Clinical vertical bone changes
Vertical bone changes were evaluated in mm with the use of a custom made stent at mesial, distal, buccal and lingual/palatal sites; it was set as the distance between the reference point and the most apical point of the marginal bone level. Changes at the vertical bone level were evaluated by subtracting the postoperative value from the respective baseline value.
Clinical vertical bone changes
Vertical bone changes were evaluated in mm with the use of a custom made stent at mesial, distal, buccal and lingual/palatal sites; it was set as the distance between the reference point and the most apical point of the marginal bone level. Changes at the vertical bone level were evaluated by subtracting the postoperative value from the respective baseline value.
Clinical vertical bone changes
Vertical bone changes were evaluated in mm with the use of a custom made stent at mesial, distal, buccal and lingual/palatal sites; it was set as the distance between the reference point and the most apical point of the marginal bone level. Changes at the vertical bone level were evaluated by subtracting the postoperative value from the respective baseline value.
Clinical vertical bone changes
Vertical bone changes were evaluated in mm with the use of a custom made stent at mesial, distal, buccal and lingual/palatal sites; it was set as the distance between the reference point and the most apical point of the marginal bone level. Changes at the vertical bone level were evaluated by subtracting the postoperative value from the respective baseline value.
Clinical vertical bone changes
Vertical bone changes were evaluated in mm with the use of a custom made stent at mesial, distal, buccal and lingual/palatal sites; it was set as the distance between the reference point and the most apical point of the marginal bone level. Changes at the vertical bone level were evaluated by subtracting the postoperative value from the respective baseline value.
Clinical vertical bone changes
Vertical bone changes were evaluated in mm with the use of a custom made stent at mesial, distal, buccal and lingual/palatal sites; it was set as the distance between the reference point and the most apical point of the marginal bone level. Changes at the vertical bone level were evaluated by subtracting the postoperative value from the respective baseline value.
Volume of the alveolar ridge
Several impressions of the experimental sites were obtained from each patient. Impressions of the jaw were obtained in a one-step process with two viscosity polyvinyl siloxane impression materials. Within 24 h, model casts of the dental impressions were obtained using plaster of Paris. A scanner for cone-beam computerized tomography was employed for 3D file acquisition of the different model casts of each patient. The CBCT scan data were inserted into a Matrix Laboratory, and for each patient, positions of axial images related to all time frames were elaborated in space in such a way that the residual teeth were superimposable (Sbordone et al. 2012a,b); A volumetric evaluation (V in cm3) of the study models in the site subjected to alveolar ridge preservation was performed with Segment and Planning tool of SimPlant Pro 12.02.
Volume of the alveolar ridge
Several impressions of the experimental sites were obtained from each patient. Impressions of the jaw were obtained in a one-step process with two viscosity polyvinyl siloxane impression materials. Within 24 h, model casts of the dental impressions were obtained using plaster of Paris. A scanner for cone-beam computerized tomography was employed for 3D file acquisition of the different model casts of each patient. The CBCT scan data were inserted into a Matrix Laboratory, and for each patient, positions of axial images related to all time frames were elaborated in space in such a way that the residual teeth were superimposable (Sbordone et al. 2012a,b); A volumetric evaluation (V in cm3) of the study models in the site subjected to alveolar ridge preservation was performed with Segment and Planning tool of SimPlant Pro 12.02.
Volume of the alveolar ridge
Several impressions of the experimental sites were obtained from each patient. Impressions of the jaw were obtained in a one-step process with two viscosity polyvinyl siloxane impression materials. Within 24 h, model casts of the dental impressions were obtained using plaster of Paris. A scanner for cone-beam computerized tomography was employed for 3D file acquisition of the different model casts of each patient. The CBCT scan data were inserted into a Matrix Laboratory, and for each patient, positions of axial images related to all time frames were elaborated in space in such a way that the residual teeth were superimposable (Sbordone et al. 2012a,b); A volumetric evaluation (V in cm3) of the study models in the site subjected to alveolar ridge preservation was performed with Segment and Planning tool of SimPlant Pro 12.02.
Volume of the alveolar ridge
Several impressions of the experimental sites were obtained from each patient. Impressions of the jaw were obtained in a one-step process with two viscosity polyvinyl siloxane impression materials. Within 24 h, model casts of the dental impressions were obtained using plaster of Paris. A scanner for cone-beam computerized tomography was employed for 3D file acquisition of the different model casts of each patient. The CBCT scan data were inserted into a Matrix Laboratory, and for each patient, positions of axial images related to all time frames were elaborated in space in such a way that the residual teeth were superimposable (Sbordone et al. 2012a,b); A volumetric evaluation (V in cm3) of the study models in the site subjected to alveolar ridge preservation was performed with Segment and Planning tool of SimPlant Pro 12.02.
Volume of the alveolar ridge
Several impressions of the experimental sites were obtained from each patient. Impressions of the jaw were obtained in a one-step process with two viscosity polyvinyl siloxane impression materials. Within 24 h, model casts of the dental impressions were obtained using plaster of Paris. A scanner for cone-beam computerized tomography was employed for 3D file acquisition of the different model casts of each patient. The CBCT scan data were inserted into a Matrix Laboratory, and for each patient, positions of axial images related to all time frames were elaborated in space in such a way that the residual teeth were superimposable (Sbordone et al. 2012a,b); A volumetric evaluation (V in cm3) of the study models in the site subjected to alveolar ridge preservation was performed with Segment and Planning tool of SimPlant Pro 12.02.
Volume of the alveolar ridge
Several impressions of the experimental sites were obtained from each patient. Impressions of the jaw were obtained in a one-step process with two viscosity polyvinyl siloxane impression materials. Within 24 h, model casts of the dental impressions were obtained using plaster of Paris. A scanner for cone-beam computerized tomography was employed for 3D file acquisition of the different model casts of each patient. The CBCT scan data were inserted into a Matrix Laboratory, and for each patient, positions of axial images related to all time frames were elaborated in space in such a way that the residual teeth were superimposable (Sbordone et al. 2012a,b); A volumetric evaluation (V in cm3) of the study models in the site subjected to alveolar ridge preservation was performed with Segment and Planning tool of SimPlant Pro 12.02.
Buccal-Lingual Width
Buccal-Lingual Width was evaluated in mm, measuring the distance between buccal and lingual/palatal plate with a periodontal probe. Changes at bucco-lingual width were calculated by subtracting the baseline value from the post-operative value.
Buccal-Lingual Width
Buccal-Lingual Width was evaluated in mm, measuring the distance between buccal and lingual/palatal plate with a periodontal probe. Changes at bucco-lingual width were calculated by subtracting the baseline value from the post-operative value.
Buccal-Lingual Width
Buccal-Lingual Width was evaluated in mm, measuring the distance between buccal and lingual/palatal plate with a periodontal probe. Changes at bucco-lingual width were calculated by subtracting the baseline value from the post-operative value.
Buccal-Lingual Width
Buccal-Lingual Width was evaluated in mm, measuring the distance between buccal and lingual/palatal plate with a periodontal probe. Changes at bucco-lingual width were calculated by subtracting the baseline value from the post-operative value.
Buccal-Lingual Width
Buccal-Lingual Width was evaluated in mm, measuring the distance between buccal and lingual/palatal plate with a periodontal probe. Changes at bucco-lingual width were calculated by subtracting the baseline value from the post-operative value.
Buccal-Lingual Width
Buccal-Lingual Width was evaluated in mm, measuring the distance between buccal and lingual/palatal plate with a periodontal probe. Changes at bucco-lingual width were calculated by subtracting the baseline value from the post-operative value.
Marginal bone loss
Bone loss was measured (in mm) by comparing the radiographs taken at baseline (immediately after placement) to the postoperative ones. The marginal bone height (MBL) was measured as the distance between the reference point (fixture-abutment interface) and the most apical point of the marginal bone level. Calibration was performed using the known thread-pitch distance of the implants (pitch = 1.0 mm), and fixture diameter and length.
Marginal bone loss
Bone loss was measured (in mm) by comparing the radiographs taken at baseline (immediately after placement) to the postoperative ones. The marginal bone height (MBL) was measured as the distance between the reference point (fixture-abutment interface) and the most apical point of the marginal bone level. Calibration was performed using the known thread-pitch distance of the implants (pitch = 1.0 mm), and fixture diameter and length.
Marginal bone loss
Bone loss was measured (in mm) by comparing the radiographs taken at baseline (immediately after placement) to the postoperative ones. The marginal bone height (MBL) was measured as the distance between the reference point (fixture-abutment interface) and the most apical point of the marginal bone level. Calibration was performed using the known thread-pitch distance of the implants (pitch = 1.0 mm), and fixture diameter and length.
Implant success
Implant failure (count) was defined as implant mobility, removal of implants caused by progressive bone loss or infection. The stability of each implant was evaluated at the delivery of prosthetic restoration and 1 year after implant insertion and two metallic handles of dental instruments were used to evaluate the stability of single crowns. Success rates (in percentage) were calculated according to the criteria suggested by Buser and colleagues.
Implant success
Implant failure (count) was defined as implant mobility, removal of implants caused by progressive bone loss or infection. The stability of each implant was evaluated at the delivery of prosthetic restoration and 1 year after implant insertion and two metallic handles of dental instruments were used to evaluate the stability of single crowns. Success rates (in percentage) were calculated according to the criteria suggested by Buser and colleagues.
Implant success
Implant failure (count) was defined as implant mobility, removal of implants caused by progressive bone loss or infection. The stability of each implant was evaluated at the delivery of prosthetic restoration and 1 year after implant insertion and two metallic handles of dental instruments were used to evaluate the stability of single crowns. Success rates (in percentage) were calculated according to the criteria suggested by Buser and colleagues.
NFB: newly formed bone
Specimens were decalcified in ethylenediaminetetraacetic acid (10%) for a period of 2 weeks. Specimens were again X-rayed in order to verify the decalcification procedure. After dehydratation in graded series of ethanol, the specimens were embedded in paraffin, sectioned (3-5 μm sections), and stained with hematoxyline-eosine and modified Mallory aniline blue. Examinations were performed in a Nikon Eclipse 80i microscope≠≠ using X1.0 to X40 objectives for descriptive evaluation and morphometrical measurements. Histomorphometric measurements were performed in order to calculate the percentages (i.e., area fraction in %) of mineralized bone 3 months after extraction procedure. All measurements were determined by using an Easy image 2000 system≠≠ for area measurements. A mean value from 3 different areas was calculated giving percentages of the above.
RGP: residual graft particle
Specimens were decalcified in ethylenediaminetetraacetic acid (10%) for a period of 2 weeks. Specimens were again X-rayed in order to verify the decalcification procedure. After dehydratation in graded series of ethanol, the specimens were embedded in paraffin, sectioned (3-5 μm sections), and stained with hematoxyline-eosine and modified Mallory aniline blue. Examinations were performed in a Nikon Eclipse 80i microscope≠≠ using X1.0 to X40 objectives for descriptive evaluation and morphometrical measurements. Histomorphometric measurements were performed in order to calculate the percentages (i.e., area fraction in %) of residual graft materials 3 months after extraction procedure. All measurements were determined by using an Easy image 2000 system≠≠ for area measurements. A mean value from 3 different areas was calculated giving percentages of the above.
NMT: non-mineralized tissue
Specimens were decalcified in ethylenediaminetetraacetic acid (10%) for a period of 2 weeks. Specimens were again X-rayed in order to verify the decalcification procedure. After dehydratation in graded series of ethanol, the specimens were embedded in paraffin, sectioned (3-5 μm sections), and stained with hematoxyline-eosine and modified Mallory aniline blue. Examinations were performed in a Nikon Eclipse 80i microscope≠≠ using X1.0 to X40 objectives for descriptive evaluation and morphometrical measurements. Histomorphometric measurements were performed in order to calculate the percentages (i.e., area fraction in %) of non-mineralized tissue (i.e., connective tissue and/or bone marrow) 3 months after extraction procedure. All measurements were determined by using an Easy image 2000 system≠≠ for area measurements. A mean value from 3 different areas was calculated giving percentages of the above.
Facial Soft Tissue Level
Facial soft tissue levels (FST in mm) were evaluated, measuring the distance between level of soft tissues at mid-facial gingival level and a reference line, which connected the facial soft tissue level of the adjacent teeth. Facial soft tissue changes were calculated by subtracting the baseline value from the respective post-operative values according to the formula ΔFST = FST - FSTBaseline.
Facial Soft Tissue Level
Facial soft tissue levels (FST in mm) were evaluated, measuring the distance between level of soft tissues at mid-facial gingival level and a reference line, which connected the facial soft tissue level of the adjacent teeth. Facial soft tissue changes were calculated by subtracting the baseline value from the respective post-operative values according to the formula ΔFST = FST - FSTBaseline.
Facial Soft Tissue Level
Facial soft tissue levels (FST in mm) were evaluated, measuring the distance between level of soft tissues at mid-facial gingival level and a reference line, which connected the facial soft tissue level of the adjacent teeth. Facial soft tissue changes were calculated by subtracting the baseline value from the respective post-operative values according to the formula ΔFST = FST - FSTBaseline.
Width of keratinized gingiva
Width of keratinized gingiva (WKG in mm) was measured midfacially from the top of the edentulous crest to the mucogingival junction of the edentulous area before implant placement, and from the gingival margin to the mucogingival junction of the implanted site (after implant placement).
Width of keratinized gingiva
Width of keratinized gingiva (WKG in mm) was measured midfacially from the top of the edentulous crest to the mucogingival junction of the edentulous area before implant placement, and from the gingival margin to the mucogingival junction of the implanted site (after implant placement).
Width of keratinized gingiva
Width of keratinized gingiva (WKG in mm) was measured midfacially from the top of the edentulous crest to the mucogingival junction of the edentulous area before implant placement, and from the gingival margin to the mucogingival junction of the implanted site (after implant placement).
Papillae index
The status of the interdental papilla was recorded based on the index proposed by Jemt: 0 = no papilla; 1 = less than half the normal papilla height is present; 2 = greater than half the normal papilla height is present, but papilla does not extend to the normal contact point; 3 = papilla fills the entire proximal space and is in good harmony; 4 = papilla is hyperplastic.
Papillae index
The status of the interdental papilla was recorded based on the index proposed by Jemt: 0 = no papilla; 1 = less than half the normal papilla height is present; 2 = greater than half the normal papilla height is present, but papilla does not extend to the normal contact point; 3 = papilla fills the entire proximal space and is in good harmony; 4 = papilla is hyperplastic.
Papillae index
The status of the interdental papilla was recorded based on the index proposed by Jemt: 0 = no papilla; 1 = less than half the normal papilla height is present; 2 = greater than half the normal papilla height is present, but papilla does not extend to the normal contact point; 3 = papilla fills the entire proximal space and is in good harmony; 4 = papilla is hyperplastic.
Pink Esthetic Score
The PES is based on seven variables: mesial papilla, distal papilla, soft-tissue level, soft-tissue contour, alveolar process deficiency, soft-tissue color and texture . Each variable was assessed with a 2-1-0 score, with 2 being the best and 0 being the poorest score.
The mesial and distal papilla were evaluated for completeness, incompleteness or absence. All other variables were assessed by comparison with a reference tooth, i.e. the corresponding tooth (anterior region) or a neighboring tooth (premolar region).
Pink Esthetic Score
The PES is based on seven variables: mesial papilla, distal papilla, soft-tissue level, soft-tissue contour, alveolar process deficiency, soft-tissue color and texture . Each variable was assessed with a 2-1-0 score, with 2 being the best and 0 being the poorest score.
The mesial and distal papilla were evaluated for completeness, incompleteness or absence. All other variables were assessed by comparison with a reference tooth, i.e. the corresponding tooth (anterior region) or a neighboring tooth (premolar region).
Pink Esthetic Score
The PES is based on seven variables: mesial papilla, distal papilla, soft-tissue level, soft-tissue contour, alveolar process deficiency, soft-tissue color and texture . Each variable was assessed with a 2-1-0 score, with 2 being the best and 0 being the poorest score.
The mesial and distal papilla were evaluated for completeness, incompleteness or absence. All other variables were assessed by comparison with a reference tooth, i.e. the corresponding tooth (anterior region) or a neighboring tooth (premolar region).