search
Back to results

Mechanisms of Insulin Resistance in Critical Illness: Role of Systemic Inflammation and GLP-1

Primary Purpose

Hypoglycaemia

Status
Completed
Phase
Not Applicable
Locations
Denmark
Study Type
Interventional
Intervention
GLP-1
Placebo (Saline)
TNF-alfa
OGTT
IVGTT
Sponsored by
Rigshospitalet, Denmark
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional basic science trial for Hypoglycaemia focused on measuring GLP-1, Inflammation, Glucose

Eligibility Criteria

18 Years - 40 Years (Adult)MaleAccepts Healthy Volunteers

Inclusion Criteria healthy subjects:

  • Healthy (assessed by medical history and clinical examination)
  • Age 18-40years
  • BMI < 30kg/m2

Exclusion Criteria healthy subjects:

  • Previous resection of the small intestine (not including the appendix)
  • presence of any inflammatory illness during the fortnight preceding the study

Inclusion Criteria critically ill patients:

  • Age>18 years
  • HbA1C<6,5%
  • Admission to the ICU within the last 72 hours

Sites / Locations

  • Centre of Inflammation and Metabolism - Rigshospitalet 7641
  • University of Copenhagen

Arms of the Study

Arm 1

Arm 2

Arm 3

Arm 4

Arm 5

Arm 6

Arm 7

Arm 8

Arm 9

Arm Type

Placebo Comparator

Active Comparator

Placebo Comparator

Active Comparator

Placebo Comparator

Placebo Comparator

Active Comparator

Active Comparator

Experimental

Arm Label

2C - 1

2C - 2

2C - 3

2C - 4

2A-1

2A-2

2A-3

2A-4

1C

Arm Description

TNF and OGTT and saline

TNF and OGTT and GLP-1

TNF and IVGTT and saline

TNF and IVGTT and GLP-1

Saline infusion and OGTT

Saline and IVGTT

TNF and OGTT

TNF and IVGTT

OGTT and corresponding IVGTT

Outcomes

Primary Outcome Measures

Substudy 2C (12 Healthy volunteers): GLP-1
Increased plasma insulin and C-peptide (intact insulinotropic effect of GLP-1) during GLP-1 infusion in healthy volunteers.
Substudy 2A (12 Healthy volunteers): Insulin, C-peptide and incretin hormone response
Insulin, c-peptide and incretin hormone response to glucose stimulation during standardized systemic inflammation (TNF infusion) compared to placebo (saline infusion)
Substudy 1C(8 patients, 8 healthy controls): Insulin, C-peptide and incretin hormone response
Insulin, c-peptide and incretin hormone response to glucose stimulation during IVGTT compared to OGTT in critically ill patients admitted to the ICU

Secondary Outcome Measures

Substudy 2C (12 Healthy volunteers): Clamp
Enhanced insulin response (AUC) and reduced difference between the AUC obtained during OGTT and IGGTT (reduced endogenous incretin effect) during an isoglycaemic intravenous glucose tolerance test (IVGTT) in healthy volunteers receiving TNF-infusion.
Substudy 2A (12 Healthy volunteers): The incretin effect
The difference between the plasma insulin AUC obtained during OGTT and IVGTT (endogenous incretin effect).
Substudy 1C (8 patients, 8 healthy controls): The incretin effect
The difference between the plasma insulin AUC obtained during OGTT and IVGTT (endogenous incretin effect)in non-diabetic critically ill patients admitted to the ICU.

Full Information

First Posted
May 2, 2011
Last Updated
September 19, 2014
Sponsor
Rigshospitalet, Denmark
Collaborators
University of Copenhagen, Novo Nordisk A/S
search

1. Study Identification

Unique Protocol Identification Number
NCT01347801
Brief Title
Mechanisms of Insulin Resistance in Critical Illness: Role of Systemic Inflammation and GLP-1
Official Title
Mechanisms of Insulin Resistance in Critical Illness: Role of Systemic Inflammation and GLP-1
Study Type
Interventional

2. Study Status

Record Verification Date
September 2014
Overall Recruitment Status
Completed
Study Start Date
March 2011 (undefined)
Primary Completion Date
September 2014 (Actual)
Study Completion Date
September 2014 (Actual)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Principal Investigator
Name of the Sponsor
Rigshospitalet, Denmark
Collaborators
University of Copenhagen, Novo Nordisk A/S

4. Oversight

Data Monitoring Committee
No

5. Study Description

Brief Summary
The purpose of this study is to determine the role of inflammation and the insulin regulating hormone GLP-1 during critical illness.
Detailed Description
Critically ill patients often exhibit hyperglycaemia. Although the cause of this hyperglycaemia is probably multifactorial, peripheral insulin resistance is a major contributor, similar to type 2 diabetes mellitus (T2D). There are several similarities between critical illness and T2D, including the presence of systemic inflammation and increased plasma free fatty acids (FFA), all of which may induce insulin resistance in healthy volunteers. In critical illness, elevated catecholamines, cortisol, growth hormone and glucagon may also contribute to insulin resistance. The degree of hyperglycaemia correlates with mortality in ICU patients. van den Berghe et al. found that IV infusion of insulin to obtain strict normoglycaemia reduced mortality as well as morbidity in critically ill surgical patients and in some medical ICU patients. However, insulin increases the risk of hypoglycaemia; this is a major obstacle to strict euglycaemia in ICU patients and may explain the inability of others to reproduce the benefits reported by van den Berghe et al. Thus, alternatives to insulin for controlling plasma glucose (PG) in ICU patients are warranted. Aim: To study the role of the incretin hormone, glucagon-like peptide (GLP)-1 for glycaemic, metabolic, hormonal and inflammatory profile in critically ill patients in the intensive care unit (ICU) and healthy volunteers exposed to a standardised systemic inflammation

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Hypoglycaemia
Keywords
GLP-1, Inflammation, Glucose

7. Study Design

Primary Purpose
Basic Science
Study Phase
Not Applicable
Interventional Study Model
Crossover Assignment
Masking
None (Open Label)
Allocation
Randomized
Enrollment
40 (Actual)

8. Arms, Groups, and Interventions

Arm Title
2C - 1
Arm Type
Placebo Comparator
Arm Description
TNF and OGTT and saline
Arm Title
2C - 2
Arm Type
Active Comparator
Arm Description
TNF and OGTT and GLP-1
Arm Title
2C - 3
Arm Type
Placebo Comparator
Arm Description
TNF and IVGTT and saline
Arm Title
2C - 4
Arm Type
Active Comparator
Arm Description
TNF and IVGTT and GLP-1
Arm Title
2A-1
Arm Type
Placebo Comparator
Arm Description
Saline infusion and OGTT
Arm Title
2A-2
Arm Type
Placebo Comparator
Arm Description
Saline and IVGTT
Arm Title
2A-3
Arm Type
Active Comparator
Arm Description
TNF and OGTT
Arm Title
2A-4
Arm Type
Active Comparator
Arm Description
TNF and IVGTT
Arm Title
1C
Arm Type
Experimental
Arm Description
OGTT and corresponding IVGTT
Intervention Type
Drug
Intervention Name(s)
GLP-1
Intervention Description
GLP-1 1,2pmol/kg/min i.v. infusion for 4 hours
Intervention Type
Drug
Intervention Name(s)
Placebo (Saline)
Intervention Description
Normal saline (NaCl 0,9%)
Intervention Type
Drug
Intervention Name(s)
TNF-alfa
Intervention Description
1000ng/m2 BSA/hour i.v. infusion for 4-6 hours
Intervention Type
Other
Intervention Name(s)
OGTT
Intervention Description
Oral glucose tolerance test with 75 g glucose
Intervention Type
Other
Intervention Name(s)
IVGTT
Intervention Description
Intravenous glucose tolerance test with infusion of 20% glucose matching the glucose profile of the corresponding OGTT
Primary Outcome Measure Information:
Title
Substudy 2C (12 Healthy volunteers): GLP-1
Description
Increased plasma insulin and C-peptide (intact insulinotropic effect of GLP-1) during GLP-1 infusion in healthy volunteers.
Time Frame
6 weeks after intervention
Title
Substudy 2A (12 Healthy volunteers): Insulin, C-peptide and incretin hormone response
Description
Insulin, c-peptide and incretin hormone response to glucose stimulation during standardized systemic inflammation (TNF infusion) compared to placebo (saline infusion)
Time Frame
6 weeks after intervention
Title
Substudy 1C(8 patients, 8 healthy controls): Insulin, C-peptide and incretin hormone response
Description
Insulin, c-peptide and incretin hormone response to glucose stimulation during IVGTT compared to OGTT in critically ill patients admitted to the ICU
Time Frame
6 weeks after intervention
Secondary Outcome Measure Information:
Title
Substudy 2C (12 Healthy volunteers): Clamp
Description
Enhanced insulin response (AUC) and reduced difference between the AUC obtained during OGTT and IGGTT (reduced endogenous incretin effect) during an isoglycaemic intravenous glucose tolerance test (IVGTT) in healthy volunteers receiving TNF-infusion.
Time Frame
6 weeks after intervention
Title
Substudy 2A (12 Healthy volunteers): The incretin effect
Description
The difference between the plasma insulin AUC obtained during OGTT and IVGTT (endogenous incretin effect).
Time Frame
6 weeks after intervention
Title
Substudy 1C (8 patients, 8 healthy controls): The incretin effect
Description
The difference between the plasma insulin AUC obtained during OGTT and IVGTT (endogenous incretin effect)in non-diabetic critically ill patients admitted to the ICU.
Time Frame
6 weeks after intervention

10. Eligibility

Sex
Male
Minimum Age & Unit of Time
18 Years
Maximum Age & Unit of Time
40 Years
Accepts Healthy Volunteers
Accepts Healthy Volunteers
Eligibility Criteria
Inclusion Criteria healthy subjects: Healthy (assessed by medical history and clinical examination) Age 18-40years BMI < 30kg/m2 Exclusion Criteria healthy subjects: Previous resection of the small intestine (not including the appendix) presence of any inflammatory illness during the fortnight preceding the study Inclusion Criteria critically ill patients: Age>18 years HbA1C<6,5% Admission to the ICU within the last 72 hours
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Kirsten Møller, MD, Ph.D., DMSc
Organizational Affiliation
Centre of Inflammation and Metabolism
Official's Role
Principal Investigator
Facility Information:
Facility Name
Centre of Inflammation and Metabolism - Rigshospitalet 7641
City
Copenhagen
ZIP/Postal Code
2100
Country
Denmark
Facility Name
University of Copenhagen
City
Copenhagen
ZIP/Postal Code
2400
Country
Denmark

12. IPD Sharing Statement

Citations:
PubMed Identifier
11219223
Citation
McCowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycemia. Crit Care Clin. 2001 Jan;17(1):107-24. doi: 10.1016/s0749-0704(05)70154-8.
Results Reference
background
PubMed Identifier
11800522
Citation
Mizock BA. Alterations in fuel metabolism in critical illness: hyperglycaemia. Best Pract Res Clin Endocrinol Metab. 2001 Dec;15(4):533-51. doi: 10.1053/beem.2001.0168.
Results Reference
background
PubMed Identifier
15312220
Citation
Rusavy Z, Sramek V, Lacigova S, Novak I, Tesinsky P, Macdonald IA. Influence of insulin on glucose metabolism and energy expenditure in septic patients. Crit Care. 2004 Aug;8(4):R213-20. doi: 10.1186/cc2868. Epub 2004 May 26.
Results Reference
background
PubMed Identifier
8080494
Citation
Beal AL, Cerra FB. Multiple organ failure syndrome in the 1990s. Systemic inflammatory response and organ dysfunction. JAMA. 1994 Jan 19;271(3):226-33.
Results Reference
background
PubMed Identifier
10335783
Citation
Schmidt MI, Duncan BB, Sharrett AR, Lindberg G, Savage PJ, Offenbacher S, Azambuja MI, Tracy RP, Heiss G. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study. Lancet. 1999 May 15;353(9165):1649-52. doi: 10.1016/s0140-6736(99)01046-6.
Results Reference
background
PubMed Identifier
10773115
Citation
Wolfe RR, Martini WZ. Changes in intermediary metabolism in severe surgical illness. World J Surg. 2000 Jun;24(6):639-47. doi: 10.1007/s002689910105.
Results Reference
background
PubMed Identifier
12028371
Citation
Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest. 2002 Jun;32 Suppl 3:14-23. doi: 10.1046/j.1365-2362.32.s3.3.x.
Results Reference
background
PubMed Identifier
8636533
Citation
Thijs LG, Hack CE. Time course of cytokine levels in sepsis. Intensive Care Med. 1995 Nov;21 Suppl 2:S258-63. doi: 10.1007/BF01740764.
Results Reference
background
PubMed Identifier
16464907
Citation
Krogh-Madsen R, Plomgaard P, Moller K, Mittendorfer B, Pedersen BK. Influence of TNF-alpha and IL-6 infusions on insulin sensitivity and expression of IL-18 in humans. Am J Physiol Endocrinol Metab. 2006 Jul;291(1):E108-14. doi: 10.1152/ajpendo.00471.2005. Epub 2006 Feb 7.
Results Reference
background
PubMed Identifier
8675698
Citation
Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest. 1996 Jun 15;97(12):2859-65. doi: 10.1172/JCI118742.
Results Reference
background
PubMed Identifier
7712756
Citation
Voerman BJ, Strack van Schijndel RJ, Groeneveld AB, de Boer H, Nauta JP, Thijs LG. Effects of human growth hormone in critically ill nonseptic patients: results from a prospective, randomized, placebo-controlled trial. Crit Care Med. 1995 Apr;23(4):665-73. doi: 10.1097/00003246-199504000-00014.
Results Reference
background
PubMed Identifier
14559958
Citation
Finney SJ, Zekveld C, Elia A, Evans TW. Glucose control and mortality in critically ill patients. JAMA. 2003 Oct 15;290(15):2041-7. doi: 10.1001/jama.290.15.2041.
Results Reference
background
PubMed Identifier
11794168
Citation
van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001 Nov 8;345(19):1359-67. doi: 10.1056/NEJMoa011300.
Results Reference
background
PubMed Identifier
16452557
Citation
Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, Van Wijngaerden E, Bobbaers H, Bouillon R. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006 Feb 2;354(5):449-61. doi: 10.1056/NEJMoa052521.
Results Reference
background
PubMed Identifier
18184958
Citation
Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, Moerer O, Gruendling M, Oppert M, Grond S, Olthoff D, Jaschinski U, John S, Rossaint R, Welte T, Schaefer M, Kern P, Kuhnt E, Kiehntopf M, Hartog C, Natanson C, Loeffler M, Reinhart K; German Competence Network Sepsis (SepNet). Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008 Jan 10;358(2):125-39. doi: 10.1056/NEJMoa070716.
Results Reference
background
PubMed Identifier
16758178
Citation
Cryer PE. Hypoglycaemia: the limiting factor in the glycaemic management of the critically ill? Diabetologia. 2006 Aug;49(8):1722-5. doi: 10.1007/s00125-006-0306-4. No abstract available.
Results Reference
background
PubMed Identifier
19318384
Citation
NICE-SUGAR Study Investigators; Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, Henderson WR, Hebert PC, Heritier S, Heyland DK, McArthur C, McDonald E, Mitchell I, Myburgh JA, Norton R, Potter J, Robinson BG, Ronco JJ. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009 Mar 26;360(13):1283-97. doi: 10.1056/NEJMoa0810625. Epub 2009 Mar 24.
Results Reference
background
PubMed Identifier
15271645
Citation
Holst JJ, Gromada J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab. 2004 Aug;287(2):E199-206. doi: 10.1152/ajpendo.00545.2003.
Results Reference
background
PubMed Identifier
7813808
Citation
Kolligs F, Fehmann HC, Goke R, Goke B. Reduction of the incretin effect in rats by the glucagon-like peptide 1 receptor antagonist exendin (9-39) amide. Diabetes. 1995 Jan;44(1):16-9. doi: 10.2337/diab.44.1.16.
Results Reference
background
PubMed Identifier
17928588
Citation
Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007 Oct;87(4):1409-39. doi: 10.1152/physrev.00034.2006.
Results Reference
background
PubMed Identifier
2901341
Citation
Orskov C, Holst JJ, Nielsen OV. Effect of truncated glucagon-like peptide-1 [proglucagon-(78-107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology. 1988 Oct;123(4):2009-13. doi: 10.1210/endo-123-4-2009.
Results Reference
background
PubMed Identifier
8725855
Citation
Creutzfeldt WO, Kleine N, Willms B, Orskov C, Holst JJ, Nauck MA. Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7-36) amide in type I diabetic patients. Diabetes Care. 1996 Jun;19(6):580-6. doi: 10.2337/diacare.19.6.580.
Results Reference
background
PubMed Identifier
9628239
Citation
Willms B, Idowu K, Holst JJ, Creutzfeldt W, Nauck MA. Overnight GLP-1 normalizes fasting but not daytime plasma glucose levels in NIDDM patients. Exp Clin Endocrinol Diabetes. 1998;106(2):103-7. doi: 10.1055/s-0029-1211959.
Results Reference
background
PubMed Identifier
3514343
Citation
Nauck M, Stockmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia. 1986 Jan;29(1):46-52. doi: 10.1007/BF02427280.
Results Reference
background
PubMed Identifier
8423228
Citation
Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest. 1993 Jan;91(1):301-7. doi: 10.1172/JCI116186.
Results Reference
background
PubMed Identifier
11246881
Citation
Vilsboll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes. 2001 Mar;50(3):609-13. doi: 10.2337/diabetes.50.3.609.
Results Reference
background
PubMed Identifier
10841001
Citation
Vilsboll T, Toft-Nielsen MB, Krarup T, Madsbad S, Dinesen B, Holst JJ. Evaluation of beta-cell secretory capacity using glucagon-like peptide 1. Diabetes Care. 2000 Jun;23(6):807-12. doi: 10.2337/diacare.23.6.807.
Results Reference
background
PubMed Identifier
12941722
Citation
Knop FK, Vilsboll T, Larsen S, Madsbad S, Holst JJ, Krarup T. No hypoglycemia after subcutaneous administration of glucagon-like peptide-1 in lean type 2 diabetic patients and in patients with diabetes secondary to chronic pancreatitis. Diabetes Care. 2003 Sep;26(9):2581-7. doi: 10.2337/diacare.26.9.2581.
Results Reference
background
PubMed Identifier
15090972
Citation
Meier JJ, Weyhe D, Michaely M, Senkal M, Zumtobel V, Nauck MA, Holst JJ, Schmidt WE, Gallwitz B. Intravenous glucagon-like peptide 1 normalizes blood glucose after major surgery in patients with type 2 diabetes. Crit Care Med. 2004 Mar;32(3):848-51. doi: 10.1097/01.ccm.0000114811.60629.b5.
Results Reference
background
PubMed Identifier
17719327
Citation
Sokos GG, Bolukoglu H, German J, Hentosz T, Magovern GJ Jr, Maher TD, Dean DA, Bailey SH, Marrone G, Benckart DH, Elahi D, Shannon RP. Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting. Am J Cardiol. 2007 Sep 1;100(5):824-9. doi: 10.1016/j.amjcard.2007.05.022. Epub 2007 Jun 14.
Results Reference
background
PubMed Identifier
21255422
Citation
Deane AM, Summers MJ, Zaknic AV, Chapman MJ, Fraser RJ, Di Bartolomeo AE, Wishart JM, Horowitz M. Exogenous glucagon-like peptide-1 attenuates the glycaemic response to postpyloric nutrient infusion in critically ill patients with type-2 diabetes. Crit Care. 2011;15(1):R35. doi: 10.1186/cc9983. Epub 2011 Jan 21.
Results Reference
background
PubMed Identifier
20228679
Citation
Deane AM, Chapman MJ, Fraser RJ, Summers MJ, Zaknic AV, Storey JP, Jones KL, Rayner CK, Horowitz M. Effects of exogenous glucagon-like peptide-1 on gastric emptying and glucose absorption in the critically ill: relationship to glycemia. Crit Care Med. 2010 May;38(5):1261-9. doi: 10.1097/CCM.0b013e3181d9d87a.
Results Reference
background
PubMed Identifier
1303622
Citation
Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992 Jun;101(6):1644-55. doi: 10.1378/chest.101.6.1644.
Results Reference
background
PubMed Identifier
17476613
Citation
Rosenvinge A, Krogh-Madsen R, Baslund B, Pedersen BK. Insulin resistance in patients with rheumatoid arthritis: effect of anti-TNFalpha therapy. Scand J Rheumatol. 2007 Mar-Apr;36(2):91-6. doi: 10.1080/03009740601179605.
Results Reference
background
PubMed Identifier
26567860
Citation
Nielsen ST, Janum S, Krogh-Madsen R, Solomon TP, Moller K. The incretin effect in critically ill patients: a case-control study. Crit Care. 2015 Nov 16;19:402. doi: 10.1186/s13054-015-1118-z.
Results Reference
derived
PubMed Identifier
25675385
Citation
Lehrskov-Schmidt L, Lehrskov-Schmidt L, Nielsen ST, Holst JJ, Moller K, Solomon TP. The effects of TNF-alpha on GLP-1-stimulated plasma glucose kinetics. J Clin Endocrinol Metab. 2015 Apr;100(4):E616-22. doi: 10.1210/jc.2014-4244. Epub 2015 Feb 12.
Results Reference
derived

Learn more about this trial

Mechanisms of Insulin Resistance in Critical Illness: Role of Systemic Inflammation and GLP-1

We'll reach out to this number within 24 hrs