search
Back to results

Evaluation of Myoelectric Implantable Recording Array (MIRA) in Participants With Transradial Amputation (MIRA)

Primary Purpose

Amputation, Amputation; Traumatic, Hand

Status
Recruiting
Phase
Not Applicable
Locations
United States
Study Type
Interventional
Intervention
Myoelectric Implantable Recording Array (MIRA)
Sponsored by
Boninger, Michael, MD
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional device feasibility trial for Amputation focused on measuring hand amputation, wrist amputation, transradial amputation

Eligibility Criteria

22 Years - 70 Years (Adult, Older Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria: Subjects must have a unilateral transradial amputation or wrist disarticulation. Subjects must demonstrate independent voluntary control of muscles in the flexor and extensor compartments of the forearm Subjects must be over 1-year post-amputation at time of implantation. Subjects must be between the ages of 22 and 70 years old. Subjects outside this age range may be at an increased surgical risk and increased risk of fatigue during prosthetic training. Subjects must be able to communicate with the investigators in English because of the need to follow the instructions of the study team. Subjects must show an understanding of the study goals and have the ability to follow simple directions as judged by the investigators. Subjects must pass a neuropsychological and psychosocial assessment. Documentation of informed consent must be obtained from the subject. Exclusion Criteria: Subjects must be able to function without the use of a prosthesis, or have access to assistance, for a period of 6 weeks following implantation and explantation surgeries. Subjects must not have visual impairment such that extended viewing of a computer monitor would be difficult even with ordinary corrective lenses. Subjects who have another serious disease(s) or disorder(s) that could affect their ability to participate in this study (verified during pre-op anesthesia evaluation to determine surgical risk status) will be excluded. Subjects must not have phantom limb pain that is self-reported to be severe (options are no pain, mild pain, moderate pain, severe pain). Subjects must not have any type of implantable generator such as a pacemaker, spinal cord stimulator, cochlear implant, deep brain stimulator (DBS) or DBS leads, vagus nerve stimulator, or defibrillator. Female subjects of childbearing age must not be pregnant, lactating, or plan to become pregnant during the next 25 months. Subjects must have no history of peripheral vascular disease that could impact wound healing. Subjects who require routine MRI, therapeutic ultrasound, or diathermy as part of their ongoing care will be excluded. Subjects must not have osteomyelitis. Subjects must have no history of intractable clinically relevant cardiac arrhythmias. Subjects must have no active infection(s) or unexplained fever(s) (verified during pre-op anesthesia evaluation to determine surgical risk status). Subject must have no history of ongoing untreated alcoholism. Subject must not be receiving chronic oral or intravenous steroids or immunosuppressive therapy. Subjects must not be receiving medications that affect blood coagulation. Subjects must not have had active cancer within the past year (other than adequately treated basal cell or squamous cell skin cancer) or require chemotherapy. Subjects must not have uncontrolled insulin dependent diabetes mellitus. Subjects who have had a seizure in the last two years will be excluded. Subjects who have attempted suicide in the past 12 months will be excluded. Subjects who are immunosuppressed or who have conditions that typically result in immunocompromise (including, but not limited to: ataxia-telangiectasia, cancer, Chediak-Higashi syndrome, combined immunodeficiency disease, complement deficiencies, DiGeorge syndrome, HIV/AIDS, hypogammaglobulinemia, Job syndrome, leukocyte adhesion defects, malnutrition, panhypogammaglobulinemia, Bruton disease, congenital agammaglobulinemia, selective deficiency of IgA and Wiscott-Aldrich syndrome) will be excluded. Subjects with active psychiatric concerns, including but not limited to major depression, bipolar disorder, schizophrenia or other psychotic disorder and post-traumatic stress disorder. Individuals undergoing effective treatment for any of these disorders will not be excluded, but will be evaluated by a rehabilitation psychologist. Subjects who report use of controlled, non-prescribed substances other than cannabis/marijuana will be excluded. If a subject reports use of cannabis, we will use the DAST-10 questionnaire to screen for level of abuse. An individual may be included if the score is 5 or less and if the neuropsychologist deems that they are eligible. Subjects reporting use of cannabis will also undergo a urine drug test to screen for other nonprescribed drugs. Subjects will be excluded if they test positive for any non-prescribed substance other than cannabis.

Sites / Locations

  • University of Pittsburgh Medical CenterRecruiting

Arms of the Study

Arm 1

Arm Type

Experimental

Arm Label

MIRA Device

Arm Description

All participants enrolled in the study and who meet eligibility criteria will be implanted with the MIRA device in their residual limb. There is no control group.

Outcomes

Primary Outcome Measures

Number of Participants Explanted
Safety of the MIRA device will be measured by tracking the number of individuals explanted prior to the end of the study.

Secondary Outcome Measures

Adverse Events
The type and frequency of device-related adverse events will be recorded by exams and check ins with participants during the study.
Peak-to-Peak Voltage
Peak-to-peak voltage will be measured over the study duration as a metric of signal quality.
Signal-to-Noise Ratio
Signal-to-noise ratio will be measured over the study duration as a metric of signal quality.
Device Control
Participants will be asked to make specific movements, which will be compared to target movements, in order to determine the ability to control different degrees of freedom. Performance will be measured over the duration of the study.

Full Information

First Posted
February 10, 2023
Last Updated
October 23, 2023
Sponsor
Boninger, Michael, MD
Collaborators
Ripple Therapeutics Corporation, National Institute of Neurological Disorders and Stroke (NINDS)
search

1. Study Identification

Unique Protocol Identification Number
NCT05768802
Brief Title
Evaluation of Myoelectric Implantable Recording Array (MIRA) in Participants With Transradial Amputation
Acronym
MIRA
Official Title
Evaluation of an Implantable Intramuscular Device to Control a Myoelectric Prosthesis
Study Type
Interventional

2. Study Status

Record Verification Date
October 2023
Overall Recruitment Status
Recruiting
Study Start Date
March 2024 (Anticipated)
Primary Completion Date
December 2027 (Anticipated)
Study Completion Date
December 2029 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Principal Investigator
Name of the Sponsor
Boninger, Michael, MD
Collaborators
Ripple Therapeutics Corporation, National Institute of Neurological Disorders and Stroke (NINDS)

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
Yes
Device Product Not Approved or Cleared by U.S. FDA
Yes
Data Monitoring Committee
Yes

5. Study Description

Brief Summary
The purpose of this research study is to see how well a new type of myoelectric prosthesis works. A myoelectric prosthesis is a robotic limb for amputees that is controlled by sensing the activity of muscles in the body above the amputation level. This study involves a medical procedure to implant the Myoelectric Implantable Recording Array (MIRA) in the residual limb. The procedure will be performed under sedation by a physician. When muscles contract, they generate an electrical signal that can be sensed by MIRA and used to control the prosthetic limb. Myoelectric prosthetic limbs normally use electrodes that are placed on the surface of the skin to control different movements. However, MIRA is implanted under the skin, which could improve the ability to control the myoelectric prosthesis. After the MIRA is implanted, training will occur to learn how to control the prosthesis using the muscles in the residual limb. The device can stay implanted for up to one year. The device will be removed (explanted) by a physician.
Detailed Description
A well-documented challenge with current myoelectric devices is the common use of only two surface EMG electrodes to record control signals, typically one on each of the extensor and flexor muscle compartments in the residual limb. With this electrode configuration, just a single motion can be controlled at any given time. Changing to new motions or grasp patterns typically requires a secondary switching method. This sequential control enables pre-programmed functional grasps, and can be selected by patterns of co-contraction of antagonist muscle groups. However, this approach has limited success due to the slow and non-intuitive nature of the required muscular activations. For example, contraction of flexor muscles may be used to close the hand, but in order to rotate the wrist, a co-contraction of the flexors and extensors (to switch control modes) followed by flexor contraction is required. This non-intuitive approach ignores the normal function of forearm muscles and has a further disadvantage that simultaneous control of hand aperture and wrist rotation is impossible. Adding additional grasping patterns can make the problem worse and often requires the user to step through the different pre-programmed patterns by making multiple co-contractions until the correct movement is selected. Surface electrode-based systems also rely on strong muscle contractions, which are inefficient and contribute to awkward usability and ultimate rejection of the prosthesis. Other complications that are associated with surface electrodes are signal changes due to environmental conditions such as sweating, daily changing of electrode locations due to skin-related issues, and susceptibility to crosstalk and movement artifacts. In contrast, implantable electrodes are protected from environmental conditions, remain fixed in place, can record small signals from gently contracting muscles, and can record many different signals to potentially allow for more complex and simultaneous control of multiple joints. Recent research with myoelectric control has focused on developing new control paradigms, such as simultaneous multi-degree of freedom control and proportional velocity control. Often, surface EMG recordings from an antagonistic pair of muscles are used to control a single degree of freedom. Implantable electrodes have shown promise as an alternative method in preliminary human subject studies, and recent research has demonstrated that up to three degrees-of-freedom have been simultaneously controlled in a virtual environment using intramuscular electrodes, as well as proportional velocity control. The Implantable Myoelectric Sensor (IMES®) System utilizes eight implanted electrodes (six actively needed for control, two as back-ups) to control three degrees-of-freedom. Another study using the same EMG leads and electrode configuration as MIRA, implanted percutaneously, enabled simultaneous control of up to 6 degrees of freedom (thumb flexion, index flexion, middle flexion, thumb adduction and abduction, wrist flexion and extension, and wrist pronation and supination) of an advanced prosthesis. As myoelectric prostheses move away from preprogrammed movements and pattern recognition, a minimum of two electrodes implanted in separate muscle targets appears to be necessary to control a single degree of freedom. The investigator's approach aims to address the limitations of controlling state-of-the-art prosthetic hands. Multichannel intramuscular EMG recordings using the MIRA implant will be used to drive simultaneous hand and wrist movements providing a significant improvement in motor control over the current state-of-the-art. More specifically, the goal is to achieve control of wrist rotation and open/close of the hand and optimally, flexion/extension of the wrist and independent flexion/extension of four fingers. People with transradial amputations will be recruited into this study with the goal of restoring hand and wrist function. The investigators have designed MIRA to eliminate percutaneous connections, which will reduce the risk of infection and minimize the amount of care required by study subjects. The study is designed to last for one year including a significant amount of in-home testing. Telerehabilitation principles (e.g. remote monitoring, regular progress checks) will be used to ensure frequent communication with investigators and regular assessment of device performance. Conducting a year-long study will provide sufficient time to allow for subjects to learn to use their new device and also allow us to document long-term device performance. The investigators will collect preliminary safety data and document the type and frequency of any adverse events that occur for the duration of the implantation. EMG signal quality and overall device performance over the duration of the implantation will also be measured.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Amputation, Amputation; Traumatic, Hand
Keywords
hand amputation, wrist amputation, transradial amputation

7. Study Design

Primary Purpose
Device Feasibility
Study Phase
Not Applicable
Interventional Study Model
Single Group Assignment
Masking
None (Open Label)
Allocation
N/A
Enrollment
5 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
MIRA Device
Arm Type
Experimental
Arm Description
All participants enrolled in the study and who meet eligibility criteria will be implanted with the MIRA device in their residual limb. There is no control group.
Intervention Type
Device
Intervention Name(s)
Myoelectric Implantable Recording Array (MIRA)
Intervention Description
The Myoelectric Implantable Recording Array (MIRA) will use electromyography to detect the electrical activity of forearm muscles and transmit that information to an externally-powered prosthetic limb. The MIRA is implanted under the skin.
Primary Outcome Measure Information:
Title
Number of Participants Explanted
Description
Safety of the MIRA device will be measured by tracking the number of individuals explanted prior to the end of the study.
Time Frame
12 months
Secondary Outcome Measure Information:
Title
Adverse Events
Description
The type and frequency of device-related adverse events will be recorded by exams and check ins with participants during the study.
Time Frame
12 months
Title
Peak-to-Peak Voltage
Description
Peak-to-peak voltage will be measured over the study duration as a metric of signal quality.
Time Frame
12 months
Title
Signal-to-Noise Ratio
Description
Signal-to-noise ratio will be measured over the study duration as a metric of signal quality.
Time Frame
12 months
Title
Device Control
Description
Participants will be asked to make specific movements, which will be compared to target movements, in order to determine the ability to control different degrees of freedom. Performance will be measured over the duration of the study.
Time Frame
12 months

10. Eligibility

Sex
All
Minimum Age & Unit of Time
22 Years
Maximum Age & Unit of Time
70 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: Subjects must have a unilateral transradial amputation or wrist disarticulation. Subjects must demonstrate independent voluntary control of muscles in the flexor and extensor compartments of the forearm Subjects must be over 1-year post-amputation at time of implantation. Subjects must be between the ages of 22 and 70 years old. Subjects outside this age range may be at an increased surgical risk and increased risk of fatigue during prosthetic training. Subjects must be able to communicate with the investigators in English because of the need to follow the instructions of the study team. Subjects must show an understanding of the study goals and have the ability to follow simple directions as judged by the investigators. Subjects must pass a neuropsychological and psychosocial assessment. Documentation of informed consent must be obtained from the subject. Exclusion Criteria: Subjects must be able to function without the use of a prosthesis, or have access to assistance, for a period of 6 weeks following implantation and explantation surgeries. Subjects must not have visual impairment such that extended viewing of a computer monitor would be difficult even with ordinary corrective lenses. Subjects who have another serious disease(s) or disorder(s) that could affect their ability to participate in this study (verified during pre-op anesthesia evaluation to determine surgical risk status) will be excluded. Subjects must not have phantom limb pain that is self-reported to be severe (options are no pain, mild pain, moderate pain, severe pain). Subjects must not have any type of implantable generator such as a pacemaker, spinal cord stimulator, cochlear implant, deep brain stimulator (DBS) or DBS leads, vagus nerve stimulator, or defibrillator. Female subjects of childbearing age must not be pregnant, lactating, or plan to become pregnant during the next 25 months. Subjects must have no history of peripheral vascular disease that could impact wound healing. Subjects who require routine MRI, therapeutic ultrasound, or diathermy as part of their ongoing care will be excluded. Subjects must not have osteomyelitis. Subjects must have no history of intractable clinically relevant cardiac arrhythmias. Subjects must have no active infection(s) or unexplained fever(s) (verified during pre-op anesthesia evaluation to determine surgical risk status). Subject must have no history of ongoing untreated alcoholism. Subject must not be receiving chronic oral or intravenous steroids or immunosuppressive therapy. Subjects must not be receiving medications that affect blood coagulation. Subjects must not have had active cancer within the past year (other than adequately treated basal cell or squamous cell skin cancer) or require chemotherapy. Subjects must not have uncontrolled insulin dependent diabetes mellitus. Subjects who have had a seizure in the last two years will be excluded. Subjects who have attempted suicide in the past 12 months will be excluded. Subjects who are immunosuppressed or who have conditions that typically result in immunocompromise (including, but not limited to: ataxia-telangiectasia, cancer, Chediak-Higashi syndrome, combined immunodeficiency disease, complement deficiencies, DiGeorge syndrome, HIV/AIDS, hypogammaglobulinemia, Job syndrome, leukocyte adhesion defects, malnutrition, panhypogammaglobulinemia, Bruton disease, congenital agammaglobulinemia, selective deficiency of IgA and Wiscott-Aldrich syndrome) will be excluded. Subjects with active psychiatric concerns, including but not limited to major depression, bipolar disorder, schizophrenia or other psychotic disorder and post-traumatic stress disorder. Individuals undergoing effective treatment for any of these disorders will not be excluded, but will be evaluated by a rehabilitation psychologist. Subjects who report use of controlled, non-prescribed substances other than cannabis/marijuana will be excluded. If a subject reports use of cannabis, we will use the DAST-10 questionnaire to screen for level of abuse. An individual may be included if the score is 5 or less and if the neuropsychologist deems that they are eligible. Subjects reporting use of cannabis will also undergo a urine drug test to screen for other nonprescribed drugs. Subjects will be excluded if they test positive for any non-prescribed substance other than cannabis.
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
Sydney Bader, MS
Phone
412-648-4196
Email
syb17@pitt.edu
First Name & Middle Initial & Last Name or Official Title & Degree
Debbie Harrington, BS
Phone
412-383-1355
Email
debbie.harrington@pitt.edu
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Robert Gaunt, PhD
Organizational Affiliation
University of Pittsburgh
Official's Role
Principal Investigator
Facility Information:
Facility Name
University of Pittsburgh Medical Center
City
Pittsburgh
State/Province
Pennsylvania
ZIP/Postal Code
15213
Country
United States
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Sydney Bader, MS
Phone
412-648-4196
Email
syb17@pitt.edu
First Name & Middle Initial & Last Name & Degree
Debbie Harrington, BS
Phone
412-383-1355
Email
debbie.harrington@pitt.edu

12. IPD Sharing Statement

Plan to Share IPD
Yes
IPD Sharing Plan Description
Data will be shared with Ripple on a regular basis. All data will be de-identified. There is no definitive plan to share data with other researchers at this point in time.
IPD Sharing Time Frame
Information will be shared throughout duration of collaboration with Ripple LLC.
IPD Sharing Access Criteria
Collaborators will receive data and study materials according to existing data sharing agreements.

Learn more about this trial

Evaluation of Myoelectric Implantable Recording Array (MIRA) in Participants With Transradial Amputation

We'll reach out to this number within 24 hrs