Evaluation of Coffee Therapy for Improvement of Renal Oxygenation (COFFEE)
Primary Purpose
Type1diabetes, Type1 Diabetes Mellitus, Diabetic Kidney Disease
Status
Completed
Phase
Phase 2
Locations
United States
Study Type
Interventional
Intervention
Starbucks® Cold brew - 325ml bottle
Sponsored by
About this trial
This is an interventional treatment trial for Type1diabetes
Eligibility Criteria
Inclusion Criteria:
- Youth with T1D (antibody +) with <10 year duration
- Age 12-21 years
- Weight >57 lbs and <350 lbs
- BMI >5th %ile
- HbA1c <12%
- Previous exposure to caffeine
Exclusion Criteria:
- Anemia
- Allergy to shellfish or iodine
- Severe illness, recent diabetic ketoacidosis (DKA)
- Tachyarrhythmias, Attention-deficit/hyperactivity disorder (ADHD), tremors, tics, Tourette's, arrythmias, insomnia, overactive bladder
- Estimated Glomerular Filtration Rate (eGFR) <60 ml/min/1.73 m2 or creatinine > 1.5 mg/dl or history of albumin-to-creatinine ratio (ACR) >300 mg/g
- MRI Scanning contraindications (claustrophobia, implantable metal devices that are non-MRI compatible, >350 lbs)
- Pregnancy or nursing
- (Angiotensin-converting enzyme) ACE inhibitors, angiotensin receptor blockers (ARBs), diuretics, sodium-glucose co-transport (SGLT) 2 or 1 blockers, daily NSAIDs or aspirin, sulfonamides, thiazolsulfone or probenecid, atypical antipsychotics, steroids
Sites / Locations
- Children's Hospital Colorado
Arms of the Study
Arm 1
Arm Type
Experimental
Arm Label
Cold Brew Coffee
Arm Description
6 days of drinking 1 bottle of Starbucks® Cold brew 325ml [205 mg caffeine] every morning between 6am-9am.
Outcomes
Primary Outcome Measures
Renal Oxygenation
Measured by blood oxygen level dependent (BOLD MRI), before and after Lasix injection;Regions of interest (ROI) analysis for BOLD MRI will be performed on a Leonardo Workstation (Siemens Medical Systems, Germany). Typically, 1 to 3 regions in each, cortex and medulla, per kidney per slice will be defined leading to a total of about 10 ROIs per region (cortex and medulla) per subject. The mean and standard deviation of these 10 measurements will be used a R2* measurement for the region, for the subject and for that time point. Additionally, two (delta) R2*s will be calculated as defined below:
(delta) R2*(medulla, furosemide) = R2* (medulla, pre-furosemide) - R2* (medulla, post-furosemide); (delta) R2*(cortex, medulla) = Baseline R2* (medulla) - Baseline R2* (cortex).
Renal Perfusion
Measured by pseudocontinuous arterial spin labeling (pCASL) MRI; ROI analysis will be used to estimate (delta) M (difference in signal intensity between non-selective and selective inversion images). Using the same ROI, M0 will be estimated from the proton density image. T1 measurements from the same ROI will be obtained by fitting the signal intensity vs. inversion time data as described previously (104) using XLFit (ID Business Solutions Ltd., UK) or T1 maps created using MRI Mapper (Beth Israel Deaconess Medical Center, Boston). Partition coefficient will be assumed to be 0.8 ml/gm (105, 106). These values will then be used to estimate regional blood flow.
Secondary Outcome Measures
Glomerular Filtration Rate
Measured by Iohexol clearance; An intravenous (IV) line was placed, and participants were asked to empty their bladders. Spot plasma and urine samples were collected prior to iohexol infusion. Iohexol was administered through bolus IV injection (5 mL of 300 mg/mL; Omnipaque 300, GE Healthcare). An equilibration period of 120 min was used and blood collections for iohexol plasma disappearance were drawn at +120, +150, +180, +210, +240 min (11). Because the Brøchner-Mortensen equation underestimates high values of GFR, the Jødal-Brøchner-Mortensen equation was used to calculate the GFR (12). We report absolute GFR (mL/min) and RPF (mL/min) in the main analyses because the practice of indexing GFR and RPF for body surface underestimates hyperfiltration and hyperperfusion (14), and body surface area (BSA) calculations introduce noise into the clearance measurements.
Effective Renal Plasma Flow
Measured by para-aminohippurate (PAH) clearance; An intravenous (IV) line was placed, and participants were asked to empty their bladders. Spot plasma and urine samples were collected prior PAH infusion. PAH (2 g/10 mL, prepared at the University of Minnesota, with a dose of [weight in kg]/75 × 4.2 mL; IND #140129) was given slowly over 5 min followed by a continuous infusion of 8 mL of PAH and 42 mL of normal saline at a rate of 24 mL/h for 2 h. After an equilibration period, blood was drawn at 90 and 120 min, and RPF was calculated as PAH clearance divided by the estimated extraction ratio of PAH, which varies by the level of GFR (13). We report absolute GFR (mL/min) and RPF (mL/min) in the main analyses because the practice of indexing GFR and RPF for body surface underestimates hyperfiltration and hyperperfusion (14), and body surface area (BSA) calculations introduce noise into the clearance measurements.
Tubular Injury Markers
Measured by markers of kidney injury in plasma; Cystatin C (mg/L) was measured by immunoturbidimetric method (Kamiya Biomedical) by our Clinical Translational Research Center Core Laboratory.
Full Information
NCT ID
NCT03878277
First Posted
March 14, 2019
Last Updated
January 26, 2022
Sponsor
University of Colorado, Denver
Collaborators
Johns Hopkins University
1. Study Identification
Unique Protocol Identification Number
NCT03878277
Brief Title
Evaluation of Coffee Therapy for Improvement of Renal Oxygenation
Acronym
COFFEE
Official Title
Coffee, Renal Oxygenation, Blood Flow and Glomerular Filtration Rate in Early Diabetic Kidney Disease.
Study Type
Interventional
2. Study Status
Record Verification Date
January 2022
Overall Recruitment Status
Completed
Study Start Date
July 1, 2019 (Actual)
Primary Completion Date
January 21, 2020 (Actual)
Study Completion Date
September 30, 2021 (Actual)
3. Sponsor/Collaborators
Responsible Party, by Official Title
Sponsor
Name of the Sponsor
University of Colorado, Denver
Collaborators
Johns Hopkins University
4. Oversight
Studies a U.S. FDA-regulated Drug Product
Yes
Studies a U.S. FDA-regulated Device Product
No
Product Manufactured in and Exported from the U.S.
No
Data Monitoring Committee
No
5. Study Description
Brief Summary
Over 1.25 million Americans have Type 1 Diabetes (T1D), increasing risk for early death from cardiovascular disease (CVD). Despite advances in glycemic and blood pressure control, a child diagnosed with T1D is expected to live up to 17 years less than non-diabetic peers. The strongest risk factor for CVD and mortality in T1D is diabetic kidney disease (DKD). Current treatments, such as control of hyperglycemia and hypertension, are beneficial, but only partially protect against DKD. This limited progress may relate to a narrow focus on clinical manifestations of disease, rather than on the initial metabolic derangements underlying the initiation of DKD. Renal hypoxia, stemming from a potential metabolic mismatch between increased renal energy expenditure and impaired substrate utilization, is increasingly proposed as a unifying early pathway in the development of DKD. T1D is impacted by several mechanisms which increase renal adenosine triphosphate (ATP) consumption and decrease ATP generation.
Caffeine, a methylxanthine, is known to alter kidney function by several mechanisms including natriuresis, hemodynamics and renin-angiotensin-aldosterone system. In contrast, to other natriuretic agents, caffeine is thought to fully inhibit the local tubuloglomerular feedback (TGF) response to increased distal sodium delivery. This observation has broad-ranging implications as caffeine can reduce renal oxygen (O2) consumption without impairing effective renal plasma flow (ERPF) and glomerular filtration rate (GFR).
There are also data suggesting that chemicals in coffee besides caffeine may provide important cardio-renal protection. Yet, there are no data examining the impact of coffee-induced natriuresis on intrarenal hemodynamic function and renal energetics in youth-onset T1D. Our overarching hypothesis in the proposed pilot and feasibility trial is that coffee drinking improves renal oxygenation by reducing renal O2 consumption without impairing GFR and ERPF. To address these hypotheses, we will measure GFR, ERPF, renal perfusion and oxygenation in response to 7 days of cold brew coffee (one Starbucks® Cold brew 325ml bottle daily [205mg caffeine]) in an open-label pilot and feasibility trial in 10 adolescents with T1D already enrolled in the CASPER Study (PI: Bjornstad).
6. Conditions and Keywords
Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Type1diabetes, Type1 Diabetes Mellitus, Diabetic Kidney Disease, Juvenile Diabetes, Diabetic Nephropathies, Diabetes Complications, Diabetes, Autoimmune
7. Study Design
Primary Purpose
Treatment
Study Phase
Phase 2
Interventional Study Model
Single Group Assignment
Masking
None (Open Label)
Allocation
N/A
Enrollment
10 (Actual)
8. Arms, Groups, and Interventions
Arm Title
Cold Brew Coffee
Arm Type
Experimental
Arm Description
6 days of drinking 1 bottle of Starbucks® Cold brew 325ml [205 mg caffeine] every morning between 6am-9am.
Intervention Type
Drug
Intervention Name(s)
Starbucks® Cold brew - 325ml bottle
Intervention Description
Starbucks® Cold brew 325ml bottles daily [205mg caffeine] will be provided to the participants. Participants will be instructed to drink 1 bottle every morning between 6 and 9 am for 6 days prior to the post-intervention visit. The 7th day is the post-intervention visit, and participants will be asked to drink 1 bottle the morning of the study visit
Primary Outcome Measure Information:
Title
Renal Oxygenation
Description
Measured by blood oxygen level dependent (BOLD MRI), before and after Lasix injection;Regions of interest (ROI) analysis for BOLD MRI will be performed on a Leonardo Workstation (Siemens Medical Systems, Germany). Typically, 1 to 3 regions in each, cortex and medulla, per kidney per slice will be defined leading to a total of about 10 ROIs per region (cortex and medulla) per subject. The mean and standard deviation of these 10 measurements will be used a R2* measurement for the region, for the subject and for that time point. Additionally, two (delta) R2*s will be calculated as defined below:
(delta) R2*(medulla, furosemide) = R2* (medulla, pre-furosemide) - R2* (medulla, post-furosemide); (delta) R2*(cortex, medulla) = Baseline R2* (medulla) - Baseline R2* (cortex).
Time Frame
1 hour
Title
Renal Perfusion
Description
Measured by pseudocontinuous arterial spin labeling (pCASL) MRI; ROI analysis will be used to estimate (delta) M (difference in signal intensity between non-selective and selective inversion images). Using the same ROI, M0 will be estimated from the proton density image. T1 measurements from the same ROI will be obtained by fitting the signal intensity vs. inversion time data as described previously (104) using XLFit (ID Business Solutions Ltd., UK) or T1 maps created using MRI Mapper (Beth Israel Deaconess Medical Center, Boston). Partition coefficient will be assumed to be 0.8 ml/gm (105, 106). These values will then be used to estimate regional blood flow.
Time Frame
1 hour
Secondary Outcome Measure Information:
Title
Glomerular Filtration Rate
Description
Measured by Iohexol clearance; An intravenous (IV) line was placed, and participants were asked to empty their bladders. Spot plasma and urine samples were collected prior to iohexol infusion. Iohexol was administered through bolus IV injection (5 mL of 300 mg/mL; Omnipaque 300, GE Healthcare). An equilibration period of 120 min was used and blood collections for iohexol plasma disappearance were drawn at +120, +150, +180, +210, +240 min (11). Because the Brøchner-Mortensen equation underestimates high values of GFR, the Jødal-Brøchner-Mortensen equation was used to calculate the GFR (12). We report absolute GFR (mL/min) and RPF (mL/min) in the main analyses because the practice of indexing GFR and RPF for body surface underestimates hyperfiltration and hyperperfusion (14), and body surface area (BSA) calculations introduce noise into the clearance measurements.
Time Frame
4 hours
Title
Effective Renal Plasma Flow
Description
Measured by para-aminohippurate (PAH) clearance; An intravenous (IV) line was placed, and participants were asked to empty their bladders. Spot plasma and urine samples were collected prior PAH infusion. PAH (2 g/10 mL, prepared at the University of Minnesota, with a dose of [weight in kg]/75 × 4.2 mL; IND #140129) was given slowly over 5 min followed by a continuous infusion of 8 mL of PAH and 42 mL of normal saline at a rate of 24 mL/h for 2 h. After an equilibration period, blood was drawn at 90 and 120 min, and RPF was calculated as PAH clearance divided by the estimated extraction ratio of PAH, which varies by the level of GFR (13). We report absolute GFR (mL/min) and RPF (mL/min) in the main analyses because the practice of indexing GFR and RPF for body surface underestimates hyperfiltration and hyperperfusion (14), and body surface area (BSA) calculations introduce noise into the clearance measurements.
Time Frame
4 hours
Title
Tubular Injury Markers
Description
Measured by markers of kidney injury in plasma; Cystatin C (mg/L) was measured by immunoturbidimetric method (Kamiya Biomedical) by our Clinical Translational Research Center Core Laboratory.
Time Frame
4 hours
10. Eligibility
Sex
All
Minimum Age & Unit of Time
12 Years
Maximum Age & Unit of Time
21 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria:
Youth with T1D (antibody +) with <10 year duration
Age 12-21 years
Weight >57 lbs and <350 lbs
BMI >5th %ile
HbA1c <12%
Previous exposure to caffeine
Exclusion Criteria:
Anemia
Allergy to shellfish or iodine
Severe illness, recent diabetic ketoacidosis (DKA)
Tachyarrhythmias, Attention-deficit/hyperactivity disorder (ADHD), tremors, tics, Tourette's, arrythmias, insomnia, overactive bladder
Estimated Glomerular Filtration Rate (eGFR) <60 ml/min/1.73 m2 or creatinine > 1.5 mg/dl or history of albumin-to-creatinine ratio (ACR) >300 mg/g
MRI Scanning contraindications (claustrophobia, implantable metal devices that are non-MRI compatible, >350 lbs)
Pregnancy or nursing
(Angiotensin-converting enzyme) ACE inhibitors, angiotensin receptor blockers (ARBs), diuretics, sodium-glucose co-transport (SGLT) 2 or 1 blockers, daily NSAIDs or aspirin, sulfonamides, thiazolsulfone or probenecid, atypical antipsychotics, steroids
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Petter Bjornstad, MD
Organizational Affiliation
University of Colorado Denver | Anschutz
Official's Role
Principal Investigator
Facility Information:
Facility Name
Children's Hospital Colorado
City
Aurora
State/Province
Colorado
ZIP/Postal Code
80045
Country
United States
12. IPD Sharing Statement
Plan to Share IPD
No
Learn more about this trial
Evaluation of Coffee Therapy for Improvement of Renal Oxygenation
We'll reach out to this number within 24 hrs