Pathobiological Determinants of Atherosclerosis in Youth (PDAY)
Primary Purpose
Cardiovascular Diseases, Atherosclerosis, Heart Diseases
Status
Completed
Phase
Locations
Study Type
Observational
Intervention
Sponsored by
About this trial
This is an observational trial for Cardiovascular Diseases
Eligibility Criteria
No eligibility criteria
Sites / Locations
Outcomes
Primary Outcome Measures
Secondary Outcome Measures
Full Information
NCT ID
NCT00005679
First Posted
May 25, 2000
Last Updated
February 17, 2016
Sponsor
National Heart, Lung, and Blood Institute (NHLBI)
1. Study Identification
Unique Protocol Identification Number
NCT00005679
Brief Title
Pathobiological Determinants of Atherosclerosis in Youth (PDAY)
Study Type
Observational
2. Study Status
Record Verification Date
January 2008
Overall Recruitment Status
Completed
Study Start Date
June 1985 (undefined)
Primary Completion Date
July 1993 (Actual)
Study Completion Date
July 1993 (Actual)
3. Sponsor/Collaborators
Name of the Sponsor
National Heart, Lung, and Blood Institute (NHLBI)
4. Oversight
5. Study Description
Brief Summary
To conduct a multicenter prevalence survey for characterizing pathologically the extent of atherosclerosis in the aortas and coronary arteries of young persons dying from accidental causes, suicide, or homicide.
Detailed Description
BACKGROUND:
The International Atherosclerosis Project (IAP) quantified atherosclerosis of the aorta and coronary arteries in over 31,000 persons age 10 to 69 who died between 1960 and 1965 in fifteen cities and countries throughout the world. The IAP established that the average severity of atherosclerosis differed widely in many parts of the world and that the differences correlated with mortality from ischemic heart disease. It also demonstrated that the fatty streaks of childhood were prevalent and severe in both boys and girls. Fibrous plaques generally first appeared between the ages of 20 and 30 and in proportion to the prevalence of ischemic disease in the adult population. Since the results of the IAP were first published in 1968, research into atherosclerosis has changed greatly from gross and microscopic morphological methods to manipulation of experimental animals, in vitro culture of arterial wall cells, and the application of micro-chemical, physical chemical, and immunological techniques to tissues.
The use of these newer techniques made it possible to test the hypothesis that a series of changes in the fatty streak between the ages of fifteen and twenty-five lead to the typical fibrous plaque and to test the hypothesis that lesions other than fatty streaks precede and may progress to fibrous plaques. The study also tested associations of the established risk factors for atherosclerosis with early stages of lesion progression as seen in young persons.
The protocol for this study served as the basis of the protocol developed by the World Health Organization (WHO) Committee on Pathobiological Determinants of Atherosclerosis in Youth. It was planned to incorporate this study into the WHO study so that cross-cultural and geographic factors could be evaluated in populations with higher and lower incidence of atherosclerosis.
DESIGN NARRATIVE:
A common protocol was followed for collecting risk factor data and coronary arteries and aortas from approximately 1,000 autopsies per year for three years. Specimens were collected and preserved in a standardized way at each collection center. Data management and statistical analysis were conducted at the University of Texas in San Antonio. The unit at Louisiana State University was composed of three central laboratories: the lipid biochemistry center; the coronary heart disease risk factor center; and a gross morphology center. The morphometry central laboratory was located at Ohio State University. Administration and coordination were directed from the University of Chicago and the University of Illinois.
In addition to serving as collection centers, many of the centers carried out individual research projects. At the University of Alabama in Birmingham, two separate but related investigations were conducted: Dr. Miller analyzed the various collagens by solubilizing them as peptide fractions and isolating the peptides via chromatography; Dr. Gay used monoclonal antibodies to define the distribution of the various collagens in atheromatous lesions. At the West Virginia University under Dr. Jagannathan, there were studies on isomeric fatty acids and proteoglycans. Dr. Reichenbach at the University of Washington studied the distribution of immunocytochemical markers of smooth muscle cell differentiation and leukocyte subpopulations in the coronary arteries as well as searched for viral DNA in plaques. At Baylor, the three-dimensional distribution of lipid inclusions, macrophages, and smooth muscle cells in coronary arteries were determined by digital fluorescence. Dr. Mergner of the University of Maryland collected specimens in the immediate autopsy program which provided specimens free of autolysis. He also performed transmission and scanning electron microscopy, X-ray microanalysis, lipid analysis, and immunofluorescence and immunoperoxidase procedures to define calcium content and cytoskeletal components. Dr. Virmani at Vanderbilt determined the role of biogenic amines such as histamine, serotonin, and catecholamines in atherosclerosis and correlated the content of amines with the presence of mast cells in the adventitia.
In 1988, two regular research grants were awarded as part of this multicenter study. The grant at the Southwest Foundation for Biomedical Research determined the genotypes for each subject with respect to restriction fragment length polymorphisms in apolipoprotein and LDL receptor genes using Southern blot analyses of DNA from liver samples sent from each collection center. It also typed the subjects for apo E isoform genotypes using oligonucleotide probes. The grant at Ohio State University correlated 3-D coronary axial geometry and pathology.
Some of the major questions addressed by the study included: whether some or all fatty streaks progressed to fibrous plaques and the transitional lesions; the morphometric and biochemical lesion changes indicated by progression; the frequency and features of insudative and proliferative lesions which may portend progressive disease; sex differences in lesions; whether immune complexes or viral infections were implicated.
In FY 1991, six grants were awarded under the title "Risk Factors in Early Human Atherogenesis" (RFEHA). The purpose was to extend the ongoing PDAY and to : obtain an adequate number of female cases so that risk factor associations could be accurately detected and studied; to increase the power of the study in general to detect associations of risk factors with raised lesions, which began to appear in this age group; and to increase the power of the study to detect genetic influences on atherosclerosis. REFHA added 1,400 new specimens to the 1,800 cases already collected in PDAY to achieve approximately 3,000 total specimens. Emphasis was placed on female cases and those that provided the best opportunity to study transition lesions between fatty streaks and fibrous plaques.
In 1998, the NHLBI awarded R24HL60808 for five years to provide and maintain an archive of human cardiovascular and other tissues which can be used by other United States and international investigators to study human atherosclerosis. The investigators, as part of PDAY and RFEHA, have assembled autopsy material (mostly of aorta and coronary artery, but with other tissues including liver, serum, and adipose tissue) from over 3,000 Black and white males and females. These were from autopsies on individuals ages 15 to 34 and obtained within 48 hours of death. The grant for the cardiovascular specimen and data library was renewed through July 2007.
6. Conditions and Keywords
Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Cardiovascular Diseases, Atherosclerosis, Heart Diseases, Coronary Disease, Coronary Arteriosclerosis
7. Study Design
10. Eligibility
Sex
All
Minimum Age & Unit of Time
15 Years
Maximum Age & Unit of Time
34 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
No eligibility criteria
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Arthur Chandler
Organizational Affiliation
Augusta University
First Name & Middle Initial & Last Name & Degree
J. Cornhill
Organizational Affiliation
Ohio State University
First Name & Middle Initial & Last Name & Degree
Asaad Daoud
Organizational Affiliation
Albany Medical College
First Name & Middle Initial & Last Name & Degree
Morton Friedman
Organizational Affiliation
Ohio State University
First Name & Middle Initial & Last Name & Degree
Steffen Gay
Organizational Affiliation
University of Alabama at Birmingham
First Name & Middle Initial & Last Name & Degree
James Hixson
Organizational Affiliation
Southwest Foundation for Biomedical Research
First Name & Middle Initial & Last Name & Degree
Singanallur Jagannathan
Organizational Affiliation
West Virginia University Medical Center
First Name & Middle Initial & Last Name & Degree
C. McMahan
Organizational Affiliation
University of Texas
First Name & Middle Initial & Last Name & Degree
Wolfgang Mergner
Organizational Affiliation
University of Maryland
First Name & Middle Initial & Last Name & Degree
Edward Miller
Organizational Affiliation
University of Alabama at Birmingham
First Name & Middle Initial & Last Name & Degree
Stanley Radio
Organizational Affiliation
University of Nebraska
First Name & Middle Initial & Last Name & Degree
Dennis Reichebach
Organizational Affiliation
University of Washington
First Name & Middle Initial & Last Name & Degree
Abel Robertson
Organizational Affiliation
University of Illinois at Chicago
First Name & Middle Initial & Last Name & Degree
Louis Smith
Organizational Affiliation
Baylor College of Medicine
First Name & Middle Initial & Last Name & Degree
Jack Strong
Organizational Affiliation
Louisiana State University Medical Center
First Name & Middle Initial & Last Name & Degree
Renu Virmani
Organizational Affiliation
Vanderbilt University School of Medicine
First Name & Middle Initial & Last Name & Degree
Robert Wissler
Organizational Affiliation
University of Chicago
12. IPD Sharing Statement
Citations:
PubMed Identifier
2243430
Citation
Relationship of atherosclerosis in young men to serum lipoprotein cholesterol concentrations and smoking. A preliminary report from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. JAMA. 1990 Dec 19;264(23):3018-24. doi: 10.1001/jama.1990.03450230054029.
Results Reference
background
PubMed Identifier
1525116
Citation
Hixson JE, McMahan CA, McGill HC Jr, Strong JP. Apo B insertion/deletion polymorphisms are associated with atherosclerosis in young black but not young white males. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb. 1992 Sep;12(9):1023-9. doi: 10.1161/01.atv.12.9.1023.
Results Reference
background
PubMed Identifier
1680392
Citation
Hixson JE. Apolipoprotein E polymorphisms affect atherosclerosis in young males. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb. 1991 Sep-Oct;11(5):1237-44. doi: 10.1161/01.atv.11.5.1237.
Results Reference
background
PubMed Identifier
1456873
Citation
Wissler RW. Theories and new horizons in the pathogenesis of atherosclerosis and the mechanisms of clinical effects. Arch Pathol Lab Med. 1992 Dec;116(12):1281-91.
Results Reference
background
PubMed Identifier
2042833
Citation
Wissler RW. USA Multicenter Study of the pathobiology of atherosclerosis in youth. Ann N Y Acad Sci. 1991;623:26-39. doi: 10.1111/j.1749-6632.1991.tb43716.x. No abstract available.
Results Reference
background
PubMed Identifier
2248455
Citation
Wissler RW, Vesselinovitch D, Komatsu A. The contribution of studies of atherosclerotic lesions in young people to future research. Ann N Y Acad Sci. 1990;598:418-34. doi: 10.1111/j.1749-6632.1990.tb42313.x. No abstract available.
Results Reference
background
PubMed Identifier
2397997
Citation
Wissler RW, Vesselinovitch D. An update on the pathogenesis of atherosclerosis (principles of prevention, intervention, retardation, and regression). Hawaii Med J. 1990 Jul;49(7):237-40, 261.
Results Reference
background
PubMed Identifier
7489246
Citation
McGill HC Jr, Strong JP, Tracy RE, McMahan CA, Oalmann MC. Relation of a postmortem renal index of hypertension to atherosclerosis in youth. The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb Vasc Biol. 1995 Dec;15(12):2222-8. doi: 10.1161/01.atv.15.12.2222.
Results Reference
background
PubMed Identifier
7483640
Citation
Cornhill JF, Herderick EE, Vince DG. The clinical morphology of human atherosclerotic lesions. Lessons from the PDAY Study. Pathobiological Determinants of Atherosclerosis in Youth. Wien Klin Wochenschr. 1995;107(18):540-3.
Results Reference
background
PubMed Identifier
7749853
Citation
McGill HC Jr, McMahan CA, Malcom GT, Oalmann MC, Strong JP. Relation of glycohemoglobin and adiposity to atherosclerosis in youth. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb Vasc Biol. 1995 Apr;15(4):431-40. doi: 10.1161/01.atv.15.4.431.
Results Reference
background
PubMed Identifier
7813067
Citation
Strong JP. Natural history and risk factors for early human atherogenesis. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Clin Chem. 1995 Jan;41(1):134-8.
Results Reference
background
PubMed Identifier
7802726
Citation
Wissler RW. New insights into the pathogenesis of atherosclerosis as revealed by PDAY. Pathobiological Determinants of Atherosclerosis in Youth. Atherosclerosis. 1994 Aug;108 Suppl:S3-20. doi: 10.1016/0021-9150(94)90149-x.
Results Reference
background
PubMed Identifier
8364013
Citation
Natural history of aortic and coronary atherosclerotic lesions in youth. Findings from the PDAY Study. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb. 1993 Sep;13(9):1291-8. doi: 10.1161/01.atv.13.9.1291.
Results Reference
background
PubMed Identifier
7624342
Citation
Kuo CC, Grayston JT, Campbell LA, Goo YA, Wissler RW, Benditt EP. Chlamydia pneumoniae (TWAR) in coronary arteries of young adults (15-34 years old). Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6911-4. doi: 10.1073/pnas.92.15.6911.
Results Reference
background
PubMed Identifier
8412986
Citation
Miller EJ, Malcom GT, McMahan CA, Strong JP. Atherosclerosis in young white males: arterial collagen and cholesterol. Matrix. 1993 Jul;13(4):289-96. doi: 10.1016/s0934-8832(11)80024-7.
Results Reference
background
PubMed Identifier
7581930
Citation
Strong JP, Malcom GT, Oalmann MC. Environmental and genetic risk factors in early human atherogenesis: lessons from the PDAY study. Pathobiological Determinants of Atherosclerosis in Youth. Pathol Int. 1995 Jun;45(6):403-8. doi: 10.1111/j.1440-1827.1995.tb03476.x.
Results Reference
background
PubMed Identifier
1456871
Citation
Strong JP. Atherosclerotic lesions. Natural history, risk factors, and topography. Arch Pathol Lab Med. 1992 Dec;116(12):1268-75.
Results Reference
background
PubMed Identifier
1619200
Citation
Strong JP, Malcom GT, Newman WP 3rd, Oalmann MC. Early lesions of atherosclerosis in childhood and youth: natural history and risk factors. J Am Coll Nutr. 1992 Jun;11 Suppl:51S-54S. doi: 10.1080/07315724.1992.10737984.
Results Reference
background
PubMed Identifier
8678921
Citation
Scanlon CE, Berger B, Malcom G, Wissler RW. Evidence for more extensive deposits of epitopes of oxidized low density lipoprotein in aortas of young people with elevated serum thiocyanate levels. PDAY Research Group. Atherosclerosis. 1996 Mar;121(1):23-33. doi: 10.1016/0021-9150(95)05672-6.
Results Reference
background
PubMed Identifier
8830932
Citation
Botti TP, Amin H, Hiltscher L, Wissler RW. A comparison of the quantitation of macrophage foam cell populations and the extent of apolipoprotein E deposition in developing atherosclerotic lesions in young people: high and low serum thiocyanate groups as an indication of smoking. PDAY Research Group. Pathobiological Determinants of Atherosclerosis in Youth. Atherosclerosis. 1996 Aug 2;124(2):191-202. doi: 10.1016/0021-9150(96)05825-x.
Results Reference
background
PubMed Identifier
8893222
Citation
Komatsu A, Sakurai I. A study of the development of atherosclerosis in childhood and young adults: risk factors and the prevention of progression in Japan and the USA. The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Pathol Int. 1996 Aug;46(8):541-7. doi: 10.1111/j.1440-1827.1996.tb03652.x.
Results Reference
background
PubMed Identifier
9119526
Citation
Wissler RW, Group PD. Atheroarteritis: a combined immunological and lipid imbalance. Int J Cardiol. 1996 Aug;54 Suppl:S37-49. doi: 10.1016/s0167-5273(96)88772-9.
Results Reference
background
PubMed Identifier
9186600
Citation
Strong JP, Malcom GT, Oalmann MC, Wissler RW. The PDAY Study: natural history, risk factors, and pathobiology. Pathobiological Determinants of Atherosclerosis in Youth. Ann N Y Acad Sci. 1997 Apr 15;811:226-35; discussion 235-7. doi: 10.1111/j.1749-6632.1997.tb52004.x. No abstract available.
Results Reference
background
PubMed Identifier
9239187
Citation
Malcom GT, Oalmann MC, Strong JP. Risk factors for atherosclerosis in young subjects: the PDAY Study. Pathobiological Determinants of Atherosclerosis in Youth. Ann N Y Acad Sci. 1997 May 28;817:179-88. doi: 10.1111/j.1749-6632.1997.tb48205.x. No abstract available.
Results Reference
background
PubMed Identifier
9062346
Citation
Kuhn H, Heydeck D, Hugou I, Gniwotta C. In vivo action of 15-lipoxygenase in early stages of human atherogenesis. J Clin Invest. 1997 Mar 1;99(5):888-93. doi: 10.1172/JCI119253.
Results Reference
background
PubMed Identifier
9012643
Citation
McGill HC Jr, McMahan CA, Malcom GT, Oalmann MC, Strong JP. Effects of serum lipoproteins and smoking on atherosclerosis in young men and women. The PDAY Research Group. Pathobiological Determinants of Atherosclerosis in Youth. Arterioscler Thromb Vasc Biol. 1997 Jan;17(1):95-106. doi: 10.1161/01.atv.17.1.95.
Results Reference
background
PubMed Identifier
10407501
Citation
Zieske AW, Takei H, Fallon KB, Strong JP. Smoking and atherosclerosis in youth. Atherosclerosis. 1999 Jun;144(2):403-8. doi: 10.1016/s0021-9150(98)00326-8.
Results Reference
background
PubMed Identifier
10073983
Citation
Rainwater DL, McMahan CA, Malcom GT, Scheer WD, Roheim PS, McGill HC Jr, Strong JP. Lipid and apolipoprotein predictors of atherosclerosis in youth: apolipoprotein concentrations do not materially improve prediction of arterial lesions in PDAY subjects. The PDAY Research Group. Arterioscler Thromb Vasc Biol. 1999 Mar;19(3):753-61. doi: 10.1161/01.atv.19.3.753.
Results Reference
background
PubMed Identifier
9672071
Citation
McGill HC Jr, McMahan CA, Tracy RE, Oalmann MC, Cornhill JF, Herderick EE, Strong JP. Relation of a postmortem renal index of hypertension to atherosclerosis and coronary artery size in young men and women. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb Vasc Biol. 1998 Jul;18(7):1108-18. doi: 10.1161/01.atv.18.7.1108.
Results Reference
background
PubMed Identifier
9860371
Citation
McGill HC Jr, McMahan CA. Determinants of atherosclerosis in the young. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Am J Cardiol. 1998 Nov 26;82(10B):30T-36T. doi: 10.1016/s0002-9149(98)00720-6.
Results Reference
background
PubMed Identifier
9777934
Citation
Wissler RW, Strong JP. Risk factors and progression of atherosclerosis in youth. PDAY Research Group. Pathological Determinants of Atherosclerosis in Youth. Am J Pathol. 1998 Oct;153(4):1023-33. doi: 10.1016/s0002-9440(10)65647-7. No abstract available.
Results Reference
background
PubMed Identifier
10052443
Citation
Strong JP, Malcom GT, McMahan CA, Tracy RE, Newman WP 3rd, Herderick EE, Cornhill JF. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA. 1999 Feb 24;281(8):727-35. doi: 10.1001/jama.281.8.727.
Results Reference
background
PubMed Identifier
9863548
Citation
Sloop GD, Perret RS, Brahney JS, Oalmann M. A description of two morphologic patterns of aortic fatty streaks, and a hypothesis of their pathogenesis. Atherosclerosis. 1998 Nov;141(1):153-60. doi: 10.1016/s0021-9150(98)00167-1.
Results Reference
background
PubMed Identifier
7503120
Citation
Wissler RW. An overview of the quantitative influence of several risk factors on progression of atherosclerosis in young people in the United States. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Am J Med Sci. 1995 Dec;310 Suppl 1:S29-36. doi: 10.1097/00000441-199512000-00006.
Results Reference
background
PubMed Identifier
10908207
Citation
McGill HC Jr, McMahan CA, Zieske AW, Tracy RE, Malcom GT, Herderick EE, Strong JP. Association of Coronary Heart Disease Risk Factors with microscopic qualities of coronary atherosclerosis in youth. Circulation. 2000 Jul 25;102(4):374-9. doi: 10.1161/01.cir.102.4.374.
Results Reference
background
PubMed Identifier
10712411
Citation
McGill HC Jr, McMahan CA, Herderick EE, Tracy RE, Malcom GT, Zieske AW, Strong JP. Effects of coronary heart disease risk factors on atherosclerosis of selected regions of the aorta and right coronary artery. PDAY Research Group. Pathobiological Determinants of Atherosclerosis in Youth. Arterioscler Thromb Vasc Biol. 2000 Mar;20(3):836-45. doi: 10.1161/01.atv.20.3.836.
Results Reference
background
PubMed Identifier
10935370
Citation
Zieske AW, Malcom GT, Strong JP. Pathobiological determinants of atherosclerosis in youth (PDAY) cardiovascular specimen and data library. J La State Med Soc. 2000 Jun;152(6):296-301.
Results Reference
background
PubMed Identifier
11257083
Citation
McGill HC Jr, McMahan CA, Zieske AW, Malcom GT, Tracy RE, Strong JP. Effects of nonlipid risk factors on atherosclerosis in youth with a favorable lipoprotein profile. Circulation. 2001 Mar 20;103(11):1546-50. doi: 10.1161/01.cir.103.11.1546.
Results Reference
background
PubMed Identifier
10938023
Citation
McGill HC Jr, McMahan CA, Zieske AW, Sloop GD, Walcott JV, Troxclair DA, Malcom GT, Tracy RE, Oalmann MC, Strong JP. Associations of coronary heart disease risk factors with the intermediate lesion of atherosclerosis in youth. The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb Vasc Biol. 2000 Aug;20(8):1998-2004. doi: 10.1161/01.atv.20.8.1998.
Results Reference
background
PubMed Identifier
10859527
Citation
Rao RN, Falls DG, Gerrity RG, Sethuraman SN, Thiruvaiyaru DS. Intimal thickness and layering, and smooth muscle cell phenotypes in aorta of youth. Pathobiology. 2000 Jan-Feb;68(1):18-28. doi: 10.1159/000028111.
Results Reference
background
PubMed Identifier
11942537
Citation
Zieske AW, Malcom GT, Strong JP. Natural history and risk factors of atherosclerosis in children and youth: the PDAY study. Pediatr Pathol Mol Med. 2002 Mar-Apr;21(2):213-37. doi: 10.1080/15227950252852104.
Results Reference
background
PubMed Identifier
11849669
Citation
Millonig G, Malcom GT, Wick G. Early inflammatory-immunological lesions in juvenile atherosclerosis from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY)-study. Atherosclerosis. 2002 Feb;160(2):441-8. doi: 10.1016/s0021-9150(01)00596-2.
Results Reference
background
PubMed Identifier
11500194
Citation
Ishikawa Y, Ishii T, Akasaka Y, Masuda T, Strong JP, Zieske AW, Takei H, Malcom GT, Taniyama M, Choi-Miura NH, Tomita M. Immunolocalization of apolipoproteins in aortic atherosclerosis in American youths and young adults: findings from the PDAY study. Atherosclerosis. 2001 Sep;158(1):215-25. doi: 10.1016/s0021-9150(01)00416-6.
Results Reference
background
PubMed Identifier
11395036
Citation
Homma S, Ishii T, Malcom GT, Zieske AW, Strong JP, Tsugane S, Hirose N. Histopathological modifications of early atherosclerotic lesions by risk factors--findings in PDAY subjects. Atherosclerosis. 2001 Jun;156(2):389-99. doi: 10.1016/s0021-9150(00)00669-9.
Results Reference
background
PubMed Identifier
12057983
Citation
McGill HC Jr, McMahan CA, Herderick EE, Zieske AW, Malcom GT, Tracy RE, Strong JP; Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation. 2002 Jun 11;105(23):2712-8. doi: 10.1161/01.cir.0000018121.67607.ce.
Results Reference
background
PubMed Identifier
12244281
Citation
McGill HC Jr, Herderick EE, McMahan CA, Zieske AW, Malcolm GT, Tracy RE, Strong JP. Atherosclerosis in youth. Minerva Pediatr. 2002 Oct;54(5):437-47.
Results Reference
background
PubMed Identifier
12063771
Citation
Strong JP, Zieske AW, Malcom GT. Lipoproteins and atherosclerosis in children: an early marriage? Nutr Metab Cardiovasc Dis. 2001 Oct;11 Suppl 5:16-22.
Results Reference
background
PubMed Identifier
14709364
Citation
Cohen HW, Sloop GD; PDAY Study. Glucose interaction magnifies atherosclerotic risk from cholesterol. Findings from the PDAY Study. Atherosclerosis. 2004 Jan;172(1):115-20. doi: 10.1016/j.atherosclerosis.2003.09.010.
Results Reference
background
PubMed Identifier
15851639
Citation
McMahan CA, Gidding SS, Fayad ZA, Zieske AW, Malcom GT, Tracy RE, Strong JP, McGill HC Jr. Risk scores predict atherosclerotic lesions in young people. Arch Intern Med. 2005 Apr 25;165(8):883-90. doi: 10.1001/archinte.165.8.883.
Results Reference
background
PubMed Identifier
15823279
Citation
Zieske AW, McMahan CA, McGill HC Jr, Homma S, Takei H, Malcom GT, Tracy RE, Strong JP. Smoking is associated with advanced coronary atherosclerosis in youth. Atherosclerosis. 2005 May;180(1):87-92. doi: 10.1016/j.atherosclerosis.2004.10.039. Epub 2004 Dec 15.
Results Reference
background
PubMed Identifier
15694930
Citation
Scheer WD, Boudreau DA, Hixson JE, McGill HC, Newman WP 3rd, Tracy RE, Zieske AW, Strong JP. ACE insert/delete polymorphism and atherosclerosis. Atherosclerosis. 2005 Feb;178(2):241-7. doi: 10.1016/j.atherosclerosis.2004.09.019.
Results Reference
background
PubMed Identifier
1867233
Citation
Wissler RW. Update on the pathogenesis of atherosclerosis. Am J Med. 1991 Jul 31;91(1B):3S-9S. doi: 10.1016/0002-9343(91)90050-8.
Results Reference
background
Learn more about this trial
Pathobiological Determinants of Atherosclerosis in Youth (PDAY)
We'll reach out to this number within 24 hrs