search
Back to results

M1 Schizophrenia PET Study

Primary Purpose

Schizophrenia, Schizoaffective Disorder, Healthy

Status
Recruiting
Phase
Phase 2
Locations
United States
Study Type
Interventional
Intervention
11C-EMO - A Novel PET Radiotracer for Muscarinic M1 Receptor
Sponsored by
Yale University
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional diagnostic trial for Schizophrenia focused on measuring Schizophrenia, Muscarinic M1 Receptor, M1 AChR, [11C]EMO, PET Scan, MRI Scan

Eligibility Criteria

18 Years - 65 Years (Adult, Older Adult)All SexesAccepts Healthy Volunteers

Inclusion Criteria:

  • Men and women aged 18- 55 years that are physically and mentally healthy with the exception of DSM-5 schizophrenia or schizoaffective disorder diagnosis
  • Subjects with no metal in the body that may pose a risk during MRI scanning
  • No significant medical history, including head trauma and bleeding disorders

Exclusion Criteria:

  • Men and women with a history or presence of clinically significant medical conditions
  • Smokers who are unable to abstain from cigarette use for 5 days
  • People who suffer from claustrophobia, have MRI incompatible implants, or other contraindications for MRI and PET scans

Sites / Locations

  • Connecticut Mental Health CenterRecruiting

Arms of the Study

Arm 1

Arm Type

Experimental

Arm Label

11C-EMO - A Novel PET Radiotracer for Muscarinic M1 Receptor

Arm Description

Participants will undergo a single PET scan with [11C]EMO ≤ 20 mCi

Outcomes

Primary Outcome Measures

Hippocampal M1 availability
Measured by [11C]EMO availability (BPND)

Secondary Outcome Measures

evoked ɣ oscillations
Measured by EEG
verbal memory
Measured by cognitive assessments

Full Information

First Posted
October 22, 2021
Last Updated
August 30, 2023
Sponsor
Yale University
Collaborators
National Institute of Mental Health (NIMH)
search

1. Study Identification

Unique Protocol Identification Number
NCT05105542
Brief Title
M1 Schizophrenia PET Study
Official Title
Muscarinic M1 Receptor Availability and Cognition in Schizophrenia
Study Type
Interventional

2. Study Status

Record Verification Date
August 2023
Overall Recruitment Status
Recruiting
Study Start Date
April 20, 2021 (Actual)
Primary Completion Date
April 2024 (Anticipated)
Study Completion Date
April 2024 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Principal Investigator
Name of the Sponsor
Yale University
Collaborators
National Institute of Mental Health (NIMH)

4. Oversight

Studies a U.S. FDA-regulated Drug Product
Yes
Studies a U.S. FDA-regulated Device Product
No
Product Manufactured in and Exported from the U.S.
No
Data Monitoring Committee
No

5. Study Description

Brief Summary
This exploratory study seeks to examine M1 receptor availability in SZ patients and to relate M1 receptor availability to proximal and distal measures of cognitive performance, namely evoked ɣ oscillations in the EEG and verbal memory. Furthermore, the relationship between hippocampal [11C]EMO availability (BPND), evoked ɣ oscillations, verbal memory, and measures of illness severity will be explored.
Detailed Description
Converging lines of evidence from postmortem studies provide strong evidence that brain muscarinic M1 receptor deficit is present in a subset of schizophrenia (SZ) patients. M1 receptors are an important target for cognitive deficits in SZ. However, until now, it has not been possible to examine the heterogeneity of SZ with respect to M1 receptor availability in vivo. The development of a novel positron emission tomography (PET) ligand, [11C]EMO, at Yale PET Center provides a unique opportunity to, for the first time, examine in vivo brain muscarinic M1 receptor availability in SZ and, concurrently, elucidate the relationship of M1 receptors to cognitive deficits in SZ. The investigators will compare M1 receptor availability in SZ patients and age-, gender-matched healthy controls using [11C]EMO and the High Resolution Research Tomograph (HRRT), a PET scanner with high sensitivity and resolution available for human brain imaging. This study will explore the relationship between: hippocampal [11C]EMO binding (as a measure of hippocampal M1 AChR availability), encoding-related γ power during a verbal memory task, verbal memory, gender, and serum acetylcholine level. This exploratory study will provide the necessary pilot data to conduct a larger study to fully investigate the heterogeneity of SZ with respect to M1 receptor availability.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Schizophrenia, Schizoaffective Disorder, Healthy
Keywords
Schizophrenia, Muscarinic M1 Receptor, M1 AChR, [11C]EMO, PET Scan, MRI Scan

7. Study Design

Primary Purpose
Diagnostic
Study Phase
Phase 2
Interventional Study Model
Single Group Assignment
Model Description
Two groups will be studied: 1.) patients diagnosed with schizophrenia or schizoaffective disorder, and 2.) age and gender-matched healthy controls. Both groups will undergo neuroimaging, cognitive assessments, etc.
Masking
None (Open Label)
Allocation
N/A
Enrollment
18 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
11C-EMO - A Novel PET Radiotracer for Muscarinic M1 Receptor
Arm Type
Experimental
Arm Description
Participants will undergo a single PET scan with [11C]EMO ≤ 20 mCi
Intervention Type
Drug
Intervention Name(s)
11C-EMO - A Novel PET Radiotracer for Muscarinic M1 Receptor
Other Intervention Name(s)
PET Scan
Intervention Description
The radiotracer, [11C]EMO, will be administered at the beginning of each PET scan.
Primary Outcome Measure Information:
Title
Hippocampal M1 availability
Description
Measured by [11C]EMO availability (BPND)
Time Frame
10 days
Secondary Outcome Measure Information:
Title
evoked ɣ oscillations
Description
Measured by EEG
Time Frame
10 days
Title
verbal memory
Description
Measured by cognitive assessments
Time Frame
10 days

10. Eligibility

Sex
All
Minimum Age & Unit of Time
18 Years
Maximum Age & Unit of Time
65 Years
Accepts Healthy Volunteers
Accepts Healthy Volunteers
Eligibility Criteria
Inclusion Criteria: Men and women aged 18- 65 years that are physically and mentally healthy with the exception of DSM-5 schizophrenia or schizoaffective disorder diagnosis Subjects with no metal in the body that may pose a risk during MRI scanning No significant medical history, including head trauma and bleeding disorders Exclusion Criteria: Men and women with a history or presence of clinically significant medical conditions People who suffer from claustrophobia, have MRI incompatible implants, or other contraindications for MRI and PET scans
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
Rajiv Radhakrishnan, MD
Phone
203-932-5711
Ext
4080
Email
rajiv.radhakrishnan@yale.edu
First Name & Middle Initial & Last Name or Official Title & Degree
Deepak D'Souza, MD
Phone
203-932-5711
Ext
2594
Email
deepak.dsouza@yale.edu
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Rajiv Radhakrishnan, MD
Organizational Affiliation
Yale University
Official's Role
Principal Investigator
Facility Information:
Facility Name
Connecticut Mental Health Center
City
New Haven
State/Province
Connecticut
ZIP/Postal Code
06519
Country
United States
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Rachel G Hird, BS
Phone
203-974-7775
Email
rachel.hird@yale.edu
First Name & Middle Initial & Last Name & Degree
Kimberlee Forselius-Bielen
Phone
203-974-7540
Email
kimberlee.forselius@yale.edu
First Name & Middle Initial & Last Name & Degree
Rajiv Radhakrishnan, MD
First Name & Middle Initial & Last Name & Degree
Deepak D'Souza, MD

12. IPD Sharing Statement

Plan to Share IPD
No
Citations:
PubMed Identifier
29643252
Citation
Mogg AJ, Eessalu T, Johnson M, Wright R, Sanger HE, Xiao H, Crabtree MG, Smith A, Colvin EM, Schober D, Gehlert D, Jesudason C, Goldsmith PJ, Johnson MP, Felder CC, Barth VN, Broad LM. In Vitro Pharmacological Characterization and In Vivo Validation of LSN3172176 a Novel M1 Selective Muscarinic Receptor Agonist Tracer Molecule for Positron Emission Tomography. J Pharmacol Exp Ther. 2018 Jun;365(3):602-613. doi: 10.1124/jpet.117.246454. Epub 2018 Apr 11.
Results Reference
background
PubMed Identifier
15661360
Citation
Oki T, Takagi Y, Inagaki S, Taketo MM, Manabe T, Matsui M, Yamada S. Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Brain Res Mol Brain Res. 2005 Jan 5;133(1):6-11. doi: 10.1016/j.molbrainres.2004.09.012.
Results Reference
background
PubMed Identifier
32201327
Citation
Smart K, Gallezot JD, Nabulsi N, Labaree D, Zheng MQ, Huang Y, Carson RE, Hillmer AT, Worhunsky PD. Separating dopamine D2 and D3 receptor sources of [11C]-(+)-PHNO binding potential: Independent component analysis of competitive binding. Neuroimage. 2020 Jul 1;214:116762. doi: 10.1016/j.neuroimage.2020.116762. Epub 2020 Mar 19.
Results Reference
background
PubMed Identifier
28110088
Citation
Worhunsky PD, Matuskey D, Gallezot JD, Gaiser EC, Nabulsi N, Angarita GA, Calhoun VD, Malison RT, Potenza MN, Carson RE. Regional and source-based patterns of [11C]-(+)-PHNO binding potential reveal concurrent alterations in dopamine D2 and D3 receptor availability in cocaine-use disorder. Neuroimage. 2017 Mar 1;148:343-351. doi: 10.1016/j.neuroimage.2017.01.045. Epub 2017 Jan 19.
Results Reference
background
PubMed Identifier
31505202
Citation
Carruthers SP, Van Rheenen TE, Gurvich C, Sumner PJ, Rossell SL. Characterising the structure of cognitive heterogeneity in schizophrenia spectrum disorders. A systematic review and narrative synthesis. Neurosci Biobehav Rev. 2019 Dec;107:252-278. doi: 10.1016/j.neubiorev.2019.09.006. Epub 2019 Sep 7.
Results Reference
background
PubMed Identifier
30285056
Citation
Niendam TA, Ray KL, Iosif AM, Lesh TA, Ashby SR, Patel PK, Smucny J, Ferrer E, Solomon M, Ragland JD, Carter CS. Association of Age at Onset and Longitudinal Course of Prefrontal Function in Youth With Schizophrenia. JAMA Psychiatry. 2018 Dec 1;75(12):1252-1260. doi: 10.1001/jamapsychiatry.2018.2538.
Results Reference
background
PubMed Identifier
28981831
Citation
Van Rheenen TE, Cropley V, Zalesky A, Bousman C, Wells R, Bruggemann J, Sundram S, Weinberg D, Lenroot RK, Pereira A, Shannon Weickert C, Weickert TW, Pantelis C. Widespread Volumetric Reductions in Schizophrenia and Schizoaffective Patients Displaying Compromised Cognitive Abilities. Schizophr Bull. 2018 Apr 6;44(3):560-574. doi: 10.1093/schbul/sbx109.
Results Reference
background
PubMed Identifier
27336046
Citation
Wells R, Swaminathan V, Sundram S, Weinberg D, Bruggemann J, Jacomb I, Cropley V, Lenroot R, Pereira AM, Zalesky A, Bousman C, Pantelis C, Weickert CS, Weickert TW. The impact of premorbid and current intellect in schizophrenia: cognitive, symptom, and functional outcomes. NPJ Schizophr. 2015 Nov 4;1:15043. doi: 10.1038/npjschz.2015.43. eCollection 2015.
Results Reference
background
PubMed Identifier
23423139
Citation
Scarr E, Craig JM, Cairns MJ, Seo MS, Galati JC, Beveridge NJ, Gibbons A, Juzva S, Weinrich B, Parkinson-Bates M, Carroll AP, Saffery R, Dean B. Decreased cortical muscarinic M1 receptors in schizophrenia are associated with changes in gene promoter methylation, mRNA and gene targeting microRNA. Transl Psychiatry. 2013 Feb 19;3(2):e230. doi: 10.1038/tp.2013.3.
Results Reference
background
PubMed Identifier
30125244
Citation
Scarr E, Hopper S, Vos V, Seo MS, Everall IP, Aumann TD, Chana G, Dean B. Low levels of muscarinic M1 receptor-positive neurons in cortical layers III and V in Brodmann areas 9 and 17 from individuals with schizophrenia. J Psychiatry Neurosci. 2018 Aug;43(5):338-346. doi: 10.1503/jpn.170202.
Results Reference
background
PubMed Identifier
31428788
Citation
Hopper S, Pavey GM, Gogos A, Dean B. Widespread Changes in Positive Allosteric Modulation of the Muscarinic M1 Receptor in Some Participants With Schizophrenia. Int J Neuropsychopharmacol. 2019 Oct 1;22(10):640-650. doi: 10.1093/ijnp/pyz045.
Results Reference
background
PubMed Identifier
10978721
Citation
Crook JM, Tomaskovic-Crook E, Copolov DL, Dean B. Decreased muscarinic receptor binding in subjects with schizophrenia: a study of the human hippocampal formation. Biol Psychiatry. 2000 Sep 1;48(5):381-8. doi: 10.1016/s0006-3223(00)00918-5.
Results Reference
background
PubMed Identifier
27479319
Citation
Lebois EP, Trimper JB, Hu C, Levey AI, Manns JR. Effects of Selective M1 Muscarinic Receptor Activation on Hippocampal Spatial Representations and Neuronal Oscillations. ACS Chem Neurosci. 2016 Oct 19;7(10):1393-1405. doi: 10.1021/acschemneuro.6b00160. Epub 2016 Aug 12.
Results Reference
background
PubMed Identifier
21183008
Citation
Harrison PJ. Using our brains: the findings, flaws, and future of postmortem studies of psychiatric disorders. Biol Psychiatry. 2011 Jan 15;69(2):102-3. doi: 10.1016/j.biopsych.2010.09.008. No abstract available.
Results Reference
background
PubMed Identifier
30733324
Citation
Nabulsi NB, Holden D, Zheng MQ, Bois F, Lin SF, Najafzadeh S, Gao H, Ropchan J, Lara-Jaime T, Labaree D, Shirali A, Slieker L, Jesudason C, Barth V, Navarro A, Kant N, Carson RE, Huang Y. Evaluation of 11C-LSN3172176 as a Novel PET Tracer for Imaging M1 Muscarinic Acetylcholine Receptors in Nonhuman Primates. J Nucl Med. 2019 Aug;60(8):1147-1153. doi: 10.2967/jnumed.118.222034. Epub 2019 Feb 7. Erratum In: J Nucl Med. 2019 Nov;60(11):1648.
Results Reference
background
PubMed Identifier
15531406
Citation
Green MF, Kern RS, Heaton RK. Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr Res. 2004 Dec 15;72(1):41-51. doi: 10.1016/j.schres.2004.09.009.
Results Reference
background
PubMed Identifier
22169777
Citation
Barch DM, Ceaser A. Cognition in schizophrenia: core psychological and neural mechanisms. Trends Cogn Sci. 2012 Jan;16(1):27-34. doi: 10.1016/j.tics.2011.11.015. Epub 2011 Dec 12.
Results Reference
background
PubMed Identifier
25254156
Citation
Green MF, Harvey PD. Cognition in schizophrenia: Past, present, and future. Schizophr Res Cogn. 2014 Mar;1(1):e1-e9. doi: 10.1016/j.scog.2014.02.001.
Results Reference
background
PubMed Identifier
26003527
Citation
Carruthers SP, Gurvich CT, Rossell SL. The muscarinic system, cognition and schizophrenia. Neurosci Biobehav Rev. 2015 Aug;55:393-402. doi: 10.1016/j.neubiorev.2015.05.011. Epub 2015 May 21.
Results Reference
background
PubMed Identifier
9736760
Citation
Marino MJ, Rouse ST, Levey AI, Potter LT, Conn PJ. Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11465-70. doi: 10.1073/pnas.95.19.11465.
Results Reference
background
PubMed Identifier
1941081
Citation
Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci. 1991 Oct;11(10):3218-26. doi: 10.1523/JNEUROSCI.11-10-03218.1991.
Results Reference
background
PubMed Identifier
12483218
Citation
Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, Silva AJ. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci. 2003 Jan;6(1):51-8. doi: 10.1038/nn992.
Results Reference
background
PubMed Identifier
26176846
Citation
Gould RW, Dencker D, Grannan M, Bubser M, Zhan X, Wess J, Xiang Z, Locuson C, Lindsley CW, Conn PJ, Jones CK. Role for the M1 Muscarinic Acetylcholine Receptor in Top-Down Cognitive Processing Using a Touchscreen Visual Discrimination Task in Mice. ACS Chem Neurosci. 2015 Oct 21;6(10):1683-95. doi: 10.1021/acschemneuro.5b00123. Epub 2015 Aug 5.
Results Reference
background
PubMed Identifier
26481978
Citation
Cropley VL, Scarr E, Fornito A, Klauser P, Bousman CA, Scott R, Cairns MJ, Tooney PA, Pantelis C, Dean B. The effect of a muscarinic receptor 1 gene variant on grey matter volume in schizophrenia. Psychiatry Res. 2015 Nov 30;234(2):182-7. doi: 10.1016/j.pscychresns.2015.09.004. Epub 2015 Sep 10.
Results Reference
background
PubMed Identifier
14504414
Citation
Liao DL, Hong CJ, Chen HM, Chen YE, Lee SM, Chang CY, Chen H, Tsai SJ. Association of muscarinic m1 receptor genetic polymorphisms with psychiatric symptoms and cognitive function in schizophrenic patients. Neuropsychobiology. 2003;48(2):72-6. doi: 10.1159/000072880.
Results Reference
background
PubMed Identifier
18317461
Citation
Scarr E, Cowie TF, Kanellakis S, Sundram S, Pantelis C, Dean B. Decreased cortical muscarinic receptors define a subgroup of subjects with schizophrenia. Mol Psychiatry. 2009 Nov;14(11):1017-23. doi: 10.1038/mp.2008.28. Epub 2008 Mar 4.
Results Reference
background
PubMed Identifier
31059632
Citation
Green MF, Horan WP, Lee J. Nonsocial and social cognition in schizophrenia: current evidence and future directions. World Psychiatry. 2019 Jun;18(2):146-161. doi: 10.1002/wps.20624.
Results Reference
background
PubMed Identifier
19413446
Citation
Mesholam-Gately RI, Giuliano AJ, Goff KP, Faraone SV, Seidman LJ. Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology. 2009 May;23(3):315-36. doi: 10.1037/a0014708.
Results Reference
background
PubMed Identifier
25219520
Citation
Arnedo J, Svrakic DM, Del Val C, Romero-Zaliz R, Hernandez-Cuervo H; Molecular Genetics of Schizophrenia Consortium; Fanous AH, Pato MT, Pato CN, de Erausquin GA, Cloninger CR, Zwir I. Uncovering the hidden risk architecture of the schizophrenias: confirmation in three independent genome-wide association studies. Am J Psychiatry. 2015 Feb 1;172(2):139-53. doi: 10.1176/appi.ajp.2014.14040435. Epub 2014 Oct 31. Erratum In: Am J Psychiatry. 2014 Oct;171(10):1124.
Results Reference
background
PubMed Identifier
29560312
Citation
Bakker G, Vingerhoets C, Boucherie D, Caan M, Bloemen O, Eersels J, Booij J, van Amelsvoort T. Relationship between muscarinic M1 receptor binding and cognition in medication-free subjects with psychosis. Neuroimage Clin. 2018 Mar 3;18:713-719. doi: 10.1016/j.nicl.2018.02.030. eCollection 2018.
Results Reference
background
PubMed Identifier
11465633
Citation
Lavalaye J, Booij J, Linszen DH, Reneman L, van Royen EA. Higher occupancy of muscarinic receptors by olanzapine than risperidone in patients with schizophrenia. A[123I]-IDEX SPECT study. Psychopharmacology (Berl). 2001 Jun;156(1):53-7. doi: 10.1007/s002130000679.
Results Reference
background
PubMed Identifier
16945161
Citation
Raedler TJ. Comparison of the in-vivo muscarinic cholinergic receptor availability in patients treated with clozapine and olanzapine. Int J Neuropsychopharmacol. 2007 Apr;10(2):275-80. doi: 10.1017/S1461145706006584. Epub 2006 Apr 6.
Results Reference
background
PubMed Identifier
31499186
Citation
Erskine D, Taylor JP, Bakker G, Brown AJH, Tasker T, Nathan PJ. Cholinergic muscarinic M1 and M4 receptors as therapeutic targets for cognitive, behavioural, and psychological symptoms in psychiatric and neurological disorders. Drug Discov Today. 2019 Dec;24(12):2307-2314. doi: 10.1016/j.drudis.2019.08.009. Epub 2019 Sep 6.
Results Reference
background
PubMed Identifier
22932339
Citation
Nathan PJ, Watson J, Lund J, Davies CH, Peters G, Dodds CM, Swirski B, Lawrence P, Bentley GD, O'Neill BV, Robertson J, Watson S, Jones GA, Maruff P, Croft RJ, Laruelle M, Bullmore ET. The potent M1 receptor allosteric agonist GSK1034702 improves episodic memory in humans in the nicotine abstinence model of cognitive dysfunction. Int J Neuropsychopharmacol. 2013 May;16(4):721-31. doi: 10.1017/S1461145712000752. Epub 2012 Aug 29.
Results Reference
background
PubMed Identifier
18593778
Citation
Shekhar A, Potter WZ, Lightfoot J, Lienemann J, Dube S, Mallinckrodt C, Bymaster FP, McKinzie DL, Felder CC. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry. 2008 Aug;165(8):1033-9. doi: 10.1176/appi.ajp.2008.06091591. Epub 2008 Jul 1.
Results Reference
background
PubMed Identifier
17787019
Citation
Han M, Newell K, Zavitsanou K, Deng C, Huang XF. Effects of antipsychotic medication on muscarinic M1 receptor mRNA expression in the rat brain. J Neurosci Res. 2008 Feb 1;86(2):457-64. doi: 10.1002/jnr.21491.
Results Reference
background
Citation
Carson RE, Barker WC, Liow J-S, Adler S, Johnson CA. Design of a motion-compensation OSEM List-mode Algorithm for Resolution-Recovery Reconstruction of the HRRT. IEEE Nuclear Science Symposium and Medical Imaging Conference; 2003; Portland, OR; 2003. p. M16-6.
Results Reference
background
PubMed Identifier
24434295
Citation
Jin X, Mulnix T, Sandiego CM, Carson RE. Evaluation of frame-based and event-by-event motion-correction methods for awake monkey brain PET imaging. J Nucl Med. 2014 Feb;55(2):287-93. doi: 10.2967/jnumed.113.123299. Epub 2014 Jan 16.
Results Reference
background
PubMed Identifier
17015906
Citation
Horti AG, Fan H, Kuwabara H, Hilton J, Ravert HT, Holt DP, Alexander M, Kumar A, Rahmim A, Scheffel U, Wong DF, Dannals RF. 11C-JHU75528: a radiotracer for PET imaging of CB1 cannabinoid receptors. J Nucl Med. 2006 Oct;47(10):1689-96.
Results Reference
background
PubMed Identifier
19773803
Citation
Gallezot JD, Nabulsi N, Neumeister A, Planeta-Wilson B, Williams WA, Singhal T, Kim S, Maguire RP, McCarthy T, Frost JJ, Huang Y, Ding YS, Carson RE. Kinetic modeling of the serotonin 5-HT(1B) receptor radioligand [(11)C]P943 in humans. J Cereb Blood Flow Metab. 2010 Jan;30(1):196-210. doi: 10.1038/jcbfm.2009.195. Epub 2009 Sep 23.
Results Reference
background
PubMed Identifier
11771995
Citation
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002 Jan;15(1):273-89. doi: 10.1006/nimg.2001.0978.
Results Reference
background
PubMed Identifier
17519979
Citation
Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, Holden J, Houle S, Huang SC, Ichise M, Iida H, Ito H, Kimura Y, Koeppe RA, Knudsen GM, Knuuti J, Lammertsma AA, Laruelle M, Logan J, Maguire RP, Mintun MA, Morris ED, Parsey R, Price JC, Slifstein M, Sossi V, Suhara T, Votaw JR, Wong DF, Carson RE. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007 Sep;27(9):1533-9. doi: 10.1038/sj.jcbfm.9600493. Epub 2007 May 9.
Results Reference
background
PubMed Identifier
9345505
Citation
Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996 Dec;4(3 Pt 1):153-8. doi: 10.1006/nimg.1996.0066.
Results Reference
background
PubMed Identifier
12468889
Citation
Wu Y, Carson RE. Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J Cereb Blood Flow Metab. 2002 Dec;22(12):1440-52. doi: 10.1097/01.WCB.0000033967.83623.34.
Results Reference
background
PubMed Identifier
18819109
Citation
Babiloni C, Vecchio F, Mirabella G, Buttiglione M, Sebastiano F, Picardi A, Di Gennaro G, Quarato PP, Grammaldo LG, Buffo P, Esposito V, Manfredi M, Cantore G, Eusebi F. Hippocampal, amygdala, and neocortical synchronization of theta rhythms is related to an immediate recall during rey auditory verbal learning test. Hum Brain Mapp. 2009 Jul;30(7):2077-89. doi: 10.1002/hbm.20648.
Results Reference
background
PubMed Identifier
2619982
Citation
Kay SR, Opler LA, Lindenmayer JP. The Positive and Negative Syndrome Scale (PANSS): rationale and standardisation. Br J Psychiatry Suppl. 1989 Nov;(7):59-67. No abstract available.
Results Reference
background
PubMed Identifier
31782350
Citation
Cassetta BD, Menon M, Carrion PB, Pearce H, DeGraaf A, Leonova O, White RF, Stowe RM, Honer WG, Woodward TS, Torres IJ. Preliminary examination of the validity of the NIH toolbox cognition battery in treatment-resistant psychosis. Clin Neuropsychol. 2020 Jul;34(5):981-1003. doi: 10.1080/13854046.2019.1694072. Epub 2019 Nov 29.
Results Reference
background
PubMed Identifier
20129161
Citation
Gershon RC, Cella D, Fox NA, Havlik RJ, Hendrie HC, Wagster MV. Assessment of neurological and behavioural function: the NIH Toolbox. Lancet Neurol. 2010 Feb;9(2):138-9. doi: 10.1016/S1474-4422(09)70335-7. No abstract available.
Results Reference
background
PubMed Identifier
23479546
Citation
Weintraub S, Dikmen SS, Heaton RK, Tulsky DS, Zelazo PD, Bauer PJ, Carlozzi NE, Slotkin J, Blitz D, Wallner-Allen K, Fox NA, Beaumont JL, Mungas D, Nowinski CJ, Richler J, Deocampo JA, Anderson JE, Manly JJ, Borosh B, Havlik R, Conway K, Edwards E, Freund L, King JW, Moy C, Witt E, Gershon RC. Cognition assessment using the NIH Toolbox. Neurology. 2013 Mar 12;80(11 Suppl 3):S54-64. doi: 10.1212/WNL.0b013e3182872ded.
Results Reference
background
PubMed Identifier
23479538
Citation
Gershon RC, Wagster MV, Hendrie HC, Fox NA, Cook KF, Nowinski CJ. NIH toolbox for assessment of neurological and behavioral function. Neurology. 2013 Mar 12;80(11 Suppl 3):S2-6. doi: 10.1212/WNL.0b013e3182872e5f.
Results Reference
background
PubMed Identifier
29404313
Citation
Boozalis T, Teixeira AL, Cho RY, Okusaga O. C-Reactive Protein Correlates with Negative Symptoms in Patients with Schizophrenia. Front Public Health. 2018 Jan 22;5:360. doi: 10.3389/fpubh.2017.00360. eCollection 2017.
Results Reference
background
PubMed Identifier
28435992
Citation
Deng H, Kahlon RS, Mohite S, Amin PA, Zunta-Soares G, Colpo GD, Stertz L, Fries GR, Walss-Bass C, Soares JC, Okusaga OO. Elevated Plasma S100B, Psychotic Symptoms, and Cognition in Schizophrenia. Psychiatr Q. 2018 Mar;89(1):53-60. doi: 10.1007/s11126-017-9514-y.
Results Reference
background
PubMed Identifier
28334045
Citation
Mohite S, Yang F, Amin PA, Zunta-Soares G, Colpo GD, Stertz L, Sharma AN, Fries GR, Walss-Bass C, Soares JC, Okusaga OO. Plasma soluble L-selectin in medicated patients with schizophrenia and healthy controls. PLoS One. 2017 Mar 23;12(3):e0174073. doi: 10.1371/journal.pone.0174073. eCollection 2017.
Results Reference
background
PubMed Identifier
28893562
Citation
Yohn SE, Conn PJ. Positive allosteric modulation of M1 and M4 muscarinic receptors as potential therapeutic treatments for schizophrenia. Neuropharmacology. 2018 Jul 1;136(Pt C):438-448. doi: 10.1016/j.neuropharm.2017.09.012. Epub 2017 Sep 9.
Results Reference
background
PubMed Identifier
26432420
Citation
Ranganathan M, Cortes-Briones J, Radhakrishnan R, Thurnauer H, Planeta B, Skosnik P, Gao H, Labaree D, Neumeister A, Pittman B, Surti T, Huang Y, Carson RE, D'Souza DC. Reduced Brain Cannabinoid Receptor Availability in Schizophrenia. Biol Psychiatry. 2016 Jun 15;79(12):997-1005. doi: 10.1016/j.biopsych.2015.08.021. Epub 2015 Aug 29.
Results Reference
background
PubMed Identifier
22193533
Citation
D'Souza DC, Esterlis I, Carbuto M, Krasenics M, Seibyl J, Bois F, Pittman B, Ranganathan M, Cosgrove K, Staley J. Lower ss2*-nicotinic acetylcholine receptor availability in smokers with schizophrenia. Am J Psychiatry. 2012 Mar;169(3):326-34. doi: 10.1176/appi.ajp.2011.11020189.
Results Reference
background
PubMed Identifier
24360979
Citation
Esterlis I, Ranganathan M, Bois F, Pittman B, Picciotto MR, Shearer L, Anticevic A, Carlson J, Niciu MJ, Cosgrove KP, D'Souza DC. In vivo evidence for beta2 nicotinic acetylcholine receptor subunit upregulation in smokers as compared with nonsmokers with schizophrenia. Biol Psychiatry. 2014 Sep 15;76(6):495-502. doi: 10.1016/j.biopsych.2013.11.001. Epub 2013 Nov 13.
Results Reference
background
PubMed Identifier
15173844
Citation
D'Souza DC, Perry E, MacDougall L, Ammerman Y, Cooper T, Wu YT, Braley G, Gueorguieva R, Krystal JH. The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: implications for psychosis. Neuropsychopharmacology. 2004 Aug;29(8):1558-72. doi: 10.1038/sj.npp.1300496.
Results Reference
background

Learn more about this trial

M1 Schizophrenia PET Study

We'll reach out to this number within 24 hrs