search
Back to results

Immunogenicity of H5N1 Vaccine Following H5N2

Primary Purpose

Influenza Vaccine

Status
Completed
Phase
Phase 2
Locations
Russian Federation
Study Type
Interventional
Intervention
A(H5N1) inactivated influenza vaccine (IIV)
A(H5N2) live attenuated influenza vaccine (LAIV)
Sponsored by
PATH
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional prevention trial for Influenza Vaccine focused on measuring LAIV H5N2, Influenza vaccine, Russia

Eligibility Criteria

18 Years - 51 Years (Adult)All SexesAccepts Healthy Volunteers

Inclusion Criteria:

  • Legal male or female adult 18 through 51 years of age at the enrollment visit
  • Literate and willing to provide written informed consent
  • A signed informed consent
  • Free of obvious health problems, as established by the medical history and screening evaluations, including physical examination
  • Capable and willing to complete a memory aid and willing to return for all follow-up visits
  • For females, willing to take reliable birth control measures through Day 56

Exclusion Criteria:

  • Participation in another clinical trial involving any investigational agent within the previous three months or planned enrollment in such a trial during the period of this study
  • Receipt of any non-study vaccine within four weeks prior to enrollment or refusal to postpone receipt
  • Participation in any other clinical trials involving any H5-matched influenza vaccines except that in Protocol LAIV-H5N2-01
  • Current or recent (within two weeks of enrollment) acute respiratory illness with or without fever
  • Other acute illness at the time of study enrollment
  • Receipt of immunoglobulin or other blood products within three months prior to study enrollment or planned receipt during study period
  • Chronic administration (defined as more than 14 consecutively-prescribed days) of immunosuppressants and/or immune-modulating therapy within six months prior to study enrollment
  • History of bronchial asthma
  • Hypersensitivity after previous administration of any (not only influenza) vaccines.
  • Other adverse event (AE) following immunization at least possibly related to previous receipt of any (not only influenza) vaccine
  • Suspected or known hypersensitivity to any of the study vaccine components, including protein of chicken eggs
  • Seasonal (autumnal) hypersensitivity to the natural environment
  • Acute or chronic clinically significant abnormality, as determined by medical history, physical examination or clinical laboratory screening tests, which in the opinion of the investigator, might interfere with the study objectives. Subjects with physical examination findings or clinical laboratory screening results which would be graded 2 or higher on the AE severity grading scale will be excluded from entry into the study
  • History of leukemia or any other blood diseases or solid organ cancer
  • History of thrombocytopenic purpura or known bleeding disorder
  • History of seizures
  • Known or suspected immunosuppressive or immunodeficient condition of any kind, including HIV infection
  • Known chronic hepatitis B virus (HBV) or hepatitis C (HCV) infection
  • Known tuberculosis infection or evidence of previous tuberculosis exposure
  • History of chronic alcohol abuse and/or illegal drug use
  • Pregnancy or lactation.

    • Systemic connective tissue disorders
  • Adrenal gland diseases
  • Hereditary, degenerative and progredient diseases of the nervous system
  • Any condition that, in the opinion of the investigator, would increase the health risk to the subject if he/she participates in the study or would interfere with the evaluation of the study objectives
  • Allergic, including anaphylactic, reactions to any (not only influenza) vaccines

Sites / Locations

  • Research Institute of Influenza

Arms of the Study

Arm 1

Arm 2

Arm Type

Experimental

Active Comparator

Arm Label

Primed with H5N2

Did not receive A(H5N2)

Arm Description

Subjects who received A(H5N1) inactivated influenza vaccine as well as primed with H5N2 live attenuated influenza vaccine approximately 1.5 years before

Subjects who received A(H5N1) inactivated influenza vaccine and did not receive A(H5N2) live attenuated influenza vaccine in a previous study.

Outcomes

Primary Outcome Measures

Geometric Mean Titer of Serum Hemagglutination Inhibition Antibody Response to A/17/Duck/Potsdam/86/92 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional World Health Organization (WHO)-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells. A four-fold or greater antibody rise in titer was considered to be a seroconversion.
Geometric Mean Titer of Serum Hemagglutination Inhibition Antibody Response to A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells. A four-fold or greater antibody rise in titer was considered to be a seroconversion.
Geometric Mean Titer of Serum Hemagglutination Inhibition Antibody Response to A/Indonesia/5/2005 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells. A four-fold or greater antibody rise in titer was considered to be a seroconversion.
Geometric Mean Titer of Serum Hemagglutination Inhibition Antibody Response to A/Turkey/Turkey/5/05(H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells. A four-fold or greater antibody rise in titer was considered to be a seroconversion.
Geometric Mean Titer of Microneutralization Antibody Response to A/17/Turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Serum specimens were tested for neutralizing antibodies against A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)) LAIV strain and A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1) by MN using Madin-Darby Canine Kidney cells. Titers of neutralizing antibodies were expressed as reciprocal of the greatest dilution giving a neutralization of 50% on the cytopathic effects of the virus in the tissue culture (TCID50).
Geometric Mean Titer of Microneutralization Antibody Response to A/Indonesia/5/2005 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Serum specimens were tested for neutralizing antibodies against A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)) LAIV strain and A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1) by MN using Madin-Darby Canine Kidney cells. Titers of neutralizing antibodies were expressed as reciprocal of the greatest dilution giving a neutralization of 50% on the cytopathic effects of the virus in the tissue culture (TCID50).
Number and Percentage of Subjects With Seroconversion for Serum Hemagglutination Inhibition (HAI) Antibody Against 17/t/Tur (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
A four-fold or greater antibody rise in titer was considered to be a seroconversion. The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells.
Number and Percentage of Subjects With Seroconversion for Serum Hemagglutination Inhibition (HAI) Antibody Against A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
A four-fold or greater antibody rise in titer was considered to be a seroconversion. The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells.
Number and Percentage of Subjects With Seroconversion for Serum Hemagglutination Inhibition (HAI) Antibody Against A/Indonesia/5/2005 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
A four-fold or greater antibody rise in titer was considered to be a seroconversion. The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells.
Number and Percentage of Subjects With Seroconversion for Serum Hemagglutination Inhibition (HAI) Antibody Against A/17/Duck/Potsdam/86/92 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
A four-fold or greater antibody rise in titer was considered to be a seroconversion. The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells.
Number and Percentage of Subjects With Seroconversion for Microneutralization (MN) Antibody Against A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Serum specimens were tested for neutralizing antibodies against A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)) LAIV strain and A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1) by MN using Madin-Darby Canine Kidney cells. Titers of neutralizing antibodies were expressed as reciprocal of the greatest dilution giving a neutralization of 50% on the cytopathic effects of the virus in the tissue culture (TCID50). A four-fold or greater antibody rise in titer was considered to be a seroconversion.
Number and Percentage of Subjects With Seroconversion for Microneutralization (MN) Antibody Against A/Indonesia/5/2005 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Serum specimens were tested for neutralizing antibodies against A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)) LAIV strain and A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1) by MN using Madin-Darby Canine Kidney cells. Titers of neutralizing antibodies were expressed as reciprocal of the greatest dilution giving a neutralization of 50% on the cytopathic effects of the virus in the tissue culture (TCID50). A four-fold or greater antibody rise in titer was considered to be a seroconversion.
Number and Percentage of Subjects With Seroprotective Titers for Serum Hemagglutination Inhibition (HAI) Antibody Against 17/t/Tur (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Seroprotection was defined as ≥1:40 antibody titer. The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells.
Number and Percentage of Subjects With Seroprotective Titer of Serum Hemagglutination Inhibition (HAI) Antibody Against A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Seroprotection was defined as ≥1:40 antibody titer. The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells.
Number and Percentage of Subjects With Seroprotective Titer of Serum Hemagglutination Inhibition (HAI) Antibody Against A/Indonesia/5/2005 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Seroprotection was defined as ≥1:40 antibody titer. The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells.
Number and Percentage of Subjects With Seroprotective Titer of Serum Hemagglutination Inhibition (HAI) Antibody Against A/17/Duck/Potsdam/86/92 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Seroprotection was defined as ≥1:40 antibody titer. The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells.
Number and Percentage of Subjects With Seroprotective Titer of Microneutralization (MN) Antibody Against A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Serum specimens were tested for neutralizing antibodies against A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)) LAIV strain and A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1) by MN using Madin-Darby Canine Kidney cells. Titers of neutralizing antibodies were expressed as reciprocal of the greatest dilution giving a neutralization of 50% on the cytopathic effects of the virus in the tissue culture (TCID50). Seroprotection was defined as ≥1:40 antibody titer.
Number and Percentage of Subjects With Seroprotective Titer of Microneutralization (MN) Antibody Against A/Indonesia/5/2005 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Serum specimens were tested for neutralizing antibodies against A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)) LAIV strain and A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1) by MN using Madin-Darby Canine Kidney cells. Titers of neutralizing antibodies were expressed as reciprocal of the greatest dilution giving a neutralization of 50% on the cytopathic effects of the virus in the tissue culture (TCID50). Seroprotection was defined as ≥1:40 antibody titer.
Geometric Mean Titer of Serum Immunoglobulin A (IgA) Response to A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Detection of anti-hemagglutinin (HA) immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies was carried out by indirect enzyme-linked immunosorbent assay (ELISA). 16 HA units of sucrose-purified virus antigen was used to coat ELISA plates in a volume of 100 ml. Two-fold dilutions of sera were prepared starting from 1:10 (for IgA antibody) and 1:100 (for IgG antibody) and added to the coated wells, followed by incubation with the horseradish peroxidase-conjugated goat anti-human IgA or IgG.
Geometric Mean Titer of Serum Immunoglobulin A (IgA) Response to A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Detection of anti-hemagglutinin (HA) immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies was carried out by indirect enzyme-linked immunosorbent assay (ELISA). 16 HA units of sucrose-purified virus antigen was used to coat ELISA plates in a volume of 100 ml. Two-fold dilutions of sera were prepared starting from 1:10 (for IgA antibody) and 1:100 (for IgG antibody) and added to the coated wells, followed by incubation with the horseradish peroxidase-conjugated goat anti-human IgA or IgG.
Geometric Mean Titer of Serum Immunoglobulin G (IgG) Response to A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Detection of anti-hemagglutinin (HA) immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies was carried out by indirect enzyme-linked immunosorbent assay (ELISA). 16 HA units of sucrose-purified virus antigen was used to coat ELISA plates in a volume of 100 ml. Two-fold dilutions of sera were prepared starting from 1:10 (for IgA antibody) and 1:100 (for IgG antibody) and added to the coated wells, followed by incubation with the horseradish peroxidase-conjugated goat anti-human IgA or IgG.
Geometric Mean Titer of Serum Immunoglobulin G (IgG) Response to A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Detection of anti-hemagglutinin (HA) immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies was carried out by indirect enzyme-linked immunosorbent assay (ELISA). 16 HA units of sucrose-purified virus antigen was used to coat ELISA plates in a volume of 100 ml. Two-fold dilutions of sera were prepared starting from 1:10 (for IgA antibody) and 1:100 (for IgG antibody) and added to the coated wells, followed by incubation with the horseradish peroxidase-conjugated goat anti-human IgA or IgG.
Number and Percentage of Subjects With Seroconversion for Immunoglobulin A (IgA) Against A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
A four-fold or greater antibody rise in titer was considered to be a seroconversion. Detection of anti-hemagglutinin (HA) immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies was carried out by indirect enzyme-linked immunosorbent assay (ELISA). 16 HA units of sucrose-purified virus antigen was used to coat ELISA plates in a volume of 100 ml. Two-fold dilutions of sera were prepared starting from 1:10 (for IgA antibody) and 1:100 (for IgG antibody) and added to the coated wells, followed by incubation with the horseradish peroxidase-conjugated goat anti-human IgA or IgG.
Number and Percentage of Subjects With Seroconversion for Immunoglobulin A (IgA) Against A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
A four-fold or greater antibody rise in titer was considered to be a seroconversion. Detection of anti-hemagglutinin (HA) immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies was carried out by indirect enzyme-linked immunosorbent assay (ELISA). 16 HA units of sucrose-purified virus antigen was used to coat ELISA plates in a volume of 100 ml. Two-fold dilutions of sera were prepared starting from 1:10 (for IgA antibody) and 1:100 (for IgG antibody) and added to the coated wells, followed by incubation with the horseradish peroxidase-conjugated goat anti-human IgA or IgG.
Number and Percentage of Subjects With Seroconversion for Immunoglobulin G (IgG) Against A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
A four-fold or greater antibody rise in titer was considered to be a seroconversion. Detection of anti-hemagglutinin (HA) immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies was carried out by indirect enzyme-linked immunosorbent assay (ELISA). 16 HA units of sucrose-purified virus antigen was used to coat ELISA plates in a volume of 100 ml. Two-fold dilutions of sera were prepared starting from 1:10 (for IgA antibody) and 1:100 (for IgG antibody) and added to the coated wells, followed by incubation with the horseradish peroxidase-conjugated goat anti-human IgA or IgG.
Number and Percentage of Subjects With Seroconversion for Immunoglobulin G (IgG) Against A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
A four-fold or greater antibody rise in titer was considered to be a seroconversion. Detection of anti-hemagglutinin (HA) immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies was carried out by indirect enzyme-linked immunosorbent assay (ELISA). 16 HA units of sucrose-purified virus antigen was used to coat ELISA plates in a volume of 100 ml. Two-fold dilutions of sera were prepared starting from 1:10 (for IgA antibody) and 1:100 (for IgG antibody) and added to the coated wells, followed by incubation with the horseradish peroxidase-conjugated goat anti-human IgA or IgG.

Secondary Outcome Measures

Number and Percentage of Subjects With ≥15% Increase of Avidity Index in Serum Immunoglobulin A (IgA) Against A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain After Receiving One Dose of A(H5N1) Inactivated Influenza Vaccine
The avidity index (AI) was defined as the ratio of the mean optical density at 450 nm (OD450) with urea to that without urea, multiplied by 100. A 15% increase in the AI value was considered significant.
Number and Percentage of Subjects With ≥15% Increase of Avidity Index in Serum Immunoglobulin G (IgG) Against A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain After Receiving One Dose of A(H5N1) Inactivated Influenza Vaccine
The avidity index (AI) was defined as the ratio of the mean optical density at 450 nm (OD450) with urea to that without urea, multiplied by 100. A 15% increase in the AI value was considered significant.
Number and Percentage of Subjects With ≥15% Increase of Avidity Index in Serum Immunoglobulin A (IgA) Against A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus After Receiving One Dose of A(H5N1) Inactivated Influenza Vaccine
The avidity index (AI) was defined as the ratio of the mean optical density at 450 nm (OD450) with urea to that without urea, multiplied by 100. A 15% increase in the AI value was considered significant.
Number and Percentage of Subjects With ≥15% Increase of Avidity Index in Serum Immunoglobulin G (IgG) Against A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus After Receiving One Dose of A(H5N1) Inactivated Influenza Vaccine
The avidity index (AI) was defined as the ratio of the mean optical density at 450 nm (OD450) with urea to that without urea, multiplied by 100. A 15% increase in the AI value was considered significant.
Mean Avidity Index for Serum Immunoglobulin A (IgA) Against A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain After Receiving One Dose of A(H5N1) Inactivated Influenza Vaccine
The avidity index (AI) was defined as the ratio of the mean optical density at 450 nm (OD450) with urea to that without urea, multiplied by 100. A 15% increase in the AI value was considered significant.
Mean Avidity Index for Serum Immunoglobulin G (IgG) Against A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain After Receiving One Dose of A(H5N1) Inactivated Influenza Vaccine
The avidity index (AI) was defined as the ratio of the mean optical density at 450 nm (OD450) with urea to that without urea, multiplied by 100. A 15% increase in the AI value was considered significant.
Mean Avidity Index for Serum Immunoglobulin A (IgA) Against A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus After Receiving One Dose of A(H5N1) Inactivated Influenza Vaccine
The avidity index (AI) was defined as the ratio of the mean optical density at 450 nm (OD450) with urea to that without urea, multiplied by 100. A 15% increase in the AI value was considered significant.
Mean Avidity Index for Serum Immunoglobulin G (IgG) Against A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus After Receiving One Dose of A(H5N1) Inactivated Influenza Vaccine
The avidity index (AI) was defined as the ratio of the mean optical density at 450 nm (OD450) with urea to that without urea, multiplied by 100. A 15% increase in the AI value was considered significant.

Full Information

First Posted
May 23, 2014
Last Updated
February 14, 2019
Sponsor
PATH
Collaborators
Institute of Experimental Medicine, Russia, Research Institute of Influenza, Russia
search

1. Study Identification

Unique Protocol Identification Number
NCT02153671
Brief Title
Immunogenicity of H5N1 Vaccine Following H5N2
Official Title
Immunogenicity of OrniFlu® Inactivated Influenza Vaccine in Subjects Previously Immunized With Live Attenuated H5N2 Influenza Vaccine and in Non-vaccinated Subjects
Study Type
Interventional

2. Study Status

Record Verification Date
February 2019
Overall Recruitment Status
Completed
Study Start Date
May 2014 (undefined)
Primary Completion Date
September 2014 (Actual)
Study Completion Date
September 2014 (Actual)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Sponsor
Name of the Sponsor
PATH
Collaborators
Institute of Experimental Medicine, Russia, Research Institute of Influenza, Russia

4. Oversight

Data Monitoring Committee
No

5. Study Description

Brief Summary
This study is designed to assess whether a live attenuated Influenza vaccine (LAIV) can induce a long-lasting immune memory by comparing the immunologic response to two doses of the OrniFlu® inactivated vaccine given to subjects previously primed with LAIV and subjects who did not received LAIV.
Detailed Description
This study evaluated immunogenicity of an adjuvanted A(H5N1) inactivated influenza vaccine (IIV) in healthy adult subjects who received A(H5N2) live attenuated influenza vaccine (LAIV) 1.5 years earlier (September/October 2012) and compared this with a group of naive subjects that did not participate in the previous study. Inclusion/exclusion criteria for the additional group of naive volunteers mirrored those utilized in the initial study.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Influenza Vaccine
Keywords
LAIV H5N2, Influenza vaccine, Russia

7. Study Design

Primary Purpose
Prevention
Study Phase
Phase 2
Interventional Study Model
Parallel Assignment
Masking
None (Open Label)
Allocation
Non-Randomized
Enrollment
43 (Actual)

8. Arms, Groups, and Interventions

Arm Title
Primed with H5N2
Arm Type
Experimental
Arm Description
Subjects who received A(H5N1) inactivated influenza vaccine as well as primed with H5N2 live attenuated influenza vaccine approximately 1.5 years before
Arm Title
Did not receive A(H5N2)
Arm Type
Active Comparator
Arm Description
Subjects who received A(H5N1) inactivated influenza vaccine and did not receive A(H5N2) live attenuated influenza vaccine in a previous study.
Intervention Type
Biological
Intervention Name(s)
A(H5N1) inactivated influenza vaccine (IIV)
Other Intervention Name(s)
Orniflu
Intervention Description
Prepared from the NIBRG-23 vaccine virus strain. One vaccine dose (0.5 ml) contained 15 mg of influenza A(H5N1) virus hemagglutinin (HA), adjuvanted with aluminum hydroxide. Two doses were administered intramuscularly 28 days apart.
Intervention Type
Biological
Intervention Name(s)
A(H5N2) live attenuated influenza vaccine (LAIV)
Intervention Description
Two doses of A(H5N2) live attenuated influenza vaccine (LAIV) administered 28 days apart, approximately 1.5 years prior to receiving A(H5N1) IIV
Primary Outcome Measure Information:
Title
Geometric Mean Titer of Serum Hemagglutination Inhibition Antibody Response to A/17/Duck/Potsdam/86/92 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional World Health Organization (WHO)-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells. A four-fold or greater antibody rise in titer was considered to be a seroconversion.
Time Frame
56 days
Title
Geometric Mean Titer of Serum Hemagglutination Inhibition Antibody Response to A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells. A four-fold or greater antibody rise in titer was considered to be a seroconversion.
Time Frame
56 days
Title
Geometric Mean Titer of Serum Hemagglutination Inhibition Antibody Response to A/Indonesia/5/2005 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells. A four-fold or greater antibody rise in titer was considered to be a seroconversion.
Time Frame
56 days
Title
Geometric Mean Titer of Serum Hemagglutination Inhibition Antibody Response to A/Turkey/Turkey/5/05(H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells. A four-fold or greater antibody rise in titer was considered to be a seroconversion.
Time Frame
56 days
Title
Geometric Mean Titer of Microneutralization Antibody Response to A/17/Turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
Serum specimens were tested for neutralizing antibodies against A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)) LAIV strain and A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1) by MN using Madin-Darby Canine Kidney cells. Titers of neutralizing antibodies were expressed as reciprocal of the greatest dilution giving a neutralization of 50% on the cytopathic effects of the virus in the tissue culture (TCID50).
Time Frame
56 days
Title
Geometric Mean Titer of Microneutralization Antibody Response to A/Indonesia/5/2005 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
Serum specimens were tested for neutralizing antibodies against A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)) LAIV strain and A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1) by MN using Madin-Darby Canine Kidney cells. Titers of neutralizing antibodies were expressed as reciprocal of the greatest dilution giving a neutralization of 50% on the cytopathic effects of the virus in the tissue culture (TCID50).
Time Frame
56 days
Title
Number and Percentage of Subjects With Seroconversion for Serum Hemagglutination Inhibition (HAI) Antibody Against 17/t/Tur (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
A four-fold or greater antibody rise in titer was considered to be a seroconversion. The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells.
Time Frame
56 days
Title
Number and Percentage of Subjects With Seroconversion for Serum Hemagglutination Inhibition (HAI) Antibody Against A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
A four-fold or greater antibody rise in titer was considered to be a seroconversion. The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells.
Time Frame
56 days
Title
Number and Percentage of Subjects With Seroconversion for Serum Hemagglutination Inhibition (HAI) Antibody Against A/Indonesia/5/2005 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
A four-fold or greater antibody rise in titer was considered to be a seroconversion. The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells.
Time Frame
56 days
Title
Number and Percentage of Subjects With Seroconversion for Serum Hemagglutination Inhibition (HAI) Antibody Against A/17/Duck/Potsdam/86/92 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
A four-fold or greater antibody rise in titer was considered to be a seroconversion. The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells.
Time Frame
56 days
Title
Number and Percentage of Subjects With Seroconversion for Microneutralization (MN) Antibody Against A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
Serum specimens were tested for neutralizing antibodies against A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)) LAIV strain and A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1) by MN using Madin-Darby Canine Kidney cells. Titers of neutralizing antibodies were expressed as reciprocal of the greatest dilution giving a neutralization of 50% on the cytopathic effects of the virus in the tissue culture (TCID50). A four-fold or greater antibody rise in titer was considered to be a seroconversion.
Time Frame
56 days
Title
Number and Percentage of Subjects With Seroconversion for Microneutralization (MN) Antibody Against A/Indonesia/5/2005 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
Serum specimens were tested for neutralizing antibodies against A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)) LAIV strain and A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1) by MN using Madin-Darby Canine Kidney cells. Titers of neutralizing antibodies were expressed as reciprocal of the greatest dilution giving a neutralization of 50% on the cytopathic effects of the virus in the tissue culture (TCID50). A four-fold or greater antibody rise in titer was considered to be a seroconversion.
Time Frame
56 days
Title
Number and Percentage of Subjects With Seroprotective Titers for Serum Hemagglutination Inhibition (HAI) Antibody Against 17/t/Tur (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
Seroprotection was defined as ≥1:40 antibody titer. The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells.
Time Frame
56 days
Title
Number and Percentage of Subjects With Seroprotective Titer of Serum Hemagglutination Inhibition (HAI) Antibody Against A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
Seroprotection was defined as ≥1:40 antibody titer. The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells.
Time Frame
56 days
Title
Number and Percentage of Subjects With Seroprotective Titer of Serum Hemagglutination Inhibition (HAI) Antibody Against A/Indonesia/5/2005 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
Seroprotection was defined as ≥1:40 antibody titer. The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells.
Time Frame
56 days
Title
Number and Percentage of Subjects With Seroprotective Titer of Serum Hemagglutination Inhibition (HAI) Antibody Against A/17/Duck/Potsdam/86/92 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
Seroprotection was defined as ≥1:40 antibody titer. The following H5 antigens were tested to evaluate the breadth of the response: i) A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)); ii) A/turkey/Turkey/5/05(H5N1) PR8-based candidate vaccine virus (NIBRG-23 (H5N1)); iii) A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1)); and iv) A/17/duck/Potsdam/86/92 (H5N2) (d/Pot (H5N2)). HAI tests were performed on serum samples with the conventional WHO-recommended assays. Sera were pretreated with receptor destroying enzyme (RDE, Denka Seiken, Japan) and tested against 4 HA units of several H5 antigens using horse red blood cells.
Time Frame
56 days
Title
Number and Percentage of Subjects With Seroprotective Titer of Microneutralization (MN) Antibody Against A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
Serum specimens were tested for neutralizing antibodies against A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)) LAIV strain and A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1) by MN using Madin-Darby Canine Kidney cells. Titers of neutralizing antibodies were expressed as reciprocal of the greatest dilution giving a neutralization of 50% on the cytopathic effects of the virus in the tissue culture (TCID50). Seroprotection was defined as ≥1:40 antibody titer.
Time Frame
56 days
Title
Number and Percentage of Subjects With Seroprotective Titer of Microneutralization (MN) Antibody Against A/Indonesia/5/2005 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
Serum specimens were tested for neutralizing antibodies against A/17/turkey/Turkey/05/133 (H5N2) (17/t/Tur (H5N2)) LAIV strain and A/Indonesia/5/2005 (H5N1) PR8-based candidate vaccine virus (Indo (H5N1) by MN using Madin-Darby Canine Kidney cells. Titers of neutralizing antibodies were expressed as reciprocal of the greatest dilution giving a neutralization of 50% on the cytopathic effects of the virus in the tissue culture (TCID50). Seroprotection was defined as ≥1:40 antibody titer.
Time Frame
56 days
Title
Geometric Mean Titer of Serum Immunoglobulin A (IgA) Response to A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
Detection of anti-hemagglutinin (HA) immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies was carried out by indirect enzyme-linked immunosorbent assay (ELISA). 16 HA units of sucrose-purified virus antigen was used to coat ELISA plates in a volume of 100 ml. Two-fold dilutions of sera were prepared starting from 1:10 (for IgA antibody) and 1:100 (for IgG antibody) and added to the coated wells, followed by incubation with the horseradish peroxidase-conjugated goat anti-human IgA or IgG.
Time Frame
56 days
Title
Geometric Mean Titer of Serum Immunoglobulin A (IgA) Response to A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
Detection of anti-hemagglutinin (HA) immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies was carried out by indirect enzyme-linked immunosorbent assay (ELISA). 16 HA units of sucrose-purified virus antigen was used to coat ELISA plates in a volume of 100 ml. Two-fold dilutions of sera were prepared starting from 1:10 (for IgA antibody) and 1:100 (for IgG antibody) and added to the coated wells, followed by incubation with the horseradish peroxidase-conjugated goat anti-human IgA or IgG.
Time Frame
56 days
Title
Geometric Mean Titer of Serum Immunoglobulin G (IgG) Response to A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
Detection of anti-hemagglutinin (HA) immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies was carried out by indirect enzyme-linked immunosorbent assay (ELISA). 16 HA units of sucrose-purified virus antigen was used to coat ELISA plates in a volume of 100 ml. Two-fold dilutions of sera were prepared starting from 1:10 (for IgA antibody) and 1:100 (for IgG antibody) and added to the coated wells, followed by incubation with the horseradish peroxidase-conjugated goat anti-human IgA or IgG.
Time Frame
56 days
Title
Geometric Mean Titer of Serum Immunoglobulin G (IgG) Response to A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
Detection of anti-hemagglutinin (HA) immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies was carried out by indirect enzyme-linked immunosorbent assay (ELISA). 16 HA units of sucrose-purified virus antigen was used to coat ELISA plates in a volume of 100 ml. Two-fold dilutions of sera were prepared starting from 1:10 (for IgA antibody) and 1:100 (for IgG antibody) and added to the coated wells, followed by incubation with the horseradish peroxidase-conjugated goat anti-human IgA or IgG.
Time Frame
56 days
Title
Number and Percentage of Subjects With Seroconversion for Immunoglobulin A (IgA) Against A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
A four-fold or greater antibody rise in titer was considered to be a seroconversion. Detection of anti-hemagglutinin (HA) immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies was carried out by indirect enzyme-linked immunosorbent assay (ELISA). 16 HA units of sucrose-purified virus antigen was used to coat ELISA plates in a volume of 100 ml. Two-fold dilutions of sera were prepared starting from 1:10 (for IgA antibody) and 1:100 (for IgG antibody) and added to the coated wells, followed by incubation with the horseradish peroxidase-conjugated goat anti-human IgA or IgG.
Time Frame
56 days
Title
Number and Percentage of Subjects With Seroconversion for Immunoglobulin A (IgA) Against A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
A four-fold or greater antibody rise in titer was considered to be a seroconversion. Detection of anti-hemagglutinin (HA) immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies was carried out by indirect enzyme-linked immunosorbent assay (ELISA). 16 HA units of sucrose-purified virus antigen was used to coat ELISA plates in a volume of 100 ml. Two-fold dilutions of sera were prepared starting from 1:10 (for IgA antibody) and 1:100 (for IgG antibody) and added to the coated wells, followed by incubation with the horseradish peroxidase-conjugated goat anti-human IgA or IgG.
Time Frame
56 days
Title
Number and Percentage of Subjects With Seroconversion for Immunoglobulin G (IgG) Against A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
A four-fold or greater antibody rise in titer was considered to be a seroconversion. Detection of anti-hemagglutinin (HA) immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies was carried out by indirect enzyme-linked immunosorbent assay (ELISA). 16 HA units of sucrose-purified virus antigen was used to coat ELISA plates in a volume of 100 ml. Two-fold dilutions of sera were prepared starting from 1:10 (for IgA antibody) and 1:100 (for IgG antibody) and added to the coated wells, followed by incubation with the horseradish peroxidase-conjugated goat anti-human IgA or IgG.
Time Frame
56 days
Title
Number and Percentage of Subjects With Seroconversion for Immunoglobulin G (IgG) Against A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus Following Administration of A(H5N1) Inactivated Influenza Vaccine (IIV)
Description
A four-fold or greater antibody rise in titer was considered to be a seroconversion. Detection of anti-hemagglutinin (HA) immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies was carried out by indirect enzyme-linked immunosorbent assay (ELISA). 16 HA units of sucrose-purified virus antigen was used to coat ELISA plates in a volume of 100 ml. Two-fold dilutions of sera were prepared starting from 1:10 (for IgA antibody) and 1:100 (for IgG antibody) and added to the coated wells, followed by incubation with the horseradish peroxidase-conjugated goat anti-human IgA or IgG.
Time Frame
56 days
Secondary Outcome Measure Information:
Title
Number and Percentage of Subjects With ≥15% Increase of Avidity Index in Serum Immunoglobulin A (IgA) Against A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain After Receiving One Dose of A(H5N1) Inactivated Influenza Vaccine
Description
The avidity index (AI) was defined as the ratio of the mean optical density at 450 nm (OD450) with urea to that without urea, multiplied by 100. A 15% increase in the AI value was considered significant.
Time Frame
28 days
Title
Number and Percentage of Subjects With ≥15% Increase of Avidity Index in Serum Immunoglobulin G (IgG) Against A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain After Receiving One Dose of A(H5N1) Inactivated Influenza Vaccine
Description
The avidity index (AI) was defined as the ratio of the mean optical density at 450 nm (OD450) with urea to that without urea, multiplied by 100. A 15% increase in the AI value was considered significant.
Time Frame
28 days
Title
Number and Percentage of Subjects With ≥15% Increase of Avidity Index in Serum Immunoglobulin A (IgA) Against A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus After Receiving One Dose of A(H5N1) Inactivated Influenza Vaccine
Description
The avidity index (AI) was defined as the ratio of the mean optical density at 450 nm (OD450) with urea to that without urea, multiplied by 100. A 15% increase in the AI value was considered significant.
Time Frame
28 days
Title
Number and Percentage of Subjects With ≥15% Increase of Avidity Index in Serum Immunoglobulin G (IgG) Against A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus After Receiving One Dose of A(H5N1) Inactivated Influenza Vaccine
Description
The avidity index (AI) was defined as the ratio of the mean optical density at 450 nm (OD450) with urea to that without urea, multiplied by 100. A 15% increase in the AI value was considered significant.
Time Frame
28 days
Title
Mean Avidity Index for Serum Immunoglobulin A (IgA) Against A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain After Receiving One Dose of A(H5N1) Inactivated Influenza Vaccine
Description
The avidity index (AI) was defined as the ratio of the mean optical density at 450 nm (OD450) with urea to that without urea, multiplied by 100. A 15% increase in the AI value was considered significant.
Time Frame
28 days
Title
Mean Avidity Index for Serum Immunoglobulin G (IgG) Against A/17/Turkey/Turkey/05/133 (H5N2) LAIV Strain After Receiving One Dose of A(H5N1) Inactivated Influenza Vaccine
Description
The avidity index (AI) was defined as the ratio of the mean optical density at 450 nm (OD450) with urea to that without urea, multiplied by 100. A 15% increase in the AI value was considered significant.
Time Frame
28 days
Title
Mean Avidity Index for Serum Immunoglobulin A (IgA) Against A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus After Receiving One Dose of A(H5N1) Inactivated Influenza Vaccine
Description
The avidity index (AI) was defined as the ratio of the mean optical density at 450 nm (OD450) with urea to that without urea, multiplied by 100. A 15% increase in the AI value was considered significant.
Time Frame
28 days
Title
Mean Avidity Index for Serum Immunoglobulin G (IgG) Against A/Turkey/Turkey/5/05 (H5N1) PR8-based Candidate Vaccine Virus After Receiving One Dose of A(H5N1) Inactivated Influenza Vaccine
Description
The avidity index (AI) was defined as the ratio of the mean optical density at 450 nm (OD450) with urea to that without urea, multiplied by 100. A 15% increase in the AI value was considered significant.
Time Frame
28 days
Other Pre-specified Outcome Measures:
Title
Number of Subjects Experiencing Adverse Events After Receiving A(H5N1) Inactivated Influenza Vaccine
Description
Subjects were asked to closely watch for and report any adverse events occurring the first 6 days after immunization, and followed for any reactions and adverse events occurring within 7 and 28 days after each vaccination.
Time Frame
56 days
Title
Number of Subjects Experiencing Any Adverse Event Related to the A(H5N1) Inactivated Influenza Vaccine
Description
Subjects were asked to closely watch for and report any adverse events occurring the first 6 days after immunization, and followed for any reactions and adverse events occurring within 7 and 28 days after each vaccination
Time Frame
56 days

10. Eligibility

Sex
All
Minimum Age & Unit of Time
18 Years
Maximum Age & Unit of Time
51 Years
Accepts Healthy Volunteers
Accepts Healthy Volunteers
Eligibility Criteria
Inclusion Criteria: Legal male or female adult 18 through 51 years of age at the enrollment visit Literate and willing to provide written informed consent A signed informed consent Free of obvious health problems, as established by the medical history and screening evaluations, including physical examination Capable and willing to complete a memory aid and willing to return for all follow-up visits For females, willing to take reliable birth control measures through Day 56 Exclusion Criteria: Participation in another clinical trial involving any investigational agent within the previous three months or planned enrollment in such a trial during the period of this study Receipt of any non-study vaccine within four weeks prior to enrollment or refusal to postpone receipt Participation in any other clinical trials involving any H5-matched influenza vaccines except that in Protocol LAIV-H5N2-01 Current or recent (within two weeks of enrollment) acute respiratory illness with or without fever Other acute illness at the time of study enrollment Receipt of immunoglobulin or other blood products within three months prior to study enrollment or planned receipt during study period Chronic administration (defined as more than 14 consecutively-prescribed days) of immunosuppressants and/or immune-modulating therapy within six months prior to study enrollment History of bronchial asthma Hypersensitivity after previous administration of any (not only influenza) vaccines. Other adverse event (AE) following immunization at least possibly related to previous receipt of any (not only influenza) vaccine Suspected or known hypersensitivity to any of the study vaccine components, including protein of chicken eggs Seasonal (autumnal) hypersensitivity to the natural environment Acute or chronic clinically significant abnormality, as determined by medical history, physical examination or clinical laboratory screening tests, which in the opinion of the investigator, might interfere with the study objectives. Subjects with physical examination findings or clinical laboratory screening results which would be graded 2 or higher on the AE severity grading scale will be excluded from entry into the study History of leukemia or any other blood diseases or solid organ cancer History of thrombocytopenic purpura or known bleeding disorder History of seizures Known or suspected immunosuppressive or immunodeficient condition of any kind, including HIV infection Known chronic hepatitis B virus (HBV) or hepatitis C (HCV) infection Known tuberculosis infection or evidence of previous tuberculosis exposure History of chronic alcohol abuse and/or illegal drug use Pregnancy or lactation. Systemic connective tissue disorders Adrenal gland diseases Hereditary, degenerative and progredient diseases of the nervous system Any condition that, in the opinion of the investigator, would increase the health risk to the subject if he/she participates in the study or would interfere with the evaluation of the study objectives Allergic, including anaphylactic, reactions to any (not only influenza) vaccines
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Oleg I Kiselev, Ph.D.
Organizational Affiliation
Research Institute of Influenza
Official's Role
Principal Investigator
Facility Information:
Facility Name
Research Institute of Influenza
City
St. Petersburg
Country
Russian Federation

12. IPD Sharing Statement

Learn more about this trial

Immunogenicity of H5N1 Vaccine Following H5N2

We'll reach out to this number within 24 hrs