search
Back to results

Effects of Gait Retraining on Lower Extremity Biomechanics

Primary Purpose

Knee Osteoarthritis

Status
Recruiting
Phase
Not Applicable
Locations
United States
Study Type
Interventional
Intervention
Foot Progression
Trunk Lean
Sponsored by
George Mason University
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional prevention trial for Knee Osteoarthritis focused on measuring osteoarthritis, biomechanics, gait retraining, real-time biofeedback, knee

Eligibility Criteria

18 Years - 80 Years (Adult, Older Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria:

  • a clinical diagnosis of knee osteoarthritis by a qualified health professional such as an orthopedic surgeon or physical therapist
  • between the ages of 18 and 80
  • able to walk unaided for a minimum of 20 minutes

Exclusion Criteria:

  • body mass index greater than 35
  • history of lower back, hip or, knee surgery within the last 2 years
  • knee arthroscopy or pharmacological injection in the previous six months
  • neurological, or musculoskeletal conditions affecting ambulation
  • cognitive impairment that would inhibit motor learning
  • use of gait aid, orthotic shoe inserts, or hinged knee brace

Sites / Locations

  • Sports Medicine, Assessment, Research & Testing (SMART) LaboratoryRecruiting

Arms of the Study

Arm 1

Arm 2

Arm 3

Arm Type

No Intervention

Experimental

Experimental

Arm Label

Control

Foot Progression

Trunk Lean

Arm Description

No intervention

Participants will visualize a desired foot progression angle bandwidth in real-time that they should target with their foot angle

Participants will visualize a desired trunk lean angle bandwidth in real-time that they should target with their trunk lean angle

Outcomes

Primary Outcome Measures

Change from Baseline Knee Adduction Moment from Baseline at 10-weeks
The knee adduction moment is a surrogate measure to evaluate knee joint loads.

Secondary Outcome Measures

Full Information

First Posted
September 4, 2018
Last Updated
January 12, 2022
Sponsor
George Mason University
search

1. Study Identification

Unique Protocol Identification Number
NCT03663790
Brief Title
Effects of Gait Retraining on Lower Extremity Biomechanics
Official Title
Comparison of the Effects of Gait Modification Strategies on Knee Adduction Moment in Patients With Medial Knee Osteoarthritis: Randomized Controlled Trial
Study Type
Interventional

2. Study Status

Record Verification Date
January 2022
Overall Recruitment Status
Recruiting
Study Start Date
October 10, 2018 (Actual)
Primary Completion Date
October 1, 2024 (Anticipated)
Study Completion Date
October 1, 2024 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Sponsor
Name of the Sponsor
George Mason University

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Data Monitoring Committee
No

5. Study Description

Brief Summary
The purpose of this proposed study is to investigate both the acute and chronic response of frontal plane knee moment after gait retraining and to assess the effects on the biomechanics of the contralateral side. Fifty-one patients diagnosed with tibiofemoral joint osteoarthritis (TFJ OA) will be recruited to participate in the proposed study. Participants will complete baseline trials to assess gait kinematic and kinetic parameters. Following baseline, each participant will perform six conditions of the foot progression gait or three conditions of the trunk lean gait modifications to determine which strategy is most effective in reducing frontal plane knee moment. Participants will then be randomized to either the control or experimental group based on their identified preferred strategy. Participants will complete eight gait retraining sessions using patient-specific gait modifications (tailored foot progression and tailored lateral trunk lean), or normal gait (control) during the training period. A fading feedback design will be implemented. Real-time haptic biofeedback will be provided on every step during the first two weeks and reduced by 25% every subsequent two weeks. No feedback will be provided during baseline and at testing sessions. Measures of pain and function will also be collected at all testing sessions. Variables of interest include ankle, knee, hip sagittal and frontal plane moments. In addition, sagittal and frontal plane impulse will also be assessed. Descriptive statistics will be calculated for foot progression angle, trunk lean angle, frontal and sagittal plane hip, knee, and ankle angles as well as moments. Descriptive statistics for frontal plane knee impulse will also be calculated. A multivariate analysis of variance (MANOVA) will be conducted to compare frontal plane knee moment, frontal plane knee impulse and the absolute sagittal plane moment will be compared across three groups at four different time points. Repeated measures analysis of variance (ANOVA) will be conducted to compare both sagittal and frontal plane joint biomechanics for the contralateral limb. The p-value will be set at .05.
Detailed Description
A randomized controlled study design with a waitlist will be used to investigate the effects of a 10-week gait retraining intervention on the knee adduction moment. Participants will be randomly assigned to either the intervention group or the control group. The intervention group will be further split into two groups. One group will consist of participants who reduced knee adduction moment (KAM) most with altered foot progression gait and the other will consist of participants who reduce KAM most effectively with trunk lean gait during pre-assessment. Participants will then perform 8 gait retraining sessions over 8 weeks (one session per week) using either their specific gait modification strategy (intervention) or with their normal gait (control). As part of the waitlist design, at the end of 10 weeks, patients assigned to the control group will be reassigned to their previously determined patient specific gait modification intervention. The goal is to minimize attrition and to increase the effective sample size. On arrival to the laboratory, participants will be required to read and sign an informed consent form. Participant height and mass will be recorded. Pain and function will be assessed using the Western Ontario and McMaster Universities Arthritis (WOMAC) questionnaire and a numeric rating scale (NRS) from zero to 10, where zero represents no pain and 10 the highest level of pain. The experimental limb for the purpose of this study is defined as the leg diagnosed with symptomatic TFJ OA or the most symptomatic limb in the case of bilateral OA. Participants will be equipped with 4 surface electromyogram (sEMG) placed on the rectus femoris, vastus medialis, bicep femoris and semitendinosus of the experimental limb. EMG sensors will be used to record muscle activity during the baseline test. Participants will then have 53 retroreflective markers attached to their trunk and lower extremities. A static calibration trial of the VICON motion capture system will be acquired by having the participants stand on the foremost force plate with both feet aligned with the anterior-posterior axis of the laboratory. Participants will also perform a dynamic calibration by completing three clockwise rotations of the hip which will be used to estimate the hip joint centers. Participants will then complete 5 baseline walking trials along with a 6-meter walkway at their preferred speed. Participants will be required to walk for 12 minutes on a treadmill, and additional data will be recorded. Participants will then be required perform 9 conditions with altered foot progression gait or trunk lean gait to determine which strategy is most effective in reducing KAM. Participants will first receive standardized verbal instructions on how to achieve the instructed gait modification. Participants will then be provided haptic real-time biofeedback to ensure that they successfully achieve the required magnitudes of gait modification. Kinematic data collected in Vicon will be streamed to Matlab (Mathworks, Natick, MA) for real-time computation of joint angles. Participants will receive feedback from tactile sensors attached either to the lateral-proximal aspect of the fibula (foot progression) or the center of the scapula (lateral trunk lean) of the experimental side with hypoallergenic double-sided tape. One vibration will indicate a required decrease in the target gait parameter, while two vibrations will indicate a required increase. Feedback will be provided on each step and no vibration will indicate that no correction is needed. A trial will only be considered valid if the participant fully contacted the force plates twice with the foot of the experimental limb and the modified parameter was in the prescribed target range. Additionally, participants will be required to maintain an average gait speed ±5% relative to baseline for trials to be considered successful. The modification to be completed in the baseline session will be randomized for each participant. Once these trials are completed, participants will return to the lab within the same week to complete 5 additional baseline trials and three trials of whichever gait modification they did not perform the first day. Each baseline data collection session will take approximately one hour. Participants will then be randomly assigned to either the intervention group or the control group. The intervention group will be further split into two groups. One group will consist of participants who reduced KAM most with altered foot progression gait and the other will consist of participants who reduce KAM most effectively with trunk lean gait. Participants will then perform 8 gait retraining sessions over 8 weeks (one session per week) using either their specific gait modification strategy (intervention) or with their normal gait (control). During gait-retraining sessions, participants will walk on a Woodway Desmo treadmill (Woodway, Waukesha, WI) placed in the center of a calibrated volume area (approximately 0.5 x 1.5 meters). A three-camera high-speed motion analysis system (Vicon, Oxford, England) sampling at 200 Hz will be used to record gait kinematics. The indicated anatomical landmarks (either C7 and T10 or posterior calcaneus and 2nd metatarsal phalangeal joint) will be marked with an ultraviolet pen, which will allow for visibility for a week, and will be reapplied at subsequent visits. This will improve marker placement repeatability during the gait retraining phase. A five-minute dynamic warm-up will be provided prior to the commencement of each gait retraining session; participants will then walk with their individualized gait modification strategy for 20 minutes. Participants will be provided with haptic feedback in the same manner outlined during the individualization phase or will continue to walk without feedback. A fading feedback design will be implemented across sessions to gradually integrate task acquisition and transfer and to help facilitate the internalization of the learned skill. During the first 2 weeks, real-time biofeedback (RTB) will be delivered on every step. For the third and fourth week, RTB will be provided on the first 3 foot strikes by the experimental leg and withheld on the fourth indicating a 25% reduction. During the fifth and sixth week, feedback will be provided on alternating foot strikes reducing RTB frequency delivery to 50%. For the final two weeks of gait-retraining, no feedback will be provided on the first three steps but delivered on the fourth reducing RTB frequency to 25%. Between gait retraining sessions, subjects will be instructed to practice their acquired gait strategy on their own outside of the laboratory session, which will occur in the absence of feedback. They will be instructed to practice at least 10 min per day and will be provided weekly activity logs to record time of day and amount practiced each day during the eight weeks of gait retraining. Practice logs will be submitted weekly. Over-ground gait analysis and 12 minutes of treadmill walking will be performed at week 4 (first post-test) and 9 (2nd post-test) over the course of the intervention to track skill acquisition. This testing will be the same as the baseline trials, however, participants will be instructed to walk using only their specific gait modification strategy. No feedback will be provided during any of the skill acquisition or retention tests. Follow-up testing will occur at one, three, and six months as well as one-year post-intervention to measure retention of prescribed gait modifications.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Knee Osteoarthritis
Keywords
osteoarthritis, biomechanics, gait retraining, real-time biofeedback, knee

7. Study Design

Primary Purpose
Prevention
Study Phase
Not Applicable
Interventional Study Model
Factorial Assignment
Masking
None (Open Label)
Allocation
Randomized
Enrollment
51 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
Control
Arm Type
No Intervention
Arm Description
No intervention
Arm Title
Foot Progression
Arm Type
Experimental
Arm Description
Participants will visualize a desired foot progression angle bandwidth in real-time that they should target with their foot angle
Arm Title
Trunk Lean
Arm Type
Experimental
Arm Description
Participants will visualize a desired trunk lean angle bandwidth in real-time that they should target with their trunk lean angle
Intervention Type
Other
Intervention Name(s)
Foot Progression
Intervention Description
The intervention will be a gait retraining biofeedback focused on foot angle during gait trials
Intervention Type
Other
Intervention Name(s)
Trunk Lean
Intervention Description
The intervention will be a gait retraining biofeedback focused on trunk lean angle during gait trials
Primary Outcome Measure Information:
Title
Change from Baseline Knee Adduction Moment from Baseline at 10-weeks
Description
The knee adduction moment is a surrogate measure to evaluate knee joint loads.
Time Frame
It will be assessed using biomechanical analysis at baseline and 10-weeks gait retraining intervention

10. Eligibility

Sex
All
Minimum Age & Unit of Time
18 Years
Maximum Age & Unit of Time
80 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: a clinical diagnosis of knee osteoarthritis by a qualified health professional such as an orthopedic surgeon or physical therapist between the ages of 18 and 80 able to walk unaided for a minimum of 20 minutes Exclusion Criteria: body mass index greater than 35 history of lower back, hip or, knee surgery within the last 2 years knee arthroscopy or pharmacological injection in the previous six months neurological, or musculoskeletal conditions affecting ambulation cognitive impairment that would inhibit motor learning use of gait aid, orthotic shoe inserts, or hinged knee brace
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
Oladipo Eddo
Phone
7039937183
Email
oeddo@gmu.edu
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Nelson Cortes
Organizational Affiliation
Associate Professor
Official's Role
Principal Investigator
Facility Information:
Facility Name
Sports Medicine, Assessment, Research & Testing (SMART) Laboratory
City
Manassas
State/Province
Virginia
ZIP/Postal Code
20110
Country
United States
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Oladipo Eddo, PhD
First Name & Middle Initial & Last Name & Degree
Oladipo Eddo, PhD

12. IPD Sharing Statement

Plan to Share IPD
No
Citations:
PubMed Identifier
25775186
Citation
Allen KD, Golightly YM. State of the evidence. Curr Opin Rheumatol. 2015 May;27(3):276-83. doi: 10.1097/BOR.0000000000000161.
Results Reference
background
PubMed Identifier
15188321
Citation
Amin S, Luepongsak N, McGibbon CA, LaValley MP, Krebs DE, Felson DT. Knee adduction moment and development of chronic knee pain in elders. Arthritis Rheum. 2004 Jun 15;51(3):371-6. doi: 10.1002/art.20396.
Results Reference
background
PubMed Identifier
15883120
Citation
Anderson DI, Magill RA, Sekiya H, Ryan G. Support for an explanation of the guidance effect in motor skill learning. J Mot Behav. 2005 May;37(3):231-8. doi: 10.3200/JMBR.37.3.231-238.
Results Reference
background
PubMed Identifier
16896293
Citation
Andriacchi TP, Mundermann A. The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis. Curr Opin Rheumatol. 2006 Sep;18(5):514-8. doi: 10.1097/01.bor.0000240365.16842.4e.
Results Reference
background
PubMed Identifier
15095819
Citation
Andriacchi TP, Mundermann A, Smith RL, Alexander EJ, Dyrby CO, Koo S. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng. 2004 Mar;32(3):447-57. doi: 10.1023/b:abme.0000017541.82498.37.
Results Reference
background
PubMed Identifier
20452595
Citation
Barrios JA, Crossley KM, Davis IS. Gait retraining to reduce the knee adduction moment through real-time visual feedback of dynamic knee alignment. J Biomech. 2010 Aug 10;43(11):2208-13. doi: 10.1016/j.jbiomech.2010.03.040. Epub 2010 May 8.
Results Reference
background
PubMed Identifier
3731718
Citation
Bellamy N, Buchanan WW. A preliminary evaluation of the dimensionality and clinical importance of pain and disability in osteoarthritis of the hip and knee. Clin Rheumatol. 1986 Jun;5(2):231-41. doi: 10.1007/BF02032362.
Results Reference
background
PubMed Identifier
21742637
Citation
Bennell KL, Bowles KA, Wang Y, Cicuttini F, Davies-Tuck M, Hinman RS. Higher dynamic medial knee load predicts greater cartilage loss over 12 months in medial knee osteoarthritis. Ann Rheum Dis. 2011 Oct;70(10):1770-4. doi: 10.1136/ard.2010.147082. Epub 2011 Jul 7.
Results Reference
background
PubMed Identifier
16044301
Citation
Bernier PM, Chua R, Franks IM. Is proprioception calibrated during visually guided movements? Exp Brain Res. 2005 Nov;167(2):292-6. doi: 10.1007/s00221-005-0063-5. Epub 2005 Nov 15.
Results Reference
background
PubMed Identifier
17665490
Citation
Birmingham TB, Hunt MA, Jones IC, Jenkyn TR, Giffin JR. Test-retest reliability of the peak knee adduction moment during walking in patients with medial compartment knee osteoarthritis. Arthritis Rheum. 2007 Aug 15;57(6):1012-7. doi: 10.1002/art.22899.
Results Reference
background
PubMed Identifier
19042923
Citation
Butler RJ, Minick KI, Ferber R, Underwood F. Gait mechanics after ACL reconstruction: implications for the early onset of knee osteoarthritis. Br J Sports Med. 2009 May;43(5):366-70. doi: 10.1136/bjsm.2008.052522. Epub 2008 Nov 28.
Results Reference
background
PubMed Identifier
25677110
Citation
Chang AH, Moisio KC, Chmiel JS, Eckstein F, Guermazi A, Prasad PV, Zhang Y, Almagor O, Belisle L, Hayes K, Sharma L. External knee adduction and flexion moments during gait and medial tibiofemoral disease progression in knee osteoarthritis. Osteoarthritis Cartilage. 2015 Jul;23(7):1099-106. doi: 10.1016/j.joca.2015.02.005. Epub 2015 Feb 10.
Results Reference
background
PubMed Identifier
17267516
Citation
Chang A, Hurwitz D, Dunlop D, Song J, Cahue S, Hayes K, Sharma L. The relationship between toe-out angle during gait and progression of medial tibiofemoral osteoarthritis. Ann Rheum Dis. 2007 Oct;66(10):1271-5. doi: 10.1136/ard.2006.062927. Epub 2007 Jan 31.
Results Reference
background
PubMed Identifier
17341511
Citation
Chang JY, Chang GL, Chien CJ, Chung KC, Hsu AT. Effectiveness of two forms of feedback on training of a joint mobilization skill by using a joint translation simulator. Phys Ther. 2007 Apr;87(4):418-30. doi: 10.2522/ptj.20060154. Epub 2007 Mar 6.
Results Reference
background
PubMed Identifier
25211281
Citation
Chehab EF, Favre J, Erhart-Hledik JC, Andriacchi TP. Baseline knee adduction and flexion moments during walking are both associated with 5 year cartilage changes in patients with medial knee osteoarthritis. Osteoarthritis Cartilage. 2014 Nov;22(11):1833-9. doi: 10.1016/j.joca.2014.08.009. Epub 2014 Aug 27.
Results Reference
background
PubMed Identifier
24196662
Citation
Centers for Disease Control and Prevention (CDC). Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation--United States, 2010-2012. MMWR Morb Mortal Wkly Rep. 2013 Nov 8;62(44):869-73.
Results Reference
background
PubMed Identifier
24858332
Citation
Zalecki T, Gorecka-Mazur A, Pietraszko W, Surowka AD, Novak P, Moskala M, Krygowska-Wajs A. Visual feedback training using WII Fit improves balance in Parkinson's disease. Folia Med Cracov. 2013;53(1):65-78.
Results Reference
background
PubMed Identifier
24553908
Citation
Cross M, Smith E, Hoy D, Nolte S, Ackerman I, Fransen M, Bridgett L, Williams S, Guillemin F, Hill CL, Laslett LL, Jones G, Cicuttini F, Osborne R, Vos T, Buchbinder R, Woolf A, March L. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014 Jul;73(7):1323-30. doi: 10.1136/annrheumdis-2013-204763. Epub 2014 Feb 19.
Results Reference
background
PubMed Identifier
8722125
Citation
Dearborn JT, Eakin CL, Skinner HB. Medial compartment arthrosis of the knee. Am J Orthop (Belle Mead NJ). 1996 Jan;25(1):18-26.
Results Reference
background
PubMed Identifier
27014966
Citation
Deshpande BR, Katz JN, Solomon DH, Yelin EH, Hunter DJ, Messier SP, Suter LG, Losina E. Number of Persons With Symptomatic Knee Osteoarthritis in the US: Impact of Race and Ethnicity, Age, Sex, and Obesity. Arthritis Care Res (Hoboken). 2016 Dec;68(12):1743-1750. doi: 10.1002/acr.22897. Epub 2016 Nov 3.
Results Reference
background
PubMed Identifier
20590285
Citation
Dowling AV, Fisher DS, Andriacchi TP. Gait modification via verbal instruction and an active feedback system to reduce peak knee adduction moment. J Biomech Eng. 2010 Jul;132(7):071007. doi: 10.1115/1.4001584.
Results Reference
background
PubMed Identifier
19401244
Citation
Duncan R, Peat G, Thomas E, Wood L, Hay E, Croft P. Does isolated patellofemoral osteoarthritis matter? Osteoarthritis Cartilage. 2009 Sep;17(9):1151-5. doi: 10.1016/j.joca.2009.03.016. Epub 2009 Apr 17.
Results Reference
background
Citation
Eddo, O., Lindsey, B., Caswell, S. V., & Cortes, N. (2017). Current Evidence of Gait Modification with Real-time Biofeedback to Alter Kinetic, Temporospatial, and Function-Related Outcomes: A Review. International Journal of Kinesiology and Sports Science, 5(3), 35-55.
Results Reference
background
PubMed Identifier
26744298
Citation
Favre J, Erhart-Hledik JC, Chehab EF, Andriacchi TP. General scheme to reduce the knee adduction moment by modifying a combination of gait variables. J Orthop Res. 2016 Sep;34(9):1547-56. doi: 10.1002/jor.23151. Epub 2016 Jan 21.
Results Reference
background
PubMed Identifier
16495396
Citation
Felson DT. Clinical practice. Osteoarthritis of the knee. N Engl J Med. 2006 Feb 23;354(8):841-8. doi: 10.1056/NEJMcp051726. No abstract available. Erratum In: N Engl J Med. 2006 Jun 8;354(23):2520.
Results Reference
background
PubMed Identifier
26632644
Citation
Ferrigno C, Stoller IS, Shakoor N, Thorp LE, Wimmer MA. The Feasibility of Using Augmented Auditory Feedback From a Pressure Detecting Insole to Reduce the Knee Adduction Moment: A Proof of Concept Study. J Biomech Eng. 2016 Feb;138(2):021014. doi: 10.1115/1.4032123.
Results Reference
background
PubMed Identifier
19321348
Citation
Foroughi N, Smith R, Vanwanseele B. The association of external knee adduction moment with biomechanical variables in osteoarthritis: a systematic review. Knee. 2009 Oct;16(5):303-9. doi: 10.1016/j.knee.2008.12.007. Epub 2009 Mar 24.
Results Reference
background
PubMed Identifier
17867361
Citation
Fregly BJ, Reinbolt JA, Rooney KL, Mitchell KH, Chmielewski TL. Design of patient-specific gait modifications for knee osteoarthritis rehabilitation. IEEE Trans Biomed Eng. 2007 Sep;54(9):1687-95. doi: 10.1109/tbme.2007.891934. Erratum In: IEEE Trans Biomed Eng. 2007 Oct;54(10):1905.
Results Reference
background
PubMed Identifier
24917175
Citation
Gerbrands TA, Pisters MF, Vanwanseele B. Individual selection of gait retraining strategies is essential to optimally reduce medial knee load during gait. Clin Biomech (Bristol, Avon). 2014 Aug;29(7):828-34. doi: 10.1016/j.clinbiomech.2014.05.005. Epub 2014 May 27.
Results Reference
background
PubMed Identifier
27747935
Citation
Greska EK, Cortes N, Ringleb SI, Onate JA, Van Lunen BL. Biomechanical differences related to leg dominance were not found during a cutting task. Scand J Med Sci Sports. 2017 Nov;27(11):1328-1336. doi: 10.1111/sms.12776. Epub 2016 Oct 17.
Results Reference
background
PubMed Identifier
6865355
Citation
Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983 May;105(2):136-44. doi: 10.1115/1.3138397.
Results Reference
background
PubMed Identifier
22173730
Citation
Heijink A, Gomoll AH, Madry H, Drobnic M, Filardo G, Espregueira-Mendes J, Van Dijk CN. Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2012 Mar;20(3):423-35. doi: 10.1007/s00167-011-1818-0. Epub 2011 Dec 16.
Results Reference
background
PubMed Identifier
27015600
Citation
Hootman JM, Helmick CG, Barbour KE, Theis KA, Boring MA. Updated Projected Prevalence of Self-Reported Doctor-Diagnosed Arthritis and Arthritis-Attributable Activity Limitation Among US Adults, 2015-2040. Arthritis Rheumatol. 2016 Jul;68(7):1582-7. doi: 10.1002/art.39692.
Results Reference
background
PubMed Identifier
21144522
Citation
Hunt MA, Simic M, Hinman RS, Bennell KL, Wrigley TV. Feasibility of a gait retraining strategy for reducing knee joint loading: increased trunk lean guided by real-time biofeedback. J Biomech. 2011 Mar 15;44(5):943-7. doi: 10.1016/j.jbiomech.2010.11.027. Epub 2010 Dec 7.
Results Reference
background
PubMed Identifier
24836210
Citation
Hunt MA, Takacs J. Effects of a 10-week toe-out gait modification intervention in people with medial knee osteoarthritis: a pilot, feasibility study. Osteoarthritis Cartilage. 2014 Jul;22(7):904-11. doi: 10.1016/j.joca.2014.04.007. Epub 2014 May 14.
Results Reference
background
PubMed Identifier
13129691
Citation
Hunter DJ, March L, Sambrook PN. The association of cartilage volume with knee pain. Osteoarthritis Cartilage. 2003 Oct;11(10):725-9. doi: 10.1016/s1063-4584(03)00160-2.
Results Reference
background
PubMed Identifier
11853076
Citation
Hurwitz DE, Ryals AB, Case JP, Block JA, Andriacchi TP. The knee adduction moment during gait in subjects with knee osteoarthritis is more closely correlated with static alignment than radiographic disease severity, toe out angle and pain. J Orthop Res. 2002 Jan;20(1):101-7. doi: 10.1016/S0736-0266(01)00081-X.
Results Reference
background
PubMed Identifier
15518300
Citation
Jackson BD, Wluka AE, Teichtahl AJ, Morris ME, Cicuttini FM. Reviewing knee osteoarthritis--a biomechanical perspective. J Sci Med Sport. 2004 Sep;7(3):347-57. doi: 10.1016/s1440-2440(04)80030-6.
Results Reference
background
PubMed Identifier
11410174
Citation
Kaufman KR, Hughes C, Morrey BF, Morrey M, An KN. Gait characteristics of patients with knee osteoarthritis. J Biomech. 2001 Jul;34(7):907-15. doi: 10.1016/s0021-9290(01)00036-7.
Results Reference
background
PubMed Identifier
23768609
Citation
Kean CO, Bennell KL, Wrigley TV, Hinman RS. Modified walking shoes for knee osteoarthritis: Mechanisms for reductions in the knee adduction moment. J Biomech. 2013 Aug 9;46(12):2060-6. doi: 10.1016/j.jbiomech.2013.05.011. Epub 2013 Jun 14.
Results Reference
background
PubMed Identifier
22244512
Citation
Kean CO, Hinman RS, Bowles KA, Cicuttini F, Davies-Tuck M, Bennell KL. Comparison of peak knee adduction moment and knee adduction moment impulse in distinguishing between severities of knee osteoarthritis. Clin Biomech (Bristol, Avon). 2012 Jun;27(5):520-3. doi: 10.1016/j.clinbiomech.2011.12.007. Epub 2012 Jan 12.
Results Reference
background
PubMed Identifier
23182814
Citation
Kumar D, Manal KT, Rudolph KS. Knee joint loading during gait in healthy controls and individuals with knee osteoarthritis. Osteoarthritis Cartilage. 2013 Feb;21(2):298-305. doi: 10.1016/j.joca.2012.11.008. Epub 2012 Nov 24.
Results Reference
background
PubMed Identifier
24462839
Citation
Ma VY, Chan L, Carruthers KJ. Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain. Arch Phys Med Rehabil. 2014 May;95(5):986-995.e1. doi: 10.1016/j.apmr.2013.10.032. Epub 2014 Jan 21.
Results Reference
background
PubMed Identifier
22995753
Citation
Maly MR, Robbins SM, Stratford PW, Birmingham TB, Callaghan JP. Cumulative knee adductor load distinguishes between healthy and osteoarthritic knees--a proof of principle study. Gait Posture. 2013 Mar;37(3):397-401. doi: 10.1016/j.gaitpost.2012.08.013. Epub 2012 Sep 18.
Results Reference
background
PubMed Identifier
25862486
Citation
Manal K, Gardinier E, Buchanan TS, Snyder-Mackler L. A more informed evaluation of medial compartment loading: the combined use of the knee adduction and flexor moments. Osteoarthritis Cartilage. 2015 Jul;23(7):1107-11. doi: 10.1016/j.joca.2015.02.779. Epub 2015 Apr 8.
Results Reference
background
PubMed Identifier
15747608
Citation
Mandelbaum B, Waddell D. Etiology and pathophysiology of osteoarthritis. Orthopedics. 2005 Feb;28(2 Suppl):s207-14. doi: 10.3928/0147-7447-20050202-05.
Results Reference
background
PubMed Identifier
17476001
Citation
Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair. 2007 Jul-Aug;21(4):307-14. doi: 10.1177/1545968307300697. Epub 2007 May 2.
Results Reference
background
PubMed Identifier
12079903
Citation
Miyazaki T, Wada M, Kawahara H, Sato M, Baba H, Shimada S. Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann Rheum Dis. 2002 Jul;61(7):617-22. doi: 10.1136/ard.61.7.617.
Results Reference
background
PubMed Identifier
17678933
Citation
Mundermann A, Asay JL, Mundermann L, Andriacchi TP. Implications of increased medio-lateral trunk sway for ambulatory mechanics. J Biomech. 2008;41(1):165-70. doi: 10.1016/j.jbiomech.2007.07.001. Epub 2007 Aug 3.
Results Reference
background
PubMed Identifier
16145666
Citation
Mundermann A, Dyrby CO, Andriacchi TP. Secondary gait changes in patients with medial compartment knee osteoarthritis: increased load at the ankle, knee, and hip during walking. Arthritis Rheum. 2005 Sep;52(9):2835-44. doi: 10.1002/art.21262.
Results Reference
background
PubMed Identifier
12547739
Citation
Murphy DF, Connolly DA, Beynnon BD. Risk factors for lower extremity injury: a review of the literature. Br J Sports Med. 2003 Feb;37(1):13-29. doi: 10.1136/bjsm.37.1.13.
Results Reference
background
PubMed Identifier
28950426
Citation
Murphy LB, Cisternas MG, Pasta DJ, Helmick CG, Yelin EH. Medical Expenditures and Earnings Losses Among US Adults With Arthritis in 2013. Arthritis Care Res (Hoboken). 2018 Jun;70(6):869-876. doi: 10.1002/acr.23425. Epub 2018 Apr 16.
Results Reference
background
PubMed Identifier
23312408
Citation
Neogi T, Zhang Y. Epidemiology of osteoarthritis. Rheum Dis Clin North Am. 2013 Feb;39(1):1-19. doi: 10.1016/j.rdc.2012.10.004. Epub 2012 Nov 10.
Results Reference
background
PubMed Identifier
22147711
Citation
Nguyen US, Zhang Y, Zhu Y, Niu J, Zhang B, Felson DT. Increasing prevalence of knee pain and symptomatic knee osteoarthritis: survey and cohort data. Ann Intern Med. 2011 Dec 6;155(11):725-32. doi: 10.7326/0003-4819-155-11-201112060-00004.
Results Reference
background
PubMed Identifier
20584755
Citation
Noehren B, Scholz J, Davis I. The effect of real-time gait retraining on hip kinematics, pain and function in subjects with patellofemoral pain syndrome. Br J Sports Med. 2011 Jul;45(9):691-6. doi: 10.1136/bjsm.2009.069112. Epub 2010 Jun 28.
Results Reference
background
PubMed Identifier
29715509
Citation
Richards RE, Andersen MS, Harlaar J, van den Noort JC. Relationship between knee joint contact forces and external knee joint moments in patients with medial knee osteoarthritis: effects of gait modifications. Osteoarthritis Cartilage. 2018 Sep;26(9):1203-1214. doi: 10.1016/j.joca.2018.04.011. Epub 2018 Apr 30.
Results Reference
background
PubMed Identifier
29933935
Citation
Richards R, van den Noort JC, van der Esch M, Booij MJ, Harlaar J. Gait retraining using real-time feedback in patients with medial knee osteoarthritis: Feasibility and effects of a six-week gait training program. Knee. 2018 Oct;25(5):814-824. doi: 10.1016/j.knee.2018.05.014. Epub 2018 Jun 20.
Results Reference
background
PubMed Identifier
28811046
Citation
Richards RE, van den Noort JC, van der Esch M, Booij MJ, Harlaar J. Effect of real-time biofeedback on peak knee adduction moment in patients with medial knee osteoarthritis: Is direct feedback effective? Clin Biomech (Bristol, Avon). 2018 Aug;57:150-158. doi: 10.1016/j.clinbiomech.2017.07.004. Epub 2017 Jul 13.
Results Reference
background
PubMed Identifier
27485366
Citation
Richards R, van den Noort JC, Dekker J, Harlaar J. Gait Retraining With Real-Time Biofeedback to Reduce Knee Adduction Moment: Systematic Review of Effects and Methods Used. Arch Phys Med Rehabil. 2017 Jan;98(1):137-150. doi: 10.1016/j.apmr.2016.07.006. Epub 2016 Jul 30.
Results Reference
background
PubMed Identifier
20558068
Citation
Riskowski JL. Gait and neuromuscular adaptations after using a feedback-based gait monitoring knee brace. Gait Posture. 2010 Jun;32(2):242-7. doi: 10.1016/j.gaitpost.2010.05.002. Epub 2010 Jun 16.
Results Reference
background
PubMed Identifier
15519345
Citation
Schwartz MH, Rozumalski A. A new method for estimating joint parameters from motion data. J Biomech. 2005 Jan;38(1):107-16. doi: 10.1016/j.jbiomech.2004.03.009.
Results Reference
background
PubMed Identifier
25768068
Citation
Segal NA, Glass NA, Teran-Yengle P, Singh B, Wallace RB, Yack HJ. Intensive Gait Training for Older Adults with Symptomatic Knee Osteoarthritis. Am J Phys Med Rehabil. 2015 Oct;94(10 Suppl 1):848-58. doi: 10.1097/PHM.0000000000000264.
Results Reference
background
PubMed Identifier
10728750
Citation
Sharma L, Lou C, Cahue S, Dunlop DD. The mechanism of the effect of obesity in knee osteoarthritis: the mediating role of malalignment. Arthritis Rheum. 2000 Mar;43(3):568-75. doi: 10.1002/1529-0131(200003)43:33.0.CO;2-E.
Results Reference
background
PubMed Identifier
9663481
Citation
Sharma L, Hurwitz DE, Thonar EJ, Sum JA, Lenz ME, Dunlop DD, Schnitzer TJ, Kirwan-Mellis G, Andriacchi TP. Knee adduction moment, serum hyaluronan level, and disease severity in medial tibiofemoral osteoarthritis. Arthritis Rheum. 1998 Jul;41(7):1233-40. doi: 10.1002/1529-0131(199807)41:73.0.CO;2-L.
Results Reference
background
Citation
Shull, P., Lurie, K., Shin, M., Besier, T., & Cutkosky, M. (2010). Haptic gait retraining for knee osteoarthritis treatment. In 2010 IEEE Haptics Symposium (pp. 409-416)
Results Reference
background
PubMed Identifier
21459384
Citation
Shull PB, Lurie KL, Cutkosky MR, Besier TF. Training multi-parameter gaits to reduce the knee adduction moment with data-driven models and haptic feedback. J Biomech. 2011 May 17;44(8):1605-9. doi: 10.1016/j.jbiomech.2011.03.016. Epub 2011 Apr 2.
Results Reference
background
PubMed Identifier
23146322
Citation
Shull PB, Shultz R, Silder A, Dragoo JL, Besier TF, Cutkosky MR, Delp SL. Toe-in gait reduces the first peak knee adduction moment in patients with medial compartment knee osteoarthritis. J Biomech. 2013 Jan 4;46(1):122-8. doi: 10.1016/j.jbiomech.2012.10.019. Epub 2012 Nov 10.
Results Reference
background
PubMed Identifier
23494804
Citation
Shull PB, Silder A, Shultz R, Dragoo JL, Besier TF, Delp SL, Cutkosky MR. Six-week gait retraining program reduces knee adduction moment, reduces pain, and improves function for individuals with medial compartment knee osteoarthritis. J Orthop Res. 2013 Jul;31(7):1020-5. doi: 10.1002/jor.22340. Epub 2013 Mar 12.
Results Reference
background
PubMed Identifier
26188929
Citation
Shull PB, Damian DD. Haptic wearables as sensory replacement, sensory augmentation and trainer - a review. J Neuroeng Rehabil. 2015 Jul 20;12:59. doi: 10.1186/s12984-015-0055-z.
Results Reference
background
PubMed Identifier
23132605
Citation
Sigrist R, Rauter G, Riener R, Wolf P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon Bull Rev. 2013 Feb;20(1):21-53. doi: 10.3758/s13423-012-0333-8.
Results Reference
background
PubMed Identifier
25447976
Citation
Silverwood V, Blagojevic-Bucknall M, Jinks C, Jordan JL, Protheroe J, Jordan KP. Current evidence on risk factors for knee osteoarthritis in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage. 2015 Apr;23(4):507-15. doi: 10.1016/j.joca.2014.11.019. Epub 2014 Nov 29.
Results Reference
background
PubMed Identifier
23973141
Citation
Simic M, Wrigley TV, Hinman RS, Hunt MA, Bennell KL. Altering foot progression angle in people with medial knee osteoarthritis: the effects of varying toe-in and toe-out angles are mediated by pain and malalignment. Osteoarthritis Cartilage. 2013 Sep;21(9):1272-80. doi: 10.1016/j.joca.2013.06.001.
Results Reference
background
PubMed Identifier
20981808
Citation
Simic M, Hinman RS, Wrigley TV, Bennell KL, Hunt MA. Gait modification strategies for altering medial knee joint load: a systematic review. Arthritis Care Res (Hoboken). 2011 Mar;63(3):405-26. doi: 10.1002/acr.20380. Epub 2010 Oct 27.
Results Reference
background
PubMed Identifier
22556125
Citation
Simic M, Hunt MA, Bennell KL, Hinman RS, Wrigley TV. Trunk lean gait modification and knee joint load in people with medial knee osteoarthritis: the effect of varying trunk lean angles. Arthritis Care Res (Hoboken). 2012 Oct;64(10):1545-53. doi: 10.1002/acr.21724.
Results Reference
background
PubMed Identifier
25954533
Citation
Simon D, Mascarenhas R, Saltzman BM, Rollins M, Bach BR Jr, MacDonald P. The Relationship between Anterior Cruciate Ligament Injury and Osteoarthritis of the Knee. Adv Orthop. 2015;2015:928301. doi: 10.1155/2015/928301. Epub 2015 Apr 19.
Results Reference
background
PubMed Identifier
19632877
Citation
Snodgrass SJ, Rivett DA, Robertson VJ, Stojanovski E. Real-time feedback improves accuracy of manually applied forces during cervical spine mobilisation. Man Ther. 2010 Feb;15(1):19-25. doi: 10.1016/j.math.2009.05.011. Epub 2009 Jul 25.
Results Reference
background
PubMed Identifier
21181587
Citation
Sulzenbruck S, Heuer H. Type of visual feedback during practice influences the precision of the acquired internal model of a complex visuo-motor transformation. Ergonomics. 2011 Jan;54(1):34-46. doi: 10.1080/00140139.2010.535023.
Results Reference
background
PubMed Identifier
20558567
Citation
Tate JJ, Milner CE. Real-time kinematic, temporospatial, and kinetic biofeedback during gait retraining in patients: a systematic review. Phys Ther. 2010 Aug;90(8):1123-34. doi: 10.2522/ptj.20080281. Epub 2010 Jun 17.
Results Reference
background
PubMed Identifier
26161626
Citation
Teng HL, MacLeod TD, Link TM, Majumdar S, Souza RB. Higher Knee Flexion Moment During the Second Half of the Stance Phase of Gait Is Associated With the Progression of Osteoarthritis of the Patellofemoral Joint on Magnetic Resonance Imaging. J Orthop Sports Phys Ther. 2015 Sep;45(9):656-64. doi: 10.2519/jospt.2015.5859. Epub 2015 Jul 10.
Results Reference
background
PubMed Identifier
1153764
Citation
Thomas RH, Resnick D, Alazraki NP, Daniel D, Greenfield R. Compartmental evaluation of osteoarthritis of the knee. A comparative study of available diagnostic modalities. Radiology. 1975 Sep;116(3):585-94. doi: 10.1148/116.3.585.
Results Reference
background
PubMed Identifier
17133592
Citation
Thorp LE, Sumner DR, Block JA, Moisio KC, Shott S, Wimmer MA. Knee joint loading differs in individuals with mild compared with moderate medial knee osteoarthritis. Arthritis Rheum. 2006 Dec;54(12):3842-9. doi: 10.1002/art.22247.
Results Reference
background
PubMed Identifier
29174534
Citation
Uhlrich SD, Silder A, Beaupre GS, Shull PB, Delp SL. Subject-specific toe-in or toe-out gait modifications reduce the larger knee adduction moment peak more than a non-personalized approach. J Biomech. 2018 Jan 3;66:103-110. doi: 10.1016/j.jbiomech.2017.11.003. Epub 2017 Nov 8.
Results Reference
background
PubMed Identifier
25480419
Citation
van den Noort JC, Steenbrink F, Roeles S, Harlaar J. Real-time visual feedback for gait retraining: toward application in knee osteoarthritis. Med Biol Eng Comput. 2015 Mar;53(3):275-86. doi: 10.1007/s11517-014-1233-z. Epub 2014 Dec 6.
Results Reference
background
PubMed Identifier
20839320
Citation
Walter JP, D'Lima DD, Colwell CW Jr, Fregly BJ. Decreased knee adduction moment does not guarantee decreased medial contact force during gait. J Orthop Res. 2010 Oct;28(10):1348-54. doi: 10.1002/jor.21142.
Results Reference
background
PubMed Identifier
21428681
Citation
Wheeler JW, Shull PB, Besier TF. Real-time knee adduction moment feedback for gait retraining through visual and tactile displays. J Biomech Eng. 2011 Apr;133(4):041007. doi: 10.1115/1.4003621.
Results Reference
background
PubMed Identifier
1989009
Citation
Winstein CJ. Knowledge of results and motor learning--implications for physical therapy. Phys Ther. 1991 Feb;71(2):140-9. doi: 10.1093/ptj/71.2.140.
Results Reference
background
PubMed Identifier
17719803
Citation
Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, Bierma-Zeinstra S, Brandt KD, Croft P, Doherty M, Dougados M, Hochberg M, Hunter DJ, Kwoh K, Lohmander LS, Tugwell P. OARSI recommendations for the management of hip and knee osteoarthritis, part I: critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarthritis Cartilage. 2007 Sep;15(9):981-1000. doi: 10.1016/j.joca.2007.06.014. Epub 2007 Aug 27.
Results Reference
background
PubMed Identifier
17343285
Citation
Zhao D, Banks SA, Mitchell KH, D'Lima DD, Colwell CW Jr, Fregly BJ. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. J Orthop Res. 2007 Jun;25(6):789-97. doi: 10.1002/jor.20379.
Results Reference
background

Learn more about this trial

Effects of Gait Retraining on Lower Extremity Biomechanics

We'll reach out to this number within 24 hrs