search
Back to results

Limitations of Aerobic Capacity in Chronic Heart Failure

Primary Purpose

Chronic Heart Failure

Status
Recruiting
Phase
Not Applicable
Locations
United Kingdom
Study Type
Interventional
Intervention
Exercise with and without Codeine
Sponsored by
University of Leeds
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional treatment trial for Chronic Heart Failure

Eligibility Criteria

undefined - undefined (Child, Adult, Older Adult)All SexesAccepts Healthy Volunteers

Inclusion Criteria:

  • Patients with NYHA class I-III
  • Stable CHF of at least 3 months duration
  • On optimally tolerated medication for CHF
  • No contraindications for cycling exercise
  • Able to give informed consent

Exclusion Criteria:

  • Class IV CHF
  • Any contraindications to exercise
  • Co-morbidities: significant COPD (FEV1<50%), severe renal disease (eGFR<20) or primary pulmonary hypertension as a co-morbidity
  • Unable to give informed consent
  • Current diagnosis of cancer, inflammatory or musculoskeletal disease (e.g. rheumatoid arthritis), on-going infection or sepsis.

Sites / Locations

  • Leeds Teaching Hospitals NHS TrustRecruiting

Arms of the Study

Arm 1

Arm 2

Arm Type

Experimental

Active Comparator

Arm Label

Chronic Heart Failure

Age-matched healthy controls

Arm Description

Outcomes

Primary Outcome Measures

Maximum cycling power
Power (watts)
Power reserve at V̇O2peak
Power (watts)
V̇O2peak with opioid treatment
ml/kg/min

Secondary Outcome Measures

Echocardiography
Ejection fraction
Spirometry
L/min
Electrical activity of the muscles (EMG)
Frequency
Muscle oxygenation (NIRS)
Percentage

Full Information

First Posted
March 27, 2020
Last Updated
October 31, 2022
Sponsor
University of Leeds
search

1. Study Identification

Unique Protocol Identification Number
NCT04332536
Brief Title
Limitations of Aerobic Capacity in Chronic Heart Failure
Official Title
Role and Implications of Central Fatigue Limiting Aerobic Capacity in Chronic Heart Failure: The Head vs. Heart Study
Study Type
Interventional

2. Study Status

Record Verification Date
October 2022
Overall Recruitment Status
Recruiting
Study Start Date
December 1, 2019 (Actual)
Primary Completion Date
May 30, 2023 (Anticipated)
Study Completion Date
August 30, 2023 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Principal Investigator
Name of the Sponsor
University of Leeds

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Product Manufactured in and Exported from the U.S.
No

5. Study Description

Brief Summary
This study will use a novel CPX test that incorporates instantaneous assessment of maximal isokinetic cycling power at V̇O2peak to elucidate the mechanisms that limit V̇O2peak in CHF, and compare these responses with age-matched controls.
Detailed Description
Chronic heart failure (CHF) is a current and growing public health concern that is expensive to treat (annual costs account for approximately 1.8% of the National Health Service budget), and associated with both poor prognosis (annual mortality ~7%) and patient quality of life. CHF is a complex, multi-faceted clinical syndrome that is characterized by profound reductions in exercise tolerance. This reduction in exercise tolerance restricts the ability to perform everyday activities such as walking, and effectively predicts declines in health-related quality of life due to symptoms of dyspnea and fatigue. The gold-standard measure of exercise tolerance is aerobic capacity (V̇O2peak), assessed during a cycle or treadmill based exercise test. V̇O2peak is a significant predictor of cardiac-related hospitalizations and mortality risk, with every 1 ml·min-1·kg-1 reduction in V̇O2peak increasing all-cause mortality risk by ~16 %. In CHF; however, V̇O2peak is poorly related to the severity of the cardiac dysfunction. Therefore, understanding the mechanisms that limit whole-body V̇O2peak would provide novel targets for therapy, and allow for effective optimization of resource allocation to meet the needs of individual patients to ameliorate CHF symptoms, increase health-related quality of life and improve prognosis. Treadmill and cycle ergometry cardiopulmonary exercise (CPX) tests are the gold-standard method for assessing whole-body V̇O2peak. However, the techniques currently used in clinical practice do not have the discriminatory ability to identify the fatigue mechanisms that are ultimately responsible for limiting whole-body V̇O2peak. The fatigue mechanisms limiting whole-body V̇O2peak can be defined as 'peripheral' - a reduction in the power that the exercising muscles can generate due to the accumulation of fatigue-related metabolites that impair excitation-contraction coupling; or 'central' - a reduction in skeletal muscle activation due to events within the central nervous system, the consequences of which increase the perceived effort of performing any exercise task. In essence, if peripheral fatigue limits whole-body V̇O2peak, the participant "would, but the exercising muscles can't" continue the exercise, but if central fatigue predominates, the participant "could, but won't" continue the exercise. In young healthy participants, using a novel CPX protocol developed in our laboratory that overcomes the limitations of traditional CPX tests and allows insight into the mechanisms limiting exercise tolerance, it appears that there is an intricate coordination of peripheral and central fatigue mechanisms such that termination of the CPX test at V̇O2peak is coincident with the maximum cycling power of the legs. Thus, there is no reserve in the ability of the legs to generate cycling power at V̇O2peak, with similar findings in a healthy older population. In CHF it is often assumed that the compromised cardiac function, which reduces the ability to transport and utilize O2, accentuates the development of peripheral fatigue, with this the predominant mechanisms that limits V̇O2peak and exercise tolerance, restricting the ability to complete day-to-day activities. However, the initial cardiac event propagates a wide range of systemic effects that compromise exercise economy, skeletal muscle structure and function, and increase the ventilatory demands of any exercise task. Therefore, in CHF it is possible that these effects amplify the perceived effort of the exercise, accentuate the development of central fatigue and dissociate the normal coordination of central and peripheral fatigue mechanisms at V̇O2peak. Thus in CHF, participants may achieve V̇O2peak before peripheral fatigue has developed to the extent that this limits the ability to perform exercise, with a large reserve in the physiologic capacity of the exercising leg muscles. For the CHF patient, being able to access this reserve in the capacity of the exercising leg muscles ('power reserve') would result in clinically meaningful increases in V̇O2peak (minimally clinically important difference 1 ml·min-1·kg-1), with this expected to increase health-related quality of life. However, central fatigue may not be the primary limitation in all CHF patients. Those with greater disease severity, longer duration of diagnosis or specific co-morbidities (e.g. type 2 diabetes) that influence the skeletal muscles may have an excessive and overriding peripheral fatigue limitation that eliminates the presence of a power reserve at V̇O2peak. For these patients, increasing V̇O2peak would be dependent on increasing physiologic capacity through interventions such as exercise rehabilitation programs. For CHF patients in whom V̇O2peak is limited by an exaggerated central fatigue response to exercise, it is possible that acute opioid treatment may ameliorate the development of central fatigue, increasing V̇O2peak and exercise tolerance. Acute opioid treatment (dihydrocodeine) at a dose of 1 mg·kg-1 body weight reduces the perception of breathlessness, increases V̇O2peak and exercise tolerance. While it would not be expected that opioid treatment has any effect on peripheral fatigue, effects on the central nervous system may reduce the perceived effort of the exercise task and development of central fatigue. Thus opioid treatment in CHF may allow participants to 'access' a greater proportion their exercise (skeletal muscle) capacity, and evoke clinically meaningful increases in V̇O2peak and exercise tolerance. This would provide the first evidence that central fatigue can be selectively targeted in CHF to increase V̇O2peak and improve exercise tolerance. Conversely, in CHF participants in whom there is no power reserve at V̇O2peak opioid treatment would be expected to have little effect. This study will use our novel CPX test that incorporates instantaneous assessment of maximal isokinetic cycling power at V̇O2peak to elucidate the mechanisms that limit V̇O2peak in CHF, and compare these responses with age-matched controls.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Chronic Heart Failure

7. Study Design

Primary Purpose
Treatment
Study Phase
Not Applicable
Interventional Study Model
Parallel Assignment
Masking
ParticipantInvestigatorOutcomes Assessor
Allocation
Randomized
Enrollment
60 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
Chronic Heart Failure
Arm Type
Experimental
Arm Title
Age-matched healthy controls
Arm Type
Active Comparator
Intervention Type
Other
Intervention Name(s)
Exercise with and without Codeine
Intervention Description
This study will use our novel CPX test that incorporates instantaneous assessment of maximal isokinetic cycling power at V̇O2peak to elucidate the mechanisms that limit V̇O2peak in CHF, and compare these responses with age-matched controls.
Primary Outcome Measure Information:
Title
Maximum cycling power
Description
Power (watts)
Time Frame
One week
Title
Power reserve at V̇O2peak
Description
Power (watts)
Time Frame
One week
Title
V̇O2peak with opioid treatment
Description
ml/kg/min
Time Frame
One week
Secondary Outcome Measure Information:
Title
Echocardiography
Description
Ejection fraction
Time Frame
One week
Title
Spirometry
Description
L/min
Time Frame
One week
Title
Electrical activity of the muscles (EMG)
Description
Frequency
Time Frame
One week
Title
Muscle oxygenation (NIRS)
Description
Percentage
Time Frame
One week

10. Eligibility

Sex
All
Accepts Healthy Volunteers
Accepts Healthy Volunteers
Eligibility Criteria
Inclusion Criteria: Patients with NYHA class I-III Stable CHF of at least 3 months duration On optimally tolerated medication for CHF No contraindications for cycling exercise Able to give informed consent Exclusion Criteria: Class IV CHF Any contraindications to exercise Co-morbidities: significant COPD (FEV1<50%), severe renal disease (eGFR<20) or primary pulmonary hypertension as a co-morbidity Unable to give informed consent Current diagnosis of cancer, inflammatory or musculoskeletal disease (e.g. rheumatoid arthritis), on-going infection or sepsis.
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
Klaus Witte, MD
Phone
01133926642
Email
k.k.witte@leeds.ac.uk
Facility Information:
Facility Name
Leeds Teaching Hospitals NHS Trust
City
Leeds
State/Province
West Yorkshire
ZIP/Postal Code
LS16 5AR
Country
United Kingdom
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Klaus Witte
Phone
07768254073
Email
k.k.witte@leeds.ac.uk

12. IPD Sharing Statement

Plan to Share IPD
No

Learn more about this trial

Limitations of Aerobic Capacity in Chronic Heart Failure

We'll reach out to this number within 24 hrs