search
Back to results

Echocardiography Predictive of the Inefficacy and/or of the Unsafeness of Recruitment Maneuvers in Patients With Acute Respiratory Distress Syndrome. (RV STAR)

Primary Purpose

Acute Respiratory Distress Syndrome

Status
Completed
Phase
Not Applicable
Locations
France
Study Type
Interventional
Intervention
Echocardiography
Sponsored by
Centre Hospitalier Universitaire de Besancon
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional screening trial for Acute Respiratory Distress Syndrome focused on measuring Acute respiratory distress syndrome, Echocardiography, Recruitment maneuver

Eligibility Criteria

18 Years - undefined (Adult, Older Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria:

  • Endotracheal mechanical ventilation for acute hypoxemic respiratory failure lasting for one week or less
  • A ratio of the partial pressure of arterial oxygen (PaO2 measured in millimeters of mercury) to the fraction of inspired oxygen (FiO2 which is unitless) of 300 mmHg or less and inspired fraction of oxygen FiO2 of more than 50 %
  • A positive end-expiratory pressure of 5 cm of water or higher
  • A tidal volume of 6 to 8 ml per kilogram of predicted body weight
  • Bilateral opacities on chest radiography not fully explained by effusions, lobar/lung collapse, or nodules
  • Respiratory failure not fully explained by cardiac failure or fluid overload
  • Written and informed consent
  • Adult patients at least 18 years of age
  • Ventilatory criteria (PaO2/FiO2 of 300 mmHg or less and Positive End Expiratory Pressure of 5 cm of water or higher) and radiologic criteria (Bilateral opacities on chest radiography not fully explained by effusions, lobar/lung collapse, or nodules) lasting more than 24 hours

Exclusion Criteria:

  • Endotracheal mechanical ventilation for acute hypoxemic respiratory failure lasting for more than one week
  • Age younger than 18 years old
  • No written and informed consent
  • Known pregnancy and/or breastfeeding
  • Increased intracranial pressure
  • A ratio of the partial pressure of arterial oxygen (PaO2 measured in millimeters of mercury) to the fraction of inspired oxygen (FiO2 which is unitless) higher than 300 mmHg
  • Positive end expiratory pressure of less than 5 mmHg
  • Ventilatory criteria (PaO2/FiO2 of 300 mmHg or less and Positive End Expiratory Pressure of 5 cm of water or higher) and radiologic criteria (Bilateral opacities on chest radiography not fully explained by effusions, lobar/lung collapse, or nodules) lasting less than 24 hours
  • Severe chronic respiratory disease requiring long-term oxygen therapy or mechanical ventilation at home
  • Severe chronic liver disease
  • Barotrauma such as pneumothorax
  • Hemodynamic failure needing more than 3 milligrams per hour of noradrenalin and/or more than 2 milligrams per hour of adrenalin and or rising doses of vasopressors and/or vascular filling exceeding 500 milliliters in the preceding hour
  • Arrhythmias such as : ventricular tachycardia, ventricular fibrillation, third degree atrioventricular block
  • Atrial fibrillation

Sites / Locations

  • CHU Besançon

Arms of the Study

Arm 1

Arm Type

Other

Arm Label

Echocardiography

Arm Description

An echocardiography will be systematically realised in all the patients included in the study in order to evaluate whether any echocardiographic criterion exploring the right ventricle can predict the efficacy and/or safeness of recruitment maneuvers in patients suffering from acute respiratory distress syndrome.

Outcomes

Primary Outcome Measures

Efficacy and safety of recruitment maneuvers in patients with Acute Respiratory Distress Syndrome.
A recruitment maneuver is considered effective if the partial pressure of oxygen in arterial blood PaO2 measured one hour after the completion of recruitment maneuver is 20 % higher than PaO2 before recruitment maneuver. A recruitment maneuver is considered unsafe if systolic arterial pressure decreases 40 % under its value before recruitment maneuver and/or if systolic arterial pressure decreases under 70 mmHg and/or if arrhythmias (third degree atrio-ventricular block, ventricular tachycardia, ventricular fibrillation, atrial fibrillation)occur during the achievement of recruitment maneuver in patients suffering from Acute Respiratory Distress Syndrome. Can echocardiography predict the inefficacy and/or unsafeness of recruitment maneuvers in patients suffering from Acute Respiratory Distress Syndrom ?

Secondary Outcome Measures

Feasibility of the measurement of Longitudinal Strain and Strain Rate of the right ventricle in patients suffering from Acute Respiratory Distress Syndrome.
Collecting echocardiographic criteria exploring the right ventricle is particularly difficult, especially in patients suffering from Acute Respiratory Distress Syndrome. One of the aims of the study RVSTAR is to evaluate if the measurement of Longitudinal Strain and Strain Rate of the right ventricle is feasible. At the end of the study, the feasibility of the measurement of Longitudinal Strain and Strain Rate of the right ventricle will be determined by the proportion of patients (among all the patients included) in whom these echocardiographic criteria (Longitudinal Strain and Strain Rate of the right ventricle) have been realised successfully.
Comparison of the results of echocardiographic measurements between the group CONTROL and the group FAILURE.
Is there any statistical difference in the echocardiographic measurements exploring the right ventricle in the group CONTROL (the recruitment maneuver has been safe and effective) and the group FAILURE (the recruitment maneuver has not been safe and /or has not been effective)? The echocardiographic measurements assessed (and compared between the 2 groups) will be the following ones : right heart dimensions (diameter at the base and at the mid-level of the right ventricle, longitudinal dimension of the right ventricle), right ventricle wall thickness, tricuspid annular plane systolic excursion, two-dimensional fractional area change, two-dimensional right ventricle ejection fraction,tissue Doppler-derived tricuspid lateral annular systolic velocity, longitudinal strain and strain rate, pulsed Doppler of the tricuspid inflow, tissue Doppler of the lateral tricuspid annulus, pulsed Doppler of the hepatic vein, measurements of inferior vena cava, tricuspid regurgitation velocity
Evaluate the effect of the inefficacy and/or of the unsafeness of the recruitment maneuver on the future of the patient suffering from Acute Respiratory Distress Syndrome.
One of the aims of the study RVSTAR is to evaluate if there is an effect of the inefficacy and/or the unsafeness of the recruitment maneuver on mortality (proportion of patients who died within 30 days after study enrollment), on the duration of invasive mechanical ventilation (number of days under mechanical ventilation from the study enrollment until discharge from the intensive care unit), on the length of stay in the intensive care unit (number of days spent in the intensive care unit) and on organ failure (renal failure defined by the need for renal replacement therapy, hemodynamic failure defined by the need for vascular filling exceeding 50 ml per kilogram of body weight and/or the need for vasopressors and/or for the need for rising doses of vasopressors) in patients suffering from Acute Respiratory Distress Syndrome.

Full Information

First Posted
January 13, 2013
Last Updated
January 30, 2017
Sponsor
Centre Hospitalier Universitaire de Besancon
search

1. Study Identification

Unique Protocol Identification Number
NCT01768949
Brief Title
Echocardiography Predictive of the Inefficacy and/or of the Unsafeness of Recruitment Maneuvers in Patients With Acute Respiratory Distress Syndrome.
Acronym
RV STAR
Official Title
Identification of Echocardiographic Criteria Predictive of the Inefficacy and/or the Unsafeness of Recruitment Maneuvers in Patients Suffering From Acute Respiratory Distress Syndrome
Study Type
Interventional

2. Study Status

Record Verification Date
January 2017
Overall Recruitment Status
Completed
Study Start Date
February 2013 (undefined)
Primary Completion Date
January 2017 (Actual)
Study Completion Date
January 2017 (Actual)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Principal Investigator
Name of the Sponsor
Centre Hospitalier Universitaire de Besancon

4. Oversight

Data Monitoring Committee
Yes

5. Study Description

Brief Summary
The purpose of the study RVSTAR is to evaluate whether echocardiographic criteria exploring the right ventricle can predict the inefficacy and/or the unsafeness of recruitment maneuvers in patients suffering from acute respiratory distress syndrome

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Acute Respiratory Distress Syndrome
Keywords
Acute respiratory distress syndrome, Echocardiography, Recruitment maneuver

7. Study Design

Primary Purpose
Screening
Study Phase
Not Applicable
Interventional Study Model
Single Group Assignment
Masking
None (Open Label)
Allocation
N/A
Enrollment
30 (Actual)

8. Arms, Groups, and Interventions

Arm Title
Echocardiography
Arm Type
Other
Arm Description
An echocardiography will be systematically realised in all the patients included in the study in order to evaluate whether any echocardiographic criterion exploring the right ventricle can predict the efficacy and/or safeness of recruitment maneuvers in patients suffering from acute respiratory distress syndrome.
Intervention Type
Device
Intervention Name(s)
Echocardiography
Intervention Description
In the study RVSTAR, all the patients included will undergo an echocardiography in order to find an echocardiographic criterion predictive of the inefficacy and/or unsafeness of recruitment maneuver.
Primary Outcome Measure Information:
Title
Efficacy and safety of recruitment maneuvers in patients with Acute Respiratory Distress Syndrome.
Description
A recruitment maneuver is considered effective if the partial pressure of oxygen in arterial blood PaO2 measured one hour after the completion of recruitment maneuver is 20 % higher than PaO2 before recruitment maneuver. A recruitment maneuver is considered unsafe if systolic arterial pressure decreases 40 % under its value before recruitment maneuver and/or if systolic arterial pressure decreases under 70 mmHg and/or if arrhythmias (third degree atrio-ventricular block, ventricular tachycardia, ventricular fibrillation, atrial fibrillation)occur during the achievement of recruitment maneuver in patients suffering from Acute Respiratory Distress Syndrome. Can echocardiography predict the inefficacy and/or unsafeness of recruitment maneuvers in patients suffering from Acute Respiratory Distress Syndrom ?
Time Frame
Up to 2 years
Secondary Outcome Measure Information:
Title
Feasibility of the measurement of Longitudinal Strain and Strain Rate of the right ventricle in patients suffering from Acute Respiratory Distress Syndrome.
Description
Collecting echocardiographic criteria exploring the right ventricle is particularly difficult, especially in patients suffering from Acute Respiratory Distress Syndrome. One of the aims of the study RVSTAR is to evaluate if the measurement of Longitudinal Strain and Strain Rate of the right ventricle is feasible. At the end of the study, the feasibility of the measurement of Longitudinal Strain and Strain Rate of the right ventricle will be determined by the proportion of patients (among all the patients included) in whom these echocardiographic criteria (Longitudinal Strain and Strain Rate of the right ventricle) have been realised successfully.
Time Frame
Up to 2 years
Title
Comparison of the results of echocardiographic measurements between the group CONTROL and the group FAILURE.
Description
Is there any statistical difference in the echocardiographic measurements exploring the right ventricle in the group CONTROL (the recruitment maneuver has been safe and effective) and the group FAILURE (the recruitment maneuver has not been safe and /or has not been effective)? The echocardiographic measurements assessed (and compared between the 2 groups) will be the following ones : right heart dimensions (diameter at the base and at the mid-level of the right ventricle, longitudinal dimension of the right ventricle), right ventricle wall thickness, tricuspid annular plane systolic excursion, two-dimensional fractional area change, two-dimensional right ventricle ejection fraction,tissue Doppler-derived tricuspid lateral annular systolic velocity, longitudinal strain and strain rate, pulsed Doppler of the tricuspid inflow, tissue Doppler of the lateral tricuspid annulus, pulsed Doppler of the hepatic vein, measurements of inferior vena cava, tricuspid regurgitation velocity
Time Frame
Up to 2 years
Title
Evaluate the effect of the inefficacy and/or of the unsafeness of the recruitment maneuver on the future of the patient suffering from Acute Respiratory Distress Syndrome.
Description
One of the aims of the study RVSTAR is to evaluate if there is an effect of the inefficacy and/or the unsafeness of the recruitment maneuver on mortality (proportion of patients who died within 30 days after study enrollment), on the duration of invasive mechanical ventilation (number of days under mechanical ventilation from the study enrollment until discharge from the intensive care unit), on the length of stay in the intensive care unit (number of days spent in the intensive care unit) and on organ failure (renal failure defined by the need for renal replacement therapy, hemodynamic failure defined by the need for vascular filling exceeding 50 ml per kilogram of body weight and/or the need for vasopressors and/or for the need for rising doses of vasopressors) in patients suffering from Acute Respiratory Distress Syndrome.
Time Frame
Up to 2 years

10. Eligibility

Sex
All
Minimum Age & Unit of Time
18 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: Endotracheal mechanical ventilation for acute hypoxemic respiratory failure lasting for one week or less A ratio of the partial pressure of arterial oxygen (PaO2 measured in millimeters of mercury) to the fraction of inspired oxygen (FiO2 which is unitless) of 300 mmHg or less and inspired fraction of oxygen FiO2 of more than 50 % A positive end-expiratory pressure of 5 cm of water or higher A tidal volume of 6 to 8 ml per kilogram of predicted body weight Bilateral opacities on chest radiography not fully explained by effusions, lobar/lung collapse, or nodules Respiratory failure not fully explained by cardiac failure or fluid overload Written and informed consent Adult patients at least 18 years of age Ventilatory criteria (PaO2/FiO2 of 300 mmHg or less and Positive End Expiratory Pressure of 5 cm of water or higher) and radiologic criteria (Bilateral opacities on chest radiography not fully explained by effusions, lobar/lung collapse, or nodules) lasting more than 24 hours Exclusion Criteria: Endotracheal mechanical ventilation for acute hypoxemic respiratory failure lasting for more than one week Age younger than 18 years old No written and informed consent Known pregnancy and/or breastfeeding Increased intracranial pressure A ratio of the partial pressure of arterial oxygen (PaO2 measured in millimeters of mercury) to the fraction of inspired oxygen (FiO2 which is unitless) higher than 300 mmHg Positive end expiratory pressure of less than 5 mmHg Ventilatory criteria (PaO2/FiO2 of 300 mmHg or less and Positive End Expiratory Pressure of 5 cm of water or higher) and radiologic criteria (Bilateral opacities on chest radiography not fully explained by effusions, lobar/lung collapse, or nodules) lasting less than 24 hours Severe chronic respiratory disease requiring long-term oxygen therapy or mechanical ventilation at home Severe chronic liver disease Barotrauma such as pneumothorax Hemodynamic failure needing more than 3 milligrams per hour of noradrenalin and/or more than 2 milligrams per hour of adrenalin and or rising doses of vasopressors and/or vascular filling exceeding 500 milliliters in the preceding hour Arrhythmias such as : ventricular tachycardia, ventricular fibrillation, third degree atrioventricular block Atrial fibrillation
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Guillaume Besch
Organizational Affiliation
Centre Hospitalier Universitaire Besançon
Official's Role
Study Director
Facility Information:
Facility Name
CHU Besançon
City
Besançon
ZIP/Postal Code
25000
Country
France

12. IPD Sharing Statement

Citations:
PubMed Identifier
5331459
Citation
Morgan BC, Martin WE, Hornbein TF, Crawford EW, Guntheroth WG. Hemodynamic effects of intermittent positive pressure respiration. Anesthesiology. 1966 Sep-Oct;27(5):584-90. doi: 10.1097/00000542-196609000-00009. No abstract available.
Results Reference
background
PubMed Identifier
1986678
Citation
Fessler HE, Brower RG, Wise RA, Permutt S. Effects of positive end-expiratory pressure on the gradient for venous return. Am Rev Respir Dis. 1991 Jan;143(1):19-24. doi: 10.1164/ajrccm/143.1.19.
Results Reference
background
PubMed Identifier
1626812
Citation
Fessler HE, Brower RG, Wise RA, Permutt S. Effects of positive end-expiratory pressure on the canine venous return curve. Am Rev Respir Dis. 1992 Jul;146(1):4-10. doi: 10.1164/ajrccm/146.1.4.
Results Reference
background
PubMed Identifier
13784949
Citation
WHITTENBERGER JL, McGREGOR M, BERGLUND E, BORST HG. Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol. 1960 Sep;15:878-82. doi: 10.1152/jappl.1960.15.5.878. No abstract available.
Results Reference
background
PubMed Identifier
2291390
Citation
Versprille A. The pulmonary circulation during mechanical ventilation. Acta Anaesthesiol Scand Suppl. 1990;94:51-62. doi: 10.1111/j.1399-6576.1990.tb03223.x. No abstract available.
Results Reference
background
PubMed Identifier
3884583
Citation
Brower R, Wise RA, Hassapoyannes C, Bromberger-Barnea B, Permutt S. Effect of lung inflation on lung blood volume and pulmonary venous flow. J Appl Physiol (1985). 1985 Mar;58(3):954-63. doi: 10.1152/jappl.1985.58.3.954.
Results Reference
background
PubMed Identifier
12869360
Citation
Vieillard-Baron A, Chergui K, Augarde R, Prin S, Page B, Beauchet A, Jardin F. Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med. 2003 Sep 15;168(6):671-6. doi: 10.1164/rccm.200301-135OC. Epub 2003 Jul 17.
Results Reference
background
PubMed Identifier
3988674
Citation
Pinsky MR, Matuschak GM, Klain M. Determinants of cardiac augmentation by elevations in intrathoracic pressure. J Appl Physiol (1985). 1985 Apr;58(4):1189-98. doi: 10.1152/jappl.1985.58.4.1189.
Results Reference
background
PubMed Identifier
3545111
Citation
Abel JG, Salerno TA, Panos A, Greyson ND, Rice TW, Teoh K, Lichtenstein SV. Cardiovascular effects of positive pressure ventilation in humans. Ann Thorac Surg. 1987 Feb;43(2):198-206. doi: 10.1016/s0003-4975(10)60396-7.
Results Reference
background
PubMed Identifier
3053581
Citation
Fessler HE, Brower RG, Wise RA, Permutt S. Mechanism of reduced LV afterload by systolic and diastolic positive pleural pressure. J Appl Physiol (1985). 1988 Sep;65(3):1244-50. doi: 10.1152/jappl.1988.65.3.1244.
Results Reference
background
PubMed Identifier
22926653
Citation
Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, Brochard L, Brower R, Esteban A, Gattinoni L, Rhodes A, Slutsky AS, Vincent JL, Rubenfeld GD, Thompson BT, Ranieri VM. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012 Oct;38(10):1573-82. doi: 10.1007/s00134-012-2682-1. Epub 2012 Aug 25. Erratum In: Intensive Care Med. 2012 Oct;38(10):1731-2.
Results Reference
background
PubMed Identifier
10793162
Citation
Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000 May 4;342(18):1301-8. doi: 10.1056/NEJM200005043421801.
Results Reference
background
PubMed Identifier
15812622
Citation
Gattinoni L, Pesenti A. The concept of "baby lung". Intensive Care Med. 2005 Jun;31(6):776-84. doi: 10.1007/s00134-005-2627-z. Epub 2005 Apr 6.
Results Reference
background
PubMed Identifier
1469157
Citation
Lachmann B. Open up the lung and keep the lung open. Intensive Care Med. 1992;18(6):319-21. doi: 10.1007/BF01694358. No abstract available.
Results Reference
background
PubMed Identifier
8045147
Citation
Bond DM, McAloon J, Froese AB. Sustained inflations improve respiratory compliance during high-frequency oscillatory ventilation but not during large tidal volume positive-pressure ventilation in rabbits. Crit Care Med. 1994 Aug;22(8):1269-77. doi: 10.1097/00003246-199408000-00011.
Results Reference
background
PubMed Identifier
11505131
Citation
Fujino Y, Goddon S, Dolhnikoff M, Hess D, Amato MB, Kacmarek RM. Repetitive high-pressure recruitment maneuvers required to maximally recruit lung in a sheep model of acute respiratory distress syndrome. Crit Care Med. 2001 Aug;29(8):1579-86. doi: 10.1097/00003246-200108000-00014.
Results Reference
background
PubMed Identifier
11069832
Citation
Lu Q, Capderou A, Cluzel P, Mourgeon E, Abdennour L, Law-Koune JD, Straus C, Grenier P, Zelter M, Rouby JJ. A computed tomographic scan assessment of endotracheal suctioning-induced bronchoconstriction in ventilated sheep. Am J Respir Crit Care Med. 2000 Nov;162(5):1898-904. doi: 10.1164/ajrccm.162.5.2003105.
Results Reference
background
PubMed Identifier
11401882
Citation
Richard JC, Maggiore SM, Jonson B, Mancebo J, Lemaire F, Brochard L. Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med. 2001 Jun;163(7):1609-13. doi: 10.1164/ajrccm.163.7.2004215.
Results Reference
background
PubMed Identifier
12851763
Citation
Claesson J, Lehtipalo S, Winso O. Do lung recruitment maneuvers decrease gastric mucosal perfusion? Intensive Care Med. 2003 Aug;29(8):1314-21. doi: 10.1007/s00134-003-1830-z. Epub 2003 Jul 8.
Results Reference
background
PubMed Identifier
12029401
Citation
Bein T, Kuhr LP, Bele S, Ploner F, Keyl C, Taeger K. Lung recruitment maneuver in patients with cerebral injury: effects on intracranial pressure and cerebral metabolism. Intensive Care Med. 2002 May;28(5):554-8. doi: 10.1007/s00134-002-1273-y. Epub 2002 Apr 12.
Results Reference
background
PubMed Identifier
18776154
Citation
Fan E, Wilcox ME, Brower RG, Stewart TE, Mehta S, Lapinsky SE, Meade MO, Ferguson ND. Recruitment maneuvers for acute lung injury: a systematic review. Am J Respir Crit Care Med. 2008 Dec 1;178(11):1156-63. doi: 10.1164/rccm.200802-335OC. Epub 2008 Sep 5.
Results Reference
background
PubMed Identifier
10051265
Citation
Pelosi P, Cadringher P, Bottino N, Panigada M, Carrieri F, Riva E, Lissoni A, Gattinoni L. Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999 Mar;159(3):872-80. doi: 10.1164/ajrccm.159.3.9802090.
Results Reference
background
PubMed Identifier
9655699
Citation
Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med. 1998 Jul;158(1):3-11. doi: 10.1164/ajrccm.158.1.9708031.
Results Reference
background
PubMed Identifier
11964585
Citation
Grasso S, Mascia L, Del Turco M, Malacarne P, Giunta F, Brochard L, Slutsky AS, Marco Ranieri V. Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology. 2002 Apr;96(4):795-802. doi: 10.1097/00000542-200204000-00005.
Results Reference
background
PubMed Identifier
16855828
Citation
Vieillard-Baron A, Charron C, Chergui K, Peyrouset O, Jardin F. Bedside echocardiographic evaluation of hemodynamics in sepsis: is a qualitative evaluation sufficient? Intensive Care Med. 2006 Oct;32(10):1547-52. doi: 10.1007/s00134-006-0274-7. Epub 2006 Jul 20.
Results Reference
background
PubMed Identifier
6744546
Citation
Lewis JF, Kuo LC, Nelson JG, Limacher MC, Quinones MA. Pulsed Doppler echocardiographic determination of stroke volume and cardiac output: clinical validation of two new methods using the apical window. Circulation. 1984 Sep;70(3):425-31. doi: 10.1161/01.cir.70.3.425.
Results Reference
background
PubMed Identifier
3392336
Citation
Appleton CP, Hatle LK, Popp RL. Relation of transmitral flow velocity patterns to left ventricular diastolic function: new insights from a combined hemodynamic and Doppler echocardiographic study. J Am Coll Cardiol. 1988 Aug;12(2):426-40. doi: 10.1016/0735-1097(88)90416-0.
Results Reference
background
PubMed Identifier
19270053
Citation
Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelisa A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr. 2009 Mar;10(2):165-93. doi: 10.1093/ejechocard/jep007. No abstract available.
Results Reference
background
PubMed Identifier
9015003
Citation
Garcia MJ, Ares MA, Asher C, Rodriguez L, Vandervoort P, Thomas JD. An index of early left ventricular filling that combined with pulsed Doppler peak E velocity may estimate capillary wedge pressure. J Am Coll Cardiol. 1997 Feb;29(2):448-54. doi: 10.1016/s0735-1097(96)00496-2.
Results Reference
background
PubMed Identifier
20620859
Citation
Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010 Jul;23(7):685-713; quiz 786-8. doi: 10.1016/j.echo.2010.05.010. No abstract available.
Results Reference
background
PubMed Identifier
3973294
Citation
Ryan T, Petrovic O, Dillon JC, Feigenbaum H, Conley MJ, Armstrong WF. An echocardiographic index for separation of right ventricular volume and pressure overload. J Am Coll Cardiol. 1985 Apr;5(4):918-27. doi: 10.1016/s0735-1097(85)80433-2.
Results Reference
background
PubMed Identifier
18438737
Citation
Lai WW, Gauvreau K, Rivera ES, Saleeb S, Powell AJ, Geva T. Accuracy of guideline recommendations for two-dimensional quantification of the right ventricle by echocardiography. Int J Cardiovasc Imaging. 2008 Oct;24(7):691-8. doi: 10.1007/s10554-008-9314-4. Epub 2008 Apr 28.
Results Reference
background
PubMed Identifier
6695697
Citation
Kaul S, Tei C, Hopkins JM, Shah PM. Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J. 1984 Mar;107(3):526-31. doi: 10.1016/0002-8703(84)90095-4.
Results Reference
background
PubMed Identifier
17456062
Citation
Anavekar NS, Gerson D, Skali H, Kwong RY, Yucel EK, Solomon SD. Two-dimensional assessment of right ventricular function: an echocardiographic-MRI correlative study. Echocardiography. 2007 May;24(5):452-6. doi: 10.1111/j.1540-8175.2007.00424.x.
Results Reference
background
PubMed Identifier
16999693
Citation
Saxena N, Rajagopalan N, Edelman K, Lopez-Candales A. Tricuspid annular systolic velocity: a useful measurement in determining right ventricular systolic function regardless of pulmonary artery pressures. Echocardiography. 2006 Oct;23(9):750-5. doi: 10.1111/j.1540-8175.2006.00305.x.
Results Reference
background
PubMed Identifier
16452579
Citation
Vitarelli A, Conde Y, Cimino E, Stellato S, D'Orazio S, D'Angeli I, Nguyen BL, Padella V, Caranci F, Petroianni A, D'Antoni L, Terzano C. Assessment of right ventricular function by strain rate imaging in chronic obstructive pulmonary disease. Eur Respir J. 2006 Feb;27(2):268-75. doi: 10.1183/09031936.06.00072005.
Results Reference
background
PubMed Identifier
2943530
Citation
Masuyama T, Kodama K, Kitabatake A, Sato H, Nanto S, Inoue M. Continuous-wave Doppler echocardiographic detection of pulmonary regurgitation and its application to noninvasive estimation of pulmonary artery pressure. Circulation. 1986 Sep;74(3):484-92. doi: 10.1161/01.cir.74.3.484.
Results Reference
background
PubMed Identifier
8653837
Citation
Nagueh SF, Kopelen HA, Zoghbi WA. Relation of mean right atrial pressure to echocardiographic and Doppler parameters of right atrial and right ventricular function. Circulation. 1996 Mar 15;93(6):1160-9. doi: 10.1161/01.cir.93.6.1160.
Results Reference
background
PubMed Identifier
17588498
Citation
Lindqvist P, Calcutteea A, Henein M. Echocardiography in the assessment of right heart function. Eur J Echocardiogr. 2008 Mar;9(2):225-34. doi: 10.1016/j.euje.2007.04.002.
Results Reference
background
PubMed Identifier
16543597
Citation
Bleeker GB, Steendijk P, Holman ER, Yu CM, Breithardt OA, Kaandorp TA, Schalij MJ, van der Wall EE, Nihoyannopoulos P, Bax JJ. Assessing right ventricular function: the role of echocardiography and complementary technologies. Heart. 2006 Apr;92 Suppl 1(Suppl 1):i19-26. doi: 10.1136/hrt.2005.082503. No abstract available.
Results Reference
background
PubMed Identifier
18391875
Citation
Thibault H, Derumeaux G. Assessment of myocardial ischemia and viability using tissue Doppler and deformation imaging: the lessons from the experimental studies. Arch Cardiovasc Dis. 2008 Jan;101(1):61-8. doi: 10.1016/s1875-2136(08)70257-2.
Results Reference
background
PubMed Identifier
15680019
Citation
Eyskens B, Weidemann F, Kowalski M, Bogaert J, Dymarkowski S, Bijnens B, Gewillig M, Sutherland G, Mertens L. Regional right and left ventricular function after the Senning operation: an ultrasonic study of strain rate and strain. Cardiol Young. 2004 Jun;14(3):255-64. doi: 10.1017/S1047951104003038.
Results Reference
background
PubMed Identifier
12955425
Citation
Yilmaz M, Erol MK, Acikel M, Sevimli S, Alp N. Pulsed Doppler tissue imaging can help to identify patients with right ventricular infarction. Heart Vessels. 2003 Jul;18(3):112-6. doi: 10.1007/s00380-003-0703-2.
Results Reference
background
PubMed Identifier
11161953
Citation
Meluzin J, Spinarova L, Bakala J, Toman J, Krejci J, Hude P, Kara T, Soucek M. Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion; a new, rapid, and non-invasive method of evaluating right ventricular systolic function. Eur Heart J. 2001 Feb;22(4):340-8. doi: 10.1053/euhj.2000.2296.
Results Reference
background
PubMed Identifier
11916607
Citation
Severino S, Caso P, Cicala S, Galderisi M, de Simone L, D'Andrea A, D'Errico A, Mininni N. Involvement of right ventricle in left ventricular hypertrophic cardiomyopathy: analysis by pulsed Doppler tissue imaging. Eur J Echocardiogr. 2000 Dec;1(4):281-8. doi: 10.1053/euje.2000.0043.
Results Reference
background
PubMed Identifier
12615279
Citation
Weidemann F, Eyskens B, Mertens L, Di Salvo G, Strotmann J, Buyse G, Claus P, D'hooge J, Bijnens B, Gewillig M, Sutherland GR. Quantification of regional right and left ventricular function by ultrasonic strain rate and strain indexes in Friedreich's ataxia. Am J Cardiol. 2003 Mar 1;91(5):622-6. doi: 10.1016/s0002-9149(02)03325-8. No abstract available.
Results Reference
background
PubMed Identifier
16098321
Citation
Lopez-Candales A, Dohi K, Bazaz R, Edelman K. Relation of right ventricular free wall mechanical delay to right ventricular dysfunction as determined by tissue Doppler imaging. Am J Cardiol. 2005 Aug 15;96(4):602-6. doi: 10.1016/j.amjcard.2005.04.028.
Results Reference
background
PubMed Identifier
16458145
Citation
Wong CY, O'Moore-Sullivan T, Leano R, Hukins C, Jenkins C, Marwick TH. Association of subclinical right ventricular dysfunction with obesity. J Am Coll Cardiol. 2006 Feb 7;47(3):611-6. doi: 10.1016/j.jacc.2005.11.015. Epub 2006 Jan 18.
Results Reference
background
PubMed Identifier
15316447
Citation
Smiseth OA, Stoylen A, Ihlen H. Tissue Doppler imaging for the diagnosis of coronary artery disease. Curr Opin Cardiol. 2004 Sep;19(5):421-9. doi: 10.1097/01.hco.0000135672.79534.e9.
Results Reference
background
PubMed Identifier
11693743
Citation
Edvardsen T, Skulstad H, Aakhus S, Urheim S, Ihlen H. Regional myocardial systolic function during acute myocardial ischemia assessed by strain Doppler echocardiography. J Am Coll Cardiol. 2001 Mar 1;37(3):726-30. doi: 10.1016/s0735-1097(00)01160-8.
Results Reference
background
PubMed Identifier
10973846
Citation
Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA. Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation. 2000 Sep 5;102(10):1158-64. doi: 10.1161/01.cir.102.10.1158.
Results Reference
background
PubMed Identifier
22324535
Citation
Fichet J, Moreau L, Genee O, Legras A, Mercier E, Garot D, Dequin PF, Perrotin D. Feasibility of right ventricular longitudinal systolic function evaluation with transthoracic echocardiographic indices derived from tricuspid annular motion: a preliminary study in acute respiratory distress syndrome. Echocardiography. 2012 May;29(5):513-21. doi: 10.1111/j.1540-8175.2011.01650.x. Epub 2012 Feb 13.
Results Reference
background
PubMed Identifier
7833759
Citation
Bland JM, Altman DG. Multiple significance tests: the Bonferroni method. BMJ. 1995 Jan 21;310(6973):170. doi: 10.1136/bmj.310.6973.170. No abstract available.
Results Reference
background
PubMed Identifier
8254858
Citation
Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993 Dec 22-29;270(24):2957-63. doi: 10.1001/jama.270.24.2957. Erratum In: JAMA 1994 May 4;271(17):1321.
Results Reference
background

Learn more about this trial

Echocardiography Predictive of the Inefficacy and/or of the Unsafeness of Recruitment Maneuvers in Patients With Acute Respiratory Distress Syndrome.

We'll reach out to this number within 24 hrs