1990.
Implant success
Implant failure and Implant success criteria will be recorded according to Buser et al.1990.
Implant success
Implant failure and Implant success criteria will be recorded according to Buser et al.1990.
Biological and technical complication
Complications from biological and technical nature (Pjetursson et al. 2012).
Biological and technical complication
Complications from biological and technical nature (Pjetursson et al. 2012).
Biological and technical complication
Complications from biological and technical nature (Pjetursson et al. 2012).
Biological and technical complication
Complications from biological and technical nature (Pjetursson et al. 2012).
Biological and technical complication
Complications from biological and technical nature (Pjetursson et al. 2012).
Biological and technical complication
Complications from biological and technical nature (Pjetursson et al. 2012).
Surgery time
The surgery time will be recorded in both groups to the closest minute from the start of the first incision to the accomplishment of the last suture.
Patient satisfaction OHIP-14
The Oral Health Impact Profile (OHIP-14) is a questionnaire addressed the following domains: functional limitation, physical pain, psychological discomfort, physical disability, psycho- logical disability, social disability and handicap. These domains were evaluated by 2 questions each and scored by means of a 5-point Likert scale resulting in a total OHIP score ranging from 14 to 70 with higher scores being indicative of more discomfort in daily life. (Slade & Spencer, 1994)
Patient satisfaction OHIP-14
The Oral Health Impact Profile (OHIP-14) is a questionnaire addressed the following domains: functional limitation, physical pain, psychological discomfort, physical disability, psycho- logical disability, social disability and handicap. These domains were evaluated by 2 questions each and scored by means of a 5-point Likert scale resulting in a total OHIP score ranging from 14 to 70 with higher scores being indicative of more discomfort in daily life. (Slade & Spencer, 1994)
Patient satisfaction OHIP-14
The Oral Health Impact Profile (OHIP-14) is a questionnaire addressed the following domains: functional limitation, physical pain, psychological discomfort, physical disability, psycho- logical disability, social disability and handicap. These domains were evaluated by 2 questions each and scored by means of a 5-point Likert scale resulting in a total OHIP score ranging from 14 to 70 with higher scores being indicative of more discomfort in daily life. (Slade & Spencer, 1994)
Patient satisfaction OHIP-14
The Oral Health Impact Profile (OHIP-14) is a questionnaire addressed the following domains: functional limitation, physical pain, psychological discomfort, physical disability, psycho- logical disability, social disability and handicap. These domains were evaluated by 2 questions each and scored by means of a 5-point Likert scale resulting in a total OHIP score ranging from 14 to 70 with higher scores being indicative of more discomfort in daily life. (Slade & Spencer, 1994)
Patient satisfaction OHIP-14
The Oral Health Impact Profile (OHIP-14) is a questionnaire addressed the following domains: functional limitation, physical pain, psychological discomfort, physical disability, psycho- logical disability, social disability and handicap. These domains were evaluated by 2 questions each and scored by means of a 5-point Likert scale resulting in a total OHIP score ranging from 14 to 70 with higher scores being indicative of more discomfort in daily life. (Slade & Spencer, 1994)
Patient satisfaction VAS
Patients were asked to respond to the following question on a Visual analogic scale: "How satisfied are you with the overall aesthetic result?" and "How satisfied are you with the overall functional result?"."Most unsatisfied" and "most satisfied" were indicated as extremes on the 100-mm lines.
Patient satisfaction VAS
Patients were asked to respond to the following question on a Visual analogic scale: "How satisfied are you with the overall aesthetic result?" and "How satisfied are you with the overall functional result?"."Most unsatisfied" and "most satisfied" were indicated as extremes on the 100-mm lines.
Patient satisfaction VAS
Patients were asked to respond to the following question on a Visual analogic scale: "How satisfied are you with the overall aesthetic result?" and "How satisfied are you with the overall functional result?"."Most unsatisfied" and "most satisfied" were indicated as extremes on the 100-mm lines.
Patient satisfaction VAS
Patients were asked to respond to the following question on a Visual analogic scale: "How satisfied are you with the overall aesthetic result?" and "How satisfied are you with the overall functional result?"."Most unsatisfied" and "most satisfied" were indicated as extremes on the 100-mm lines.
Patient satisfaction VAS
Patients were asked to respond to the following question on a Visual analogic scale: "How satisfied are you with the overall aesthetic result?" and "How satisfied are you with the overall functional result?"."Most unsatisfied" and "most satisfied" were indicated as extremes on the 100-mm lines.