search
Back to results

Effects of Electrical Stimulation on Verbal Learning in Typical and Atypical Alzheimer's Disease

Primary Purpose

Alzheimer Disease, Early Onset, Atypical Alzheimer's Disease, Logopenic Progressive Aphasia

Status
Recruiting
Phase
Not Applicable
Locations
United States
Study Type
Interventional
Intervention
Active HD-tDCS
Sham
Word List Learning Intervention (WordLLI)
Sponsored by
Johns Hopkins University
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional treatment trial for Alzheimer Disease, Early Onset focused on measuring transcranial direct current stimulation (tDCS), Alzheimer's Disease (AD), verbal learning treatment, word list learning, logopenic Progressive Aphasia, episodic memory

Eligibility Criteria

50 Years - 75 Years (Adult, Older Adult)All SexesAccepts Healthy Volunteers

Inclusion Criteria:

For the aphasic/atypical AD participants:

  • Must be between 50-75 years of age.
  • Must be right-handed.
  • Must be proficient in English.
  • Must have a minimum of high-school education.
  • Must be diagnosed as logopenic variant Primary Progressive Aphasia (PPA) with Alzheimer's Disease (AD) biomarkers. Other possible diagnosis for the 'aphasic AD' variant would be Mild Cognitive Impairment (MCI) or 'possible AD' according to 2011 guidelines with AD biomarkers (CSF or positron emission tomography (PET) amyloid-beta or fluorodeoxyglucose (FDG)-positron emission tomography (PET) with unihemispheric atrophy).
  • Participants will be diagnosed from PPA and early dementias clinics at Johns Hopkins University or other specialized centers in US using current consensus criteria. Diagnosis will be based on neuropsychological testing, language testing (most commonly the Western Aphasia Battery), MRI and clinical assessment. The investigators will also use two new variant classification tests the investigators have developed at the lab which discriminate PPA variants with great accuracy (above 80%): a spelling test and a speech production test (i.e.,Cookie Theft picture description task).

For the amnesic/typical AD participants:

  • Must be between 50-75 years of age.
  • Must be right-handed.
  • Must be proficient in English.
  • Must have a minimum of high-school education.
  • Must be diagnosed with 'probable AD' in specialized diagnostic centers with neuropsychological (e.g., RAVLT) and AD biomarkers according to 2011 guidelines.
  • The investigators will also perform extensive testing in the investigators' test battery including the Mnemonic Similarity Test (MST) that discriminates and measures the most salient hippocampal deficit-pattern separation (PS).

Exclusion Criteria:

  • People with previous neurological disease including vascular dementia (e.g., stroke, developmental dyslexia, dysgraphia or attentional deficit).
  • People with hearing loss (> 25 decibel, using audiometric hearing screen).
  • People with uncorrected visual acuity loss.
  • People with advanced dementia or severe language impairments (MMSE < 15, or Montreal Cognitive Assessment <10, or language Frontotemporal Dementia-specific Clinical Dementia Rating (FTD-CDR) = 3).
  • Left handed individuals.
  • People with pre-existing psychiatric disorders such as behavioral disturbances, severe depression, or schizophrenia that do not allow these people to comply or follow the study schedule and requirements such as repeated evaluation and therapy.

Exclusion Criteria for MRI Participation:

  • People with severe claustrophobia.
  • People with cardiac pacemakers or ferromagnetic implants.
  • Pregnant women.

Sites / Locations

  • Johns Hopkins HospitalRecruiting

Arms of the Study

Arm 1

Arm 2

Arm Type

Experimental

Experimental

Arm Label

Active HD-tDCS+word intervention then Sham+word intervention

Sham+word intervention then active HD-tDCS+word intervention

Arm Description

Participants will receive active HD-tDCS + Word List Learning Intervention (WordLLI) and then receive Sham + WordLLI after a three-month washout period.

Participants will receive Sham + Word List Learning Intervention (WordLLI) and then active HD-tDCS + WordLLI after a three-month washout period.

Outcomes

Primary Outcome Measures

Change in auditory recall accuracy based on the sum of words recalled in Trials 1-5 of semantically related - trained word-lists
Each trained word-list (practiced during the intervention period) will consist of 12 semantically related words (e.g., birds). Word lists will be constructed using psycholinguistic databases. There will be 5 Trials to learn each list. The investigators will compute the raw score of items correctly recalled by summing all scores from Trial 1 to Trial 5 and transforming to percent correct (range: 0-100%) at each time point of the study. Increase in scores is considered a benefit.
Change in auditory delayed recall accuracy of semantically related - trained word-lists
Each trained word-list (practiced during the intervention period) will consist of 12 semantically related words (e.g., birds). Word lists will be constructed using psycholinguistic databases. There will be 5 Trials to recall each list, and then participants will be asked to recall that list 20 minutes later (delayed recall). The investigators will compute the raw score of items correctly recalled (delayed recall) and transform to percent correct (range: 0-100%) at each time point of the study. Increase in scores is considered a benefit.
Change in auditory recall accuracy based on the sum of words recalled in Trials 1-5 of semantically unrelated - trained word-lists
Each trained word-list (practiced during the intervention period) will consist of 12 semantically unrelated words (as in RAVLT). Word lists will be constructed using psycholinguistic databases. There will be 5 Trials to learn each list. The investigators will compute the raw score of items correctly recalled by summing all scores from Trial 1 to Trial 5 and transforming to percent correct (range: 0-100%) at each time point of the study. Increase in scores is considered a benefit.
Change in auditory delayed recall accuracy of semantically unrelated - trained word-lists
Each trained word-list (practiced during the intervention period) will consist of 12 semantically unrelated words (as in RAVLT). Word lists will be constructed using psycholinguistic databases. There will be 5 Trials to recall each list, and then participants will be asked to recall that list 20 minutes later (delayed recall). The investigators will compute the raw score of items correctly recalled (delayed recall) and transform to percent correct (range: 0-100%) at each time point of the study. Increase in scores is considered a benefit.
Change in auditory recall accuracy based the sum of words recalled in Trials 1-5 of semantically related - untrained word-lists
Each untrained word-list (not practiced during the intervention period) will consist of 12 semantically related words (e.g., birds). Word lists will be constructed using psycholinguistic databases. There will be 5 Trials to learn each list. The investigators will compute the raw score of items correctly recalled by summing all scores from Trial 1 to Trial 5 and transforming to percent correct (range: 0-100%) at each time point of the study. Increase in scores is considered a benefit.
Change in auditory delayed recall accuracy of semantically related - untrained word-lists
Each untrained word-list (not practiced during the intervention period) will consist of 12 semantically related words (e.g., birds). Word lists will be constructed using psycholinguistic databases. There will be 5 Trials to recall each list, and then participants will be asked to recall that list 20 minutes later (delayed recall). The investigators will compute the raw score of items correctly recalled (delayed recall) and transform to percent correct (range: 0-100%) at each time point of the study. Increase in scores is considered a benefit.
Change in auditory recall accuracy based on the sum of words recalled in Trials 1-5 of semantically unrelated - untrained word-lists
Each untrained word-list (not practiced during the intervention period) will consist of 12 semantically unrelated words (as in RVLT). Word lists will be constructed using psycholinguistic databases. There will be 5 Trials to learn each list. The investigators will compute the raw score of items correctly recalled by summing all scores from Trial 1 to Trial 5 and transforming to percent correct (range: 0-100%) at each time point of the study. Increase in scores is considered a benefit.
Change in auditory delayed recall accuracy of semantically unrelated - untrained word-lists
Each untrained word-list (not practiced during the intervention period) will consist of 12 semantically unrelated words (as in RVLT). Word lists will be constructed using psycholinguistic databases. There will be 5 Trials to recall each list, and then participants will be asked to recall that list 20 minutes later (delayed recall). The investigators will compute the raw score of items correctly recalled (delayed recall) and transform to percent correct (range: 0-100%) at each time point of the study. Increase in scores is considered a benefit.

Secondary Outcome Measures

Change in Rey Auditory-Verbal Learning Test (RAVLT) score
RAVLT is a well-established verbal memory test. RAVLT includes a 5-trial presentation of a 15-word list (List A), a single presentation of an interference list (List B)(Trial 6), two post-interference recall trials (one immediate - Trial 7, one delayed - Trial 8) and recognition of the target words in the orthographic modality with distractors (Trial 9). Scoring includes the percent score of Trial 1, Trial 5, Trial 8 and Trial 9 as well as the sum of Trial 1 through 5, and the difference between Trial 5 and Trial 1 computed as the percent difference between the scores before intervention and each time point after. Increase in score is considered a benefit.
Change in Mini Mental State Examination (MMSE)
MMSE is a well-established cognitive assessment test. It examines functions including registration (repeating named prompts), attention and calculation, recall, language, ability to follow simple commands and orientation. The total raw score is out of 30 points. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Change in Mnemonic Similarity Task (MST) score
MST is a well-established test in order to assess high interference memory and general recognition memory via pattern separation. It involves differentiating between previously learned images and novel images. For the MST tasks, the Pattern Separation (PS) score will be calculated using two measures: a) the rate of similar items correctly identified minus the rate of similar items misidentified as new (S|S-S|N); b) the rate of similar items correctly identified minus the rate of similar items misidentified as old (S|S-O|S). The number of correct responses for each category of items (i.e., old, similar, new) and the type of errors (i.e., identifications of new items as similar; identification of similar items as old) will also be tracked. Change in outcome in percent difference will be computed between the scores before intervention and each time point after. Increase in scores is considered a benefit.
Change in word repetition score
Temple Assessment of Language and Short-Term Memory in Aphasia (TALSA) tasks include word repetition, with sets of 1-6 words. Scoring will be based on percent of words correctly repeated. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Change in non-word repetition score
TALSA tasks include non-word repetition, with sets of 1-6 non-words. Scoring will be based on percent of non-words correctly repeated. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Change in sentence repetition score
Sentence repetition tasks come from the TALSA, with scoring based on percent of words in sentences correctly repeated. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Change in oral naming Boston Naming Test score
Accuracy in oral picture naming (30-item Boston Naming Test) will be compared for tDCS and sham conditions. The Boston Naming Test is a widely used picture naming test that detects lexical retrieval deficits in the oral modality. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Change in oral naming Philadelphia Naming Test score
Accuracy in oral picture naming (Philadelphia Naming Test) will be compared for tDCS and sham conditions. The Philadelphia Naming Test is an extensive picture naming test that comprises 275 items from a wide range of frequencies and other psycholinguistic characteristics. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Change in written naming as assessed by Boston Naming Test
Accuracy in written picture naming (30-item Boston Naming Test) will be compared for tDCS and sham conditions. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Change in written naming as assessed by Philadelphia Naming Test
Accuracy in written picture naming (Philadelphia Naming Test) will be compared for tDCS and sham conditions. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Change in oral naming of action as assessed by Hopkins Assessment of Naming Actions (HANA)
Accuracy in oral naming of actions will be compared for tDCS and sham conditions. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Change in syntactic comprehension as assessed by Subject-relative, Object-relative, Active, Passive (S.O.A.P.) Syntactic Battery
The 40-item Subject-relative, Object-relative, Active, Passive (S.O.A.P.) Syntactic Battery of various sub-tests will be used to assess argument structure comprehension and production. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between baseline and each time point. Increase in score is considered benefit.
Change in verbal fluency task score
Verbal fluency tasks (semantic and letter fluency) involve generating as many words as possible in one minute. Scoring will be based on number of words generated per minute. The investigators will compute the raw score of items correct and compute change in outcome between baseline and each time point. Increase in score is considered benefit.
Change in spelling as assessed by the Johns Hopkins Dysgraphia battery
Accuracy in spelling using the Johns Hopkins Dysgraphia battery will be compared for tDCS and sham conditions. The investigators will compute the raw score of items correct using a spelling scoring system accounting for additions, substitutions, and deletions, and transform to percent correct (range: 0-100%), computing change in outcome in percent difference before intervention and each time point after. Increase in score is considered a benefit.
Change in digit span forward score
Digit span forward involves the recall of a series of single digits (sets of 1-8 digits) in the same order the digits were presented. Scoring will be based on the number of consecutive digits correctly recalled. The investigators will compute the change in outcome between the time point before intervention and each time point after. Increase in score is considered a benefit.
Change in digit span backward score
Digit span backward involves the recall of a series of single digits (sets of 1-8 digits) in the reverse order than the digits were presented. Scoring will be based on the number of consecutive digits correctly recalled. The investigators will compute the change in outcome between the time point before intervention and each time point after. Increase in score is considered a benefit.
Change in spatial span forward score
Spatial span forward involves the recall of a series of positions on a board (sets of 1-9) in the same order the digits were presented. Scoring will be based on the number of consecutive positions correctly recalled. The investigators will compute the change in outcome between the time point before intervention and each time point after. Increase in score is considered a benefit.
Change in spatial span backward score
Spatial span backward involves the recall of a series of positions (sets of 1-8) in the reverse order than the digits were presented. Scoring will be based on the number of consecutive positions correctly recalled. The investigators will compute the change in outcome between the time point before intervention and each time point after. Increase in score is considered a benefit.
Change in semantic content of connected speech
Using the Cookie Theft image from the Boston Diagnostic Aphasia Examination (BDAE) and the Circus image from the Apraxia Battery for Adults (ABA) investigators will obtain representative language samples as participants describe the images. The investigators will compute the raw score of items (semantics) correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Change in attention and manipulation of information scores
Using the Trail Making Test (TMT) parts A and B, which include the sequential connection of letters/numbers in order to complete a trail, the investigators will obtain the time required by the participants to finish the tasks. Decrease in the time is considered a benefit.
Change in volumetric measurements of select brain regions
Using Magnetization-Prepared Rapid Gradient-Echo (MPRAGE) Magnetic Resonance Imaging (MRI) investigators will perform volumetric measurements of select brain regions. Measurements will be collected in millimeters cubed (mm^3).
Change in functional connectivity of select brain regions (z-correlations)
Using resting stage functional MRI (rs-fMRI) investigators will detect activity of various brain regions under a resting/task-negative condition, which will help evaluate functional regional interactions as indicated by the z-correlations between the selected brain area.
Change in Gamma-Aminobutyric Acid (GABA) concentration
Using Magnetic Resonance Spectroscopy (MRS) investigators will measure metabolite (GABA) concentrations from select brain regions in international units (IU).
Change in location of white matter tracts of select brain regions
Using Diffusion Tensor Imaging (DTI) investigators will estimate the location of the brain's white matter tracts on the regions of concern.
Change in anisotropy of white matter tracts of select brain regions
Using Diffusion Tensor Imaging (DTI) investigators will estimate the anisotropy of the brain's white matter tracts on the brain regions of concern.

Full Information

First Posted
October 8, 2019
Last Updated
September 15, 2023
Sponsor
Johns Hopkins University
search

1. Study Identification

Unique Protocol Identification Number
NCT04122001
Brief Title
Effects of Electrical Stimulation on Verbal Learning in Typical and Atypical Alzheimer's Disease
Official Title
Transcranial Direct Current Stimulation in Typical and Atypical Alzheimer's Disease
Study Type
Interventional

2. Study Status

Record Verification Date
September 2023
Overall Recruitment Status
Recruiting
Study Start Date
August 1, 2020 (Actual)
Primary Completion Date
May 31, 2025 (Anticipated)
Study Completion Date
May 31, 2025 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Sponsor
Name of the Sponsor
Johns Hopkins University

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
Yes
Product Manufactured in and Exported from the U.S.
No
Data Monitoring Committee
Yes

5. Study Description

Brief Summary
Alzheimer's disease (AD) is the leading neurodegenerative disease of aging characterized by multiple cognitive impairments. Given the recent failures of disease-modifying drugs, the current focus is on preventing or mitigating synaptic damage that correlates with cognitive decline in AD patients. Transcranial Direct Current Stimulation (tDCS) is a safe, non-invasive, non-painful electrical stimulation of the brain that is shown to act as a primer at the synaptic level when administered along with behavioral therapy, mostly involving language, learning and memory. Previous studies have shown that tDCS over the left angular gyrus (AG) improves language associative learning in the elderly through changes in functional connectivity between the AG and the hippocampus. The investigators' previous clinical trial on the effects of tDCS in neurodegenerative disorders has also shown augmented effects of lexical retrieval for tDCS. In the present study the investigators will compare the effects of active vs. sham tDCS over the AG-an area that is part of the default mode network but also a language area, particularly important for semantic integration and event processing-in two predominant AD variants: probable AD with amnesic phenotype (amnesic/typical AD) and probable AD with non-amnesic (language deficit) phenotype also described as logopenic variant PPA with AD pathology (aphasic/atypical AD). The investigators aim to: (1) determine whether active high-definition tDCS (HD-tDCS) targeting the left AG combined with a Word-List Learning Intervention (WordLLI) will improve verbal learning; (2) identify the changes in functional connectivity between the stimulated area (AG) and other structurally and functionally connected areas using resting-state functional magnetic resonance imaging; (3) identify changes in the inhibitory neurotransmitter GABA at the stimulation site using magnetic resonance spectroscopy. Furthermore, the investigators need to determine the characteristics of the people that may benefit from the new neuromodulatory approaches. For this reason, the investigators will evaluate neural and cognitive functions as well as physiological characteristics such as sleep, and will analyze the moderating effects on verbal learning outcomes. Study results can help provide treatment alternatives as well as a better understanding of the therapeutic and neuromodulatory effects of tDCS in AD, thus improving patients' and caregivers' quality of life.
Detailed Description
The investigation implements a double-blind, sham-controlled, within-subject, cross-over design that allows for the evaluation of the cognitive and neural effects of word-list learning as modulated by tDCS compared to sham stimulation. Participants in all groups will receive word-list learning intervention (WordLLI)+ High-Definition tDCS (HD-tDCS) or WordLLI+ sham in Period 1 or 2, randomized for the Period 1 stimulation condition. Each learning Period will last 2 weeks, with 5 learning sessions per week (for a total of 10 learning sessions per Period) with a 3-month (stimulation-free) wash-out period between the two Periods. The intensity, total number of learning sessions and number of learning items is consistent with most other tDCS studies in neurodegenerative disorders and the investigators have used this design successfully over the past 7 years in neurodegenerative disorders (PPA, mild AD). Stimulation is implemented every weekday to take advantage of the long-term potentiation induced by tDCS as found in early multi-session studies. A tDCS-only condition (without any intervention) is not implemented in this design because no study to date has shown improvement on motor, cognitive, or language performance after anodal tDCS-only for 2 or even more weeks. After each period the investigators will perform 1-month and 3-month follow-up sessions for evaluation purposes. For those participants who are long-distance, at the 1-month time point only the investigators may use a video conferencing tool such as GoToMeeting to administer the assessments. This is to mitigate the costs of travel for a short appointment.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Alzheimer Disease, Early Onset, Atypical Alzheimer's Disease, Logopenic Progressive Aphasia
Keywords
transcranial direct current stimulation (tDCS), Alzheimer's Disease (AD), verbal learning treatment, word list learning, logopenic Progressive Aphasia, episodic memory

7. Study Design

Primary Purpose
Treatment
Study Phase
Not Applicable
Interventional Study Model
Crossover Assignment
Model Description
This is a crossover design of active High-Definition tDCS (HD-tDCS) + Word List Learning Intervention (WordLLI) that crossovers to sham + WordLLI in Arm 1, and sham +WordLLI that crossovers to active HD-tDCS + WordLLI in Arm 2.
Masking
ParticipantCare ProviderOutcomes Assessor
Allocation
Randomized
Enrollment
60 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
Active HD-tDCS+word intervention then Sham+word intervention
Arm Type
Experimental
Arm Description
Participants will receive active HD-tDCS + Word List Learning Intervention (WordLLI) and then receive Sham + WordLLI after a three-month washout period.
Arm Title
Sham+word intervention then active HD-tDCS+word intervention
Arm Type
Experimental
Arm Description
Participants will receive Sham + Word List Learning Intervention (WordLLI) and then active HD-tDCS + WordLLI after a three-month washout period.
Intervention Type
Device
Intervention Name(s)
Active HD-tDCS
Intervention Description
Stimulation will be delivered by a battery-driven constant current stimulator. The electrical current will be administered to a pre-specified region of the brain (angular gyrus). The stimulation will be delivered at an intensity of 2 milliamperes (mA) (estimated current density 0.04 mA/cm2; estimated total charge 0.048 Coulombs/cm2) in a ramp-like fashion for a maximum of 20 minutes.
Intervention Type
Device
Intervention Name(s)
Sham
Intervention Description
Current will be administered in a ramp-like fashion but after the ramping the intensity will drop to 0 mA. Current under the Sham condition will last for a maximum of 30 seconds.
Intervention Type
Other
Intervention Name(s)
Word List Learning Intervention (WordLLI)
Intervention Description
Participants will receive a word list learning intervention (WordLLI) of semantically related and unrelated word lists. Word lists are presented across 10 trials, with an additional trial after a 10-minute delay to assess delayed recall. Immediately following verbal presentation of word lists during each trial, participants will be instructed to recall as many of the words from the list as possible. Participants may use the written modality as a strategy during recall. Word lists include 12 words matched based on psycholinguistics attributes (e.g., imageability, frequency). This task is designed to help participants improve memory via enhancing list learning capabilities.
Primary Outcome Measure Information:
Title
Change in auditory recall accuracy based on the sum of words recalled in Trials 1-5 of semantically related - trained word-lists
Description
Each trained word-list (practiced during the intervention period) will consist of 12 semantically related words (e.g., birds). Word lists will be constructed using psycholinguistic databases. There will be 5 Trials to learn each list. The investigators will compute the raw score of items correctly recalled by summing all scores from Trial 1 to Trial 5 and transforming to percent correct (range: 0-100%) at each time point of the study. Increase in scores is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in auditory delayed recall accuracy of semantically related - trained word-lists
Description
Each trained word-list (practiced during the intervention period) will consist of 12 semantically related words (e.g., birds). Word lists will be constructed using psycholinguistic databases. There will be 5 Trials to recall each list, and then participants will be asked to recall that list 20 minutes later (delayed recall). The investigators will compute the raw score of items correctly recalled (delayed recall) and transform to percent correct (range: 0-100%) at each time point of the study. Increase in scores is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in auditory recall accuracy based on the sum of words recalled in Trials 1-5 of semantically unrelated - trained word-lists
Description
Each trained word-list (practiced during the intervention period) will consist of 12 semantically unrelated words (as in RAVLT). Word lists will be constructed using psycholinguistic databases. There will be 5 Trials to learn each list. The investigators will compute the raw score of items correctly recalled by summing all scores from Trial 1 to Trial 5 and transforming to percent correct (range: 0-100%) at each time point of the study. Increase in scores is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in auditory delayed recall accuracy of semantically unrelated - trained word-lists
Description
Each trained word-list (practiced during the intervention period) will consist of 12 semantically unrelated words (as in RAVLT). Word lists will be constructed using psycholinguistic databases. There will be 5 Trials to recall each list, and then participants will be asked to recall that list 20 minutes later (delayed recall). The investigators will compute the raw score of items correctly recalled (delayed recall) and transform to percent correct (range: 0-100%) at each time point of the study. Increase in scores is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in auditory recall accuracy based the sum of words recalled in Trials 1-5 of semantically related - untrained word-lists
Description
Each untrained word-list (not practiced during the intervention period) will consist of 12 semantically related words (e.g., birds). Word lists will be constructed using psycholinguistic databases. There will be 5 Trials to learn each list. The investigators will compute the raw score of items correctly recalled by summing all scores from Trial 1 to Trial 5 and transforming to percent correct (range: 0-100%) at each time point of the study. Increase in scores is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in auditory delayed recall accuracy of semantically related - untrained word-lists
Description
Each untrained word-list (not practiced during the intervention period) will consist of 12 semantically related words (e.g., birds). Word lists will be constructed using psycholinguistic databases. There will be 5 Trials to recall each list, and then participants will be asked to recall that list 20 minutes later (delayed recall). The investigators will compute the raw score of items correctly recalled (delayed recall) and transform to percent correct (range: 0-100%) at each time point of the study. Increase in scores is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in auditory recall accuracy based on the sum of words recalled in Trials 1-5 of semantically unrelated - untrained word-lists
Description
Each untrained word-list (not practiced during the intervention period) will consist of 12 semantically unrelated words (as in RVLT). Word lists will be constructed using psycholinguistic databases. There will be 5 Trials to learn each list. The investigators will compute the raw score of items correctly recalled by summing all scores from Trial 1 to Trial 5 and transforming to percent correct (range: 0-100%) at each time point of the study. Increase in scores is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in auditory delayed recall accuracy of semantically unrelated - untrained word-lists
Description
Each untrained word-list (not practiced during the intervention period) will consist of 12 semantically unrelated words (as in RVLT). Word lists will be constructed using psycholinguistic databases. There will be 5 Trials to recall each list, and then participants will be asked to recall that list 20 minutes later (delayed recall). The investigators will compute the raw score of items correctly recalled (delayed recall) and transform to percent correct (range: 0-100%) at each time point of the study. Increase in scores is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Secondary Outcome Measure Information:
Title
Change in Rey Auditory-Verbal Learning Test (RAVLT) score
Description
RAVLT is a well-established verbal memory test. RAVLT includes a 5-trial presentation of a 15-word list (List A), a single presentation of an interference list (List B)(Trial 6), two post-interference recall trials (one immediate - Trial 7, one delayed - Trial 8) and recognition of the target words in the orthographic modality with distractors (Trial 9). Scoring includes the percent score of Trial 1, Trial 5, Trial 8 and Trial 9 as well as the sum of Trial 1 through 5, and the difference between Trial 5 and Trial 1 computed as the percent difference between the scores before intervention and each time point after. Increase in score is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in Mini Mental State Examination (MMSE)
Description
MMSE is a well-established cognitive assessment test. It examines functions including registration (repeating named prompts), attention and calculation, recall, language, ability to follow simple commands and orientation. The total raw score is out of 30 points. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in Mnemonic Similarity Task (MST) score
Description
MST is a well-established test in order to assess high interference memory and general recognition memory via pattern separation. It involves differentiating between previously learned images and novel images. For the MST tasks, the Pattern Separation (PS) score will be calculated using two measures: a) the rate of similar items correctly identified minus the rate of similar items misidentified as new (S|S-S|N); b) the rate of similar items correctly identified minus the rate of similar items misidentified as old (S|S-O|S). The number of correct responses for each category of items (i.e., old, similar, new) and the type of errors (i.e., identifications of new items as similar; identification of similar items as old) will also be tracked. Change in outcome in percent difference will be computed between the scores before intervention and each time point after. Increase in scores is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in word repetition score
Description
Temple Assessment of Language and Short-Term Memory in Aphasia (TALSA) tasks include word repetition, with sets of 1-6 words. Scoring will be based on percent of words correctly repeated. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in non-word repetition score
Description
TALSA tasks include non-word repetition, with sets of 1-6 non-words. Scoring will be based on percent of non-words correctly repeated. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in sentence repetition score
Description
Sentence repetition tasks come from the TALSA, with scoring based on percent of words in sentences correctly repeated. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in oral naming Boston Naming Test score
Description
Accuracy in oral picture naming (30-item Boston Naming Test) will be compared for tDCS and sham conditions. The Boston Naming Test is a widely used picture naming test that detects lexical retrieval deficits in the oral modality. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in oral naming Philadelphia Naming Test score
Description
Accuracy in oral picture naming (Philadelphia Naming Test) will be compared for tDCS and sham conditions. The Philadelphia Naming Test is an extensive picture naming test that comprises 275 items from a wide range of frequencies and other psycholinguistic characteristics. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in written naming as assessed by Boston Naming Test
Description
Accuracy in written picture naming (30-item Boston Naming Test) will be compared for tDCS and sham conditions. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in written naming as assessed by Philadelphia Naming Test
Description
Accuracy in written picture naming (Philadelphia Naming Test) will be compared for tDCS and sham conditions. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in oral naming of action as assessed by Hopkins Assessment of Naming Actions (HANA)
Description
Accuracy in oral naming of actions will be compared for tDCS and sham conditions. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in syntactic comprehension as assessed by Subject-relative, Object-relative, Active, Passive (S.O.A.P.) Syntactic Battery
Description
The 40-item Subject-relative, Object-relative, Active, Passive (S.O.A.P.) Syntactic Battery of various sub-tests will be used to assess argument structure comprehension and production. The investigators will compute the raw score of items correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between baseline and each time point. Increase in score is considered benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in verbal fluency task score
Description
Verbal fluency tasks (semantic and letter fluency) involve generating as many words as possible in one minute. Scoring will be based on number of words generated per minute. The investigators will compute the raw score of items correct and compute change in outcome between baseline and each time point. Increase in score is considered benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in spelling as assessed by the Johns Hopkins Dysgraphia battery
Description
Accuracy in spelling using the Johns Hopkins Dysgraphia battery will be compared for tDCS and sham conditions. The investigators will compute the raw score of items correct using a spelling scoring system accounting for additions, substitutions, and deletions, and transform to percent correct (range: 0-100%), computing change in outcome in percent difference before intervention and each time point after. Increase in score is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in digit span forward score
Description
Digit span forward involves the recall of a series of single digits (sets of 1-8 digits) in the same order the digits were presented. Scoring will be based on the number of consecutive digits correctly recalled. The investigators will compute the change in outcome between the time point before intervention and each time point after. Increase in score is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in digit span backward score
Description
Digit span backward involves the recall of a series of single digits (sets of 1-8 digits) in the reverse order than the digits were presented. Scoring will be based on the number of consecutive digits correctly recalled. The investigators will compute the change in outcome between the time point before intervention and each time point after. Increase in score is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in spatial span forward score
Description
Spatial span forward involves the recall of a series of positions on a board (sets of 1-9) in the same order the digits were presented. Scoring will be based on the number of consecutive positions correctly recalled. The investigators will compute the change in outcome between the time point before intervention and each time point after. Increase in score is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in spatial span backward score
Description
Spatial span backward involves the recall of a series of positions (sets of 1-8) in the reverse order than the digits were presented. Scoring will be based on the number of consecutive positions correctly recalled. The investigators will compute the change in outcome between the time point before intervention and each time point after. Increase in score is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in semantic content of connected speech
Description
Using the Cookie Theft image from the Boston Diagnostic Aphasia Examination (BDAE) and the Circus image from the Apraxia Battery for Adults (ABA) investigators will obtain representative language samples as participants describe the images. The investigators will compute the raw score of items (semantics) correct and transform to percent correct (range: 0-100%), computing change in outcome in percent difference between before intervention and each time point after. Increase in score is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in attention and manipulation of information scores
Description
Using the Trail Making Test (TMT) parts A and B, which include the sequential connection of letters/numbers in order to complete a trail, the investigators will obtain the time required by the participants to finish the tasks. Decrease in the time is considered a benefit.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in volumetric measurements of select brain regions
Description
Using Magnetization-Prepared Rapid Gradient-Echo (MPRAGE) Magnetic Resonance Imaging (MRI) investigators will perform volumetric measurements of select brain regions. Measurements will be collected in millimeters cubed (mm^3).
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in functional connectivity of select brain regions (z-correlations)
Description
Using resting stage functional MRI (rs-fMRI) investigators will detect activity of various brain regions under a resting/task-negative condition, which will help evaluate functional regional interactions as indicated by the z-correlations between the selected brain area.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in Gamma-Aminobutyric Acid (GABA) concentration
Description
Using Magnetic Resonance Spectroscopy (MRS) investigators will measure metabolite (GABA) concentrations from select brain regions in international units (IU).
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in location of white matter tracts of select brain regions
Description
Using Diffusion Tensor Imaging (DTI) investigators will estimate the location of the brain's white matter tracts on the regions of concern.
Time Frame
Before intervention, immediately after intervention, 1 month and 3 months post intervention, up to 31 weeks
Title
Change in anisotropy of white matter tracts of select brain regions
Description
Using Diffusion Tensor Imaging (DTI) investigators will estimate the anisotropy of the brain's white matter tracts on the brain regions of concern.
Time Frame
Before intervention, immediately after intervention and 3 months post intervention, up to 31 weeks
Other Pre-specified Outcome Measures:
Title
Correlation of primary and secondary outcomes with sleep efficiency
Description
Actigraphy for sleep is a method for observing sleep activity patterns. Actigraphy data is gathered via a wrist band with an accelerometer and a light detector. The investigators will compute the sleep efficiency (% of time in bed spent asleep) and assess whether it correlates with the performance on primary or secondary outcomes.
Time Frame
One week before intervention and one week post intervention, up to 8 weeks

10. Eligibility

Sex
All
Minimum Age & Unit of Time
50 Years
Maximum Age & Unit of Time
75 Years
Accepts Healthy Volunteers
Accepts Healthy Volunteers
Eligibility Criteria
Inclusion Criteria: For the aphasic/atypical AD participants: Must be between 50-75 years of age. Must be right-handed. Must be proficient in English. Must have a minimum of high-school education. Must be diagnosed as logopenic variant Primary Progressive Aphasia (PPA) with Alzheimer's Disease (AD) biomarkers. Other possible diagnosis for the 'aphasic AD' variant would be Mild Cognitive Impairment (MCI) or 'possible AD' according to 2011 guidelines with AD biomarkers (CSF or positron emission tomography (PET) amyloid-beta or fluorodeoxyglucose (FDG)-positron emission tomography (PET) with unihemispheric atrophy). Participants will be diagnosed from PPA and early dementias clinics at Johns Hopkins University or other specialized centers in US using current consensus criteria. Diagnosis will be based on neuropsychological testing, language testing (most commonly the Western Aphasia Battery), MRI and clinical assessment. The investigators will also use two new variant classification tests the investigators have developed at the lab which discriminate PPA variants with great accuracy (above 80%): a spelling test and a speech production test (i.e.,Cookie Theft picture description task). For the amnesic/typical AD participants: Must be between 50-75 years of age. Must be right-handed. Must be proficient in English. Must have a minimum of high-school education. Must be diagnosed with 'probable AD' in specialized diagnostic centers with neuropsychological (e.g., RAVLT) and AD biomarkers according to 2011 guidelines. The investigators will also perform extensive testing in the investigators' test battery including the Mnemonic Similarity Test (MST) that discriminates and measures the most salient hippocampal deficit-pattern separation (PS). Exclusion Criteria: People with previous neurological disease including vascular dementia (e.g., stroke, developmental dyslexia, dysgraphia or attentional deficit). People with hearing loss (> 25 decibel, using audiometric hearing screen). People with uncorrected visual acuity loss. People with advanced dementia or severe language impairments (MMSE < 15, or Montreal Cognitive Assessment <10, or language Frontotemporal Dementia-specific Clinical Dementia Rating (FTD-CDR) = 3). Left handed individuals. People with pre-existing psychiatric disorders such as behavioral disturbances, severe depression, or schizophrenia that do not allow these people to comply or follow the study schedule and requirements such as repeated evaluation and therapy. Exclusion Criteria for MRI Participation: People with severe claustrophobia. People with cardiac pacemakers or ferromagnetic implants. Pregnant women.
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
Kyrana Tsapkini, PhD
Phone
410-736-2940
Email
tsapkini@jhmi.edu
First Name & Middle Initial & Last Name or Official Title & Degree
Jessica Gallegos
Email
jgallegos@jhmi.edu
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Kyrana Tsapkini, PhD
Organizational Affiliation
Johns Hopkins University
Official's Role
Principal Investigator
Facility Information:
Facility Name
Johns Hopkins Hospital
City
Baltimore
State/Province
Maryland
ZIP/Postal Code
21287
Country
United States
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Kyrana Tsapkini, PhD
Phone
410-736-2940
Email
tsapkini@jhmi.edu
First Name & Middle Initial & Last Name & Degree
Kyrana Tsapkini, PhD

12. IPD Sharing Statement

Plan to Share IPD
No
Citations:
PubMed Identifier
26097278
Citation
Tsapkini K, Frangakis C, Gomez Y, Davis C, Hillis AE. Augmentation of spelling therapy with transcranial direct current stimulation in primary progressive aphasia: Preliminary results and challenges. Aphasiology. 2014;28(8-9):1112-1130. doi: 10.1080/02687038.2014.930410.
Results Reference
background
PubMed Identifier
30258975
Citation
Tsapkini K, Webster KT, Ficek BN, Desmond JE, Onyike CU, Rapp B, Frangakis CE, Hillis AE. Electrical brain stimulation in different variants of primary progressive aphasia: A randomized clinical trial. Alzheimers Dement (N Y). 2018 Sep 5;4:461-472. doi: 10.1016/j.trci.2018.08.002. eCollection 2018.
Results Reference
background
PubMed Identifier
30009127
Citation
Ficek BN, Wang Z, Zhao Y, Webster KT, Desmond JE, Hillis AE, Frangakis C, Vasconcellos Faria A, Caffo B, Tsapkini K. The effect of tDCS on functional connectivity in primary progressive aphasia. Neuroimage Clin. 2018 May 21;19:703-715. doi: 10.1016/j.nicl.2018.05.023. eCollection 2018. Erratum In: Neuroimage Clin. 2019;22:101734.
Results Reference
background
PubMed Identifier
19164589
Citation
Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, Celnik PA, Krakauer JW. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1590-5. doi: 10.1073/pnas.0805413106. Epub 2009 Jan 21.
Results Reference
background
PubMed Identifier
17452012
Citation
Huey ED, Probasco JC, Moll J, Stocking J, Ko MH, Grafman J, Wassermann EM. No effect of DC brain polarization on verbal fluency in patients with advanced frontotemporal dementia. Clin Neurophysiol. 2007 Jun;118(6):1417-8. doi: 10.1016/j.clinph.2007.02.026. Epub 2007 Apr 23. No abstract available.
Results Reference
background
PubMed Identifier
17970738
Citation
Antal A, Terney D, Poreisz C, Paulus W. Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. Eur J Neurosci. 2007 Nov;26(9):2687-91. doi: 10.1111/j.1460-9568.2007.05896.x. Epub 2007 Oct 26.
Results Reference
background
PubMed Identifier
24486425
Citation
Segrave RA, Arnold S, Hoy K, Fitzgerald PB. Concurrent cognitive control training augments the antidepressant efficacy of tDCS: a pilot study. Brain Stimul. 2014 Mar-Apr;7(2):325-31. doi: 10.1016/j.brs.2013.12.008. Epub 2013 Dec 19.
Results Reference
background
PubMed Identifier
21514250
Citation
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):263-9. doi: 10.1016/j.jalz.2011.03.005. Epub 2011 Apr 21.
Results Reference
background
PubMed Identifier
21325651
Citation
Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, Ogar JM, Rohrer JD, Black S, Boeve BF, Manes F, Dronkers NF, Vandenberghe R, Rascovsky K, Patterson K, Miller BL, Knopman DS, Hodges JR, Mesulam MM, Grossman M. Classification of primary progressive aphasia and its variants. Neurology. 2011 Mar 15;76(11):1006-14. doi: 10.1212/WNL.0b013e31821103e6. Epub 2011 Feb 16.
Results Reference
background
PubMed Identifier
31401078
Citation
Neophytou K, Wiley RW, Rapp B, Tsapkini K. The use of spelling for variant classification in primary progressive aphasia: Theoretical and practical implications. Neuropsychologia. 2019 Oct;133:107157. doi: 10.1016/j.neuropsychologia.2019.107157. Epub 2019 Aug 8.
Results Reference
background
PubMed Identifier
30425638
Citation
Riello M, Faria AV, Ficek B, Webster K, Onyike CU, Desmond J, Frangakis C, Tsapkini K. The Role of Language Severity and Education in Explaining Performance on Object and Action Naming in Primary Progressive Aphasia. Front Aging Neurosci. 2018 Oct 30;10:346. doi: 10.3389/fnagi.2018.00346. eCollection 2018.
Results Reference
background

Learn more about this trial

Effects of Electrical Stimulation on Verbal Learning in Typical and Atypical Alzheimer's Disease

We'll reach out to this number within 24 hrs