Prevention of Tuberculosis in Prisons
Primary Purpose
Tuberculosis, Pulmonary, Antibiotic Prophylaxis
Status
Terminated
Phase
Phase 4
Locations
Brazil
Study Type
Interventional
Intervention
Isoniazid 900 milligrams
Placebo
Sponsored by
About this trial
This is an interventional prevention trial for Tuberculosis, Pulmonary focused on measuring Tuberculosis, Primary prevention, Prisoners, Controlled Clinical Trial, Isoniazid
Eligibility Criteria
Inclusion criteria:
- Age above 18 and under 45 at the time of inclusion;
- Sign the informed consent form.
Exclusion criteria:
- Be indigenous;
- Active TB or previous use of isoniazid;
- Score Alcohol Use Disorders Identification Test ≥15.
- Reactive serology for HIV, hepatitis B and C;
- Reactive result for quantiferon, considering as positive the result of Tube 1 and / or Tube22 above 0.2 IU / mL;
- Liver enzymes (Aspartate aminotransferase and Alanate aminotransferase) three times the upper limit;
- History or treatment for epilepsy;
Sites / Locations
- Roberto Oliveira
Arms of the Study
Arm 1
Arm 2
Arm Type
Experimental
Placebo Comparator
Arm Label
Treatment
Control
Arm Description
Each subject received two oral supervised weekly doses of isoniazid 900 milligrams.
Each subject received two oral supervised weekly doses of placebo (oral tablet, without the active ingredient, similar in size, weight, color, taste and odor).
Outcomes
Primary Outcome Measures
Quantiferon TB Gold Plus (QIAGEN®) Conversion at the Premature Exclusion Visit.
Number of participants who had a Quantiferon TB Gold Plus (QIAGEN®) score greater than or equal to 0.35 international units per milliliter, at the time of the premature exclusion visit, on all participants in the group.
Secondary Outcome Measures
Full Information
NCT ID
NCT03028129
First Posted
December 5, 2016
Last Updated
October 2, 2019
Sponsor
Federal University of Mato Grosso
Collaborators
Oswaldo Cruz Foundation
1. Study Identification
Unique Protocol Identification Number
NCT03028129
Brief Title
Prevention of Tuberculosis in Prisons
Official Title
Primary Prophylaxis for Prevention of TB in Prison's Populations
Study Type
Interventional
2. Study Status
Record Verification Date
October 2019
Overall Recruitment Status
Terminated
Why Stopped
Interim analysis showed efficacy less than 2.5%.
Study Start Date
September 4, 2017 (Actual)
Primary Completion Date
August 10, 2019 (Actual)
Study Completion Date
August 10, 2019 (Actual)
3. Sponsor/Collaborators
Responsible Party, by Official Title
Principal Investigator
Name of the Sponsor
Federal University of Mato Grosso
Collaborators
Oswaldo Cruz Foundation
4. Oversight
Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Product Manufactured in and Exported from the U.S.
No
Data Monitoring Committee
No
5. Study Description
Brief Summary
The purpose of this study is to determine if the isoniazid is effective in the prevention of tuberculosis in a prison population, exposed to the high endemicity of the disease.
Detailed Description
Despite being a known disease of mankind over 9000 years, tuberculosis (TB) is still a major public health problem in developing countries, mainly due to so-called highly endemic sites, such as prisons.
It is Infectious disease, with airborne transmission, TB can present both the active or latent form. Despite the biological aspect of transmission, unhealthy environmental conditions (room without direct sunlight, poor ventilation and overcrowded) and individual factors (malnutrition, immunosuppression, use of alcohol and other drugs) have significant influence on transferability and infectivity.
With the discovery of drugs active against Mycobacterium tuberculosis, it was observed a reduction of disease incidence in the world. Despite this declining incidence, World Health Organization (WHO) classifies TB as a public health problem due to the emergence of multidrug strains or extensively resistant to treatment, added to the cases of latent TB reactivation, observed with the advent of HIV/AIDS.
Studies show a direct relationship between the incidence of TB and the prison environment. Nevertheless, the presence of prisons in one location increases the incidence of this disease, indicating that there is an exchange of disease between the prison and the community.
Currently, control of TB in the prison system is based on the tracking of individuals with active TB and / or latent and, in their respective treatment. For the identification of individuals with active disease, it is necessary the recognition of respiratory symptoms (cough mainly) and sputum smear microscopy and sputum culture, and chest X-ray. As the search of individuals with latent form, must be carried to the skin test with Purified Protein Derived (PPD).
Most of the units of the Brazilian's prison system these diagnostic methods are not available and hence the transport of individuals for their realization is necessary, generating an additional cost, in most cases, unfeasible process execution.
With the completion of this study, it seek to determine the effectiveness of primary prophylaxis in the prison population in order to gather new scientific evidence, to bring affordable methods for the control of TB in prisons.
Despite advances in diagnosis and treatment TB, this is the third leading cause of death from infectious diseases worldwide (Naghavi et al, 2015). In 2015, the WHO estimated incidence of 9.6 million new cases of TB in the world, with about 1.1 million deaths. For Brazil it was estimated incidence of 44 cases per 100,000 (WHO, 2015). The incidence of TB has declined about 2% per year, but this rate is not homogeneous in the global context.
Brazil occupies the 22nd place in the ranking of the WHO with an estimated annual rate of 83,310 cases of the disease (Zumla et al, 2015). In the past seven years, it is estimated that the incidence declined only 0.7% (per year). A key factor in this slow progress in TB control in Brazil, and other emerging countries is the existence of high-risk subpopulations, including slums and prisons, which act as reservoirs and amplifiers for the transmission of the disease (Basu; Stückler; Mckee 2011; Dowdy et al, 2012). A recent systematic review showed that the average incidence of TB in the prison population can be up to 23 times that recorded in the general population (Baussano et al, 2010).
With the fourth largest prison populations in the world, is observed in Brazil, the increased incidence of TB among prisoners in the last seven years. Although prisoners represent only 0.3% of the population, the increase in the prison population over this period resulted in almost doubling the proportion of all TB cases that occur among prisoners (4.1% in 2007, 8, 1% in 2013).
The arrests are in an ideal environment for the spread of TB, since they show individuals users of tobacco and alcohol in high doses, in addition to drug abuse in overcrowded cells with poor ventilation and with limited access to care health and diagnosis of TB. Currently, the Ministry of Health recommends active search for TB at the entrance to the prison and once a year by chest X-ray. Due to the cost and logistics, most prisons do not adhere to this recommendation. There is also a clear recommendation not to use the tuberculin skin test or perform the treatment for latent tuberculosis. If the procedures for active case detection and / or prophylactic treatment would impact the high transmission in prisons is a question that still remains open (Al-Darraji; Kamarulzamn; Altice, 2012).
The concentration of cases of TB in prisons can represent both an obstacle and an opportunity to control the disease, depending on the effectiveness of interventions in these environments.
Preliminary studies show high annual rate of TB infection (26%) among the prison population of 12 penitentiaries of Mato Grosso do Sul. Besides the large burden of disease in this population is significant dispersion of the TB prison to the community (Sacchi et al, 2015). Cross-sectional studies show high yield annual screening for TB, however, the effectiveness of this measure combined with other interventions remains unclear (Ferreira et al, 1996; Fournet et al, 2006; Lemos et al, 2014; Vieira et al, 2010; Sanches et al, 2013; Walnut; Abrahão; Galesi, 2012; Kuhleis et al, 2012; Estevan; Oliveira; Croda, 2013). Due to the combination of high force of infection in prisons and short prison term, primary prophylaxis may be an effective intervention. This new approach has never been evaluated in the context of prisons in low and middle income countries; to assess the impact of program strategies for TB screening and prophylaxis, longitudinal data will be essential. Given the infrastructure that was created for long-term prospective studies in Brazil, there is an excellent opportunity to close the critical knowledge gaps that have been barriers to effective implementation of TB control in high transmission prisons.
6. Conditions and Keywords
Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Tuberculosis, Pulmonary, Antibiotic Prophylaxis
Keywords
Tuberculosis, Primary prevention, Prisoners, Controlled Clinical Trial, Isoniazid
7. Study Design
Primary Purpose
Prevention
Study Phase
Phase 4
Interventional Study Model
Parallel Assignment
Masking
ParticipantInvestigator
Allocation
Randomized
Enrollment
467 (Actual)
8. Arms, Groups, and Interventions
Arm Title
Treatment
Arm Type
Experimental
Arm Description
Each subject received two oral supervised weekly doses of isoniazid 900 milligrams.
Arm Title
Control
Arm Type
Placebo Comparator
Arm Description
Each subject received two oral supervised weekly doses of placebo (oral tablet, without the active ingredient, similar in size, weight, color, taste and odor).
Intervention Type
Drug
Intervention Name(s)
Isoniazid 900 milligrams
Other Intervention Name(s)
Antibiotic Treatment
Intervention Description
Oral tablet, with the isoniazid 900mg, given two weekly. The administration will be supervised.
Intervention Type
Drug
Intervention Name(s)
Placebo
Other Intervention Name(s)
Placebo Treatment
Intervention Description
Oral tablet, without the active ingredient, similar in size, weight, color, taste and odor.
Primary Outcome Measure Information:
Title
Quantiferon TB Gold Plus (QIAGEN®) Conversion at the Premature Exclusion Visit.
Description
Number of participants who had a Quantiferon TB Gold Plus (QIAGEN®) score greater than or equal to 0.35 international units per milliliter, at the time of the premature exclusion visit, on all participants in the group.
Time Frame
up to 6 months
10. Eligibility
Sex
Male
Minimum Age & Unit of Time
18 Years
Maximum Age & Unit of Time
45 Years
Accepts Healthy Volunteers
Accepts Healthy Volunteers
Eligibility Criteria
Inclusion criteria:
Age above 18 and under 45 at the time of inclusion;
Sign the informed consent form.
Exclusion criteria:
Be indigenous;
Active TB or previous use of isoniazid;
Score Alcohol Use Disorders Identification Test ≥15.
Reactive serology for HIV, hepatitis B and C;
Reactive result for quantiferon, considering as positive the result of Tube 1 and / or Tube22 above 0.2 IU / mL;
Liver enzymes (Aspartate aminotransferase and Alanate aminotransferase) three times the upper limit;
History or treatment for epilepsy;
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Flora MF Moreira, Graduate
Organizational Affiliation
MsC Student
Official's Role
Study Chair
First Name & Middle Initial & Last Name & Degree
Andrea SS Carbone, MsC
Organizational Affiliation
PhD student
Official's Role
Study Chair
First Name & Middle Initial & Last Name & Degree
Flavia PC Sacchi, MsC
Organizational Affiliation
PhD student
Official's Role
Study Chair
First Name & Middle Initial & Last Name & Degree
Paulo CP Santos, Graduate
Organizational Affiliation
MsC Student
Official's Role
Study Chair
First Name & Middle Initial & Last Name & Degree
Rafaele CP Araújo, MsC
Organizational Affiliation
PhD student
Official's Role
Study Chair
First Name & Middle Initial & Last Name & Degree
Alessandra C Leite, MsC
Organizational Affiliation
PhD student
Official's Role
Study Chair
First Name & Middle Initial & Last Name & Degree
Cassia B Reis, PhD
Organizational Affiliation
Pos doc Student
Official's Role
Study Chair
First Name & Middle Initial & Last Name & Degree
Valeria C Rolla, PhD
Organizational Affiliation
Professor
Official's Role
Study Chair
First Name & Middle Initial & Last Name & Degree
Jason R Andrews, PhD
Organizational Affiliation
Professor
Official's Role
Study Chair
Facility Information:
Facility Name
Roberto Oliveira
City
Dourados
State/Province
Mato Grosso Do Sul
ZIP/Postal Code
78824210
Country
Brazil
12. IPD Sharing Statement
Plan to Share IPD
No
Citations:
PubMed Identifier
8284673
Citation
Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR Jr. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994 Jan 14;263(5144):227-30. doi: 10.1126/science.8284673.
Results Reference
background
PubMed Identifier
19855401
Citation
Barry CE 3rd, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ, Young D. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol. 2009 Dec;7(12):845-55. doi: 10.1038/nrmicro2236. Epub 2009 Oct 26.
Results Reference
background
PubMed Identifier
21212197
Citation
Basu S, Stuckler D, McKee M. Addressing institutional amplifiers in the dynamics and control of tuberculosis epidemics. Am J Trop Med Hyg. 2011 Jan;84(1):30-7. doi: 10.4269/ajtmh.2011.10-0472.
Results Reference
background
PubMed Identifier
21203587
Citation
Baussano I, Williams BG, Nunn P, Beggiato M, Fedeli U, Scano F. Tuberculosis incidence in prisons: a systematic review. PLoS Med. 2010 Dec 21;7(12):e1000381. doi: 10.1371/journal.pmed.1000381.
Results Reference
background
PubMed Identifier
14903503
Citation
BERNSTEIN J, LOTT WA, STEINBERG BA, YALE HL. Chemotherapy of experimental tuberculosis. V. Isonicotinic acid hydrazide (nydrazid) and related compounds. Am Rev Tuberc. 1952 Apr;65(4):357-64. doi: 10.1164/art.1952.65.4.357. No abstract available.
Results Reference
background
PubMed Identifier
21867778
Citation
Brites D, Gagneux S. Old and new selective pressures on Mycobacterium tuberculosis. Infect Genet Evol. 2012 Jun;12(4):678-85. doi: 10.1016/j.meegid.2011.08.010. Epub 2011 Aug 17.
Results Reference
background
PubMed Identifier
11891304
Citation
Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, van Soolingen D, Cole ST. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3684-9. doi: 10.1073/pnas.052548299. Epub 2002 Mar 12.
Results Reference
background
PubMed Identifier
25608746
Citation
Carbone Ada S, Paiao DS, Sgarbi RV, Lemos EF, Cazanti RF, Ota MM, Junior AL, Bampi JV, Elias VP, Simionatto S, Motta-Castro AR, Pompilio MA, de Oliveira SM, Ko AI, Andrews JR, Croda J. Active and latent tuberculosis in Brazilian correctional facilities: a cross-sectional study. BMC Infect Dis. 2015 Jan 22;15:24. doi: 10.1186/s12879-015-0764-8.
Results Reference
background
PubMed Identifier
23995134
Citation
Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, Parkhill J, Malla B, Berg S, Thwaites G, Yeboah-Manu D, Bothamley G, Mei J, Wei L, Bentley S, Harris SR, Niemann S, Diel R, Aseffa A, Gao Q, Young D, Gagneux S. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013 Oct;45(10):1176-82. doi: 10.1038/ng.2744. Epub 2013 Sep 1.
Results Reference
background
PubMed Identifier
22645356
Citation
Dowdy DW, Golub JE, Chaisson RE, Saraceni V. Heterogeneity in tuberculosis transmission and the role of geographic hotspots in propagating epidemics. Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9557-62. doi: 10.1073/pnas.1203517109. Epub 2012 May 29.
Results Reference
background
PubMed Identifier
23904084
Citation
Estevan AO, Oliveira SM, Croda J. Active and latent tuberculosis in prisoners in the Central-West Region of Brazil. Rev Soc Bras Med Trop. 2013 Jul-Aug;46(4):515-8. doi: 10.1590/0037-8682-1441-2013.
Results Reference
background
PubMed Identifier
8862283
Citation
Ferreira MM, Ferrazoli L, Palaci M, Salles PS, Medeiros LA, Novoa P, Kiefer CR, Schechtmann M, Kritski AL, Johnson WD, Riley LW, Ferreira Junior OC. Tuberculosis and HIV infection among female inmates in Sao Paulo, Brazil: a prospective cohort study. J Acquir Immune Defic Syndr Hum Retrovirol. 1996 Oct 1;13(2):177-83. doi: 10.1097/00042560-199610010-00009.
Results Reference
background
PubMed Identifier
16965796
Citation
Fournet N, Sanchez A, Massari V, Penna L, Natal S, Biondi E, Larouze B. Development and evaluation of tuberculosis screening scores in Brazilian prisons. Public Health. 2006 Oct;120(10):976-83. doi: 10.1016/j.puhe.2006.06.004. Epub 2006 Sep 11.
Results Reference
background
PubMed Identifier
14950210
Citation
FOX HH. The chemical approach to the control of tuberculosis. Science. 1952 Aug 8;116(3006):129-34. doi: 10.1126/science.116.3006.129. No abstract available.
Results Reference
background
PubMed Identifier
4966218
Citation
Hanson ML, Comstock GW, Haley CE. Community isoniazid prophylaxis program in an underdeveloped area of Alaska. Public Health Rep (1896). 1967 Dec;82(12):1045-56. No abstract available.
Results Reference
background
PubMed Identifier
18923677
Citation
Hershkovitz I, Donoghue HD, Minnikin DE, Besra GS, Lee OY, Gernaey AM, Galili E, Eshed V, Greenblatt CL, Lemma E, Bar-Gal GK, Spigelman M. Detection and molecular characterization of 9,000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the Eastern Mediterranean. PLoS One. 2008;3(10):e3426. doi: 10.1371/journal.pone.0003426. Epub 2008 Oct 15.
Results Reference
background
PubMed Identifier
23147148
Citation
Kuhleis D, Ribeiro AW, Costa ER, Cafrune PI, Schmid KB, Costa LL, Ribeiro MO, Zaha A, Rossetti ML. Tuberculosis in a southern Brazilian prison. Mem Inst Oswaldo Cruz. 2012 Nov;107(7):909-15. doi: 10.1590/s0074-02762012000700012.
Results Reference
background
PubMed Identifier
24885134
Citation
Lemos EF, Alves AM, Oliveira Gde C, Rodrigues MP, Martins ND, Croda J. Health-service performance of TB treatment for indigenous and non-indigenous populations in Brazil: a cross-sectional study. BMC Health Serv Res. 2014 May 23;14:237. doi: 10.1186/1472-6963-14-237.
Results Reference
background
PubMed Identifier
9195058
Citation
MacIntyre CR, Kendig N, Kummer L, Birago S, Graham NM. Impact of tuberculosis control measures and crowding on the incidence of tuberculous infection in Maryland prisons. Clin Infect Dis. 1997 Jun;24(6):1060-7. doi: 10.1086/513632.
Results Reference
background
PubMed Identifier
21732833
Citation
Martinson NA, Barnes GL, Moulton LH, Msandiwa R, Hausler H, Ram M, McIntyre JA, Gray GE, Chaisson RE. New regimens to prevent tuberculosis in adults with HIV infection. N Engl J Med. 2011 Jul 7;365(1):11-20. doi: 10.1056/NEJMoa1005136.
Results Reference
background
PubMed Identifier
25530442
Citation
GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015 Jan 10;385(9963):117-71. doi: 10.1016/S0140-6736(14)61682-2. Epub 2014 Dec 18.
Results Reference
background
PubMed Identifier
9365482
Citation
Nerlich AG, Haas CJ, Zink A, Szeimies U, Hagedorn HG. Molecular evidence for tuberculosis in an ancient Egyptian mummy. Lancet. 1997 Nov 8;350(9088):1404. doi: 10.1016/S0140-6736(05)65185-9. No abstract available.
Results Reference
background
PubMed Identifier
19281311
Citation
Nguyen L, Pieters J. Mycobacterial subversion of chemotherapeutic reagents and host defense tactics: challenges in tuberculosis drug development. Annu Rev Pharmacol Toxicol. 2009;49:427-53. doi: 10.1146/annurev-pharmtox-061008-103123.
Results Reference
background
PubMed Identifier
22252791
Citation
Nogueira PA, Abrahao RM, Galesi VM. Tuberculosis and latent tuberculosis in prison inmates. Rev Saude Publica. 2012 Feb;46(1):119-27. doi: 10.1590/s0034-89102011005000080. Epub 2011 Dec 13.
Results Reference
background
PubMed Identifier
25642998
Citation
Sacchi FP, Praca RM, Tatara MB, Simonsen V, Ferrazoli L, Croda MG, Suffys PN, Ko AI, Andrews JR, Croda J. Prisons as reservoir for community transmission of tuberculosis, Brazil. Emerg Infect Dis. 2015 Mar;21(3):452-5. doi: 10.3201/eid2103.140896.
Results Reference
background
PubMed Identifier
8279152
Citation
Salpeter SR. Fatal isoniazid-induced hepatitis. Its risk during chemoprophylaxis. West J Med. 1993 Nov;159(5):560-4.
Results Reference
background
PubMed Identifier
24139204
Citation
Sanchez A, Massari V, Gerhardt G, Espinola AB, Siriwardana M, Camacho LA, Larouze B. X ray screening at entry and systematic screening for the control of tuberculosis in a highly endemic prison. BMC Public Health. 2013 Oct 20;13:983. doi: 10.1186/1471-2458-13-983.
Results Reference
background
PubMed Identifier
23828580
Citation
Sharma SK, Sharma A, Kadhiravan T, Tharyan P. Rifamycins (rifampicin, rifabutin and rifapentine) compared to isoniazid for preventing tuberculosis in HIV-negative people at risk of active TB. Cochrane Database Syst Rev. 2013 Jul 5;2013(7):CD007545. doi: 10.1002/14651858.CD007545.pub2.
Results Reference
background
PubMed Identifier
10796642
Citation
Smieja MJ, Marchetti CA, Cook DJ, Smaill FM. Isoniazid for preventing tuberculosis in non-HIV infected persons. Cochrane Database Syst Rev. 2000;1999(2):CD001363. doi: 10.1002/14651858.CD001363.
Results Reference
background
PubMed Identifier
9275218
Citation
Sreevatsan S, Pan X, Stockbauer KE, Connell ND, Kreiswirth BN, Whittam TS, Musser JM. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9869-74. doi: 10.1073/pnas.94.18.9869.
Results Reference
background
PubMed Identifier
17008175
Citation
Steingart KR, Ng V, Henry M, Hopewell PC, Ramsay A, Cunningham J, Urbanczik R, Perkins MD, Aziz MA, Pai M. Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis. 2006 Oct;6(10):664-74. doi: 10.1016/S1473-3099(06)70602-8.
Results Reference
background
PubMed Identifier
22150035
Citation
Sterling TR, Villarino ME, Borisov AS, Shang N, Gordin F, Bliven-Sizemore E, Hackman J, Hamilton CD, Menzies D, Kerrigan A, Weis SE, Weiner M, Wing D, Conde MB, Bozeman L, Horsburgh CR Jr, Chaisson RE; TB Trials Consortium PREVENT TB Study Team. Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med. 2011 Dec 8;365(23):2155-66. doi: 10.1056/NEJMoa1104875.
Results Reference
background
PubMed Identifier
10573321
Citation
Temple ME, Nahata MC. Rifapentine: its role in the treatment of tuberculosis. Ann Pharmacother. 1999 Nov;33(11):1203-10. doi: 10.1345/aph.18450.
Results Reference
background
PubMed Identifier
13015302
Citation
THOREN M, HINSHAW HC. Therapy of pulmonary tuberculosis with isoniazid alone and in combination with streptomycin and with para-amino-salicylic acid. Stanford Med Bull. 1952 Nov;10(4):316-8. No abstract available.
Results Reference
background
PubMed Identifier
26195459
Citation
Urrego J, Ko AI, da Silva Santos Carbone A, Paiao DS, Sgarbi RV, Yeckel CW, Andrews JR, Croda J. The Impact of Ventilation and Early Diagnosis on Tuberculosis Transmission in Brazilian Prisons. Am J Trop Med Hyg. 2015 Oct;93(4):739-46. doi: 10.4269/ajtmh.15-0166. Epub 2015 Jul 20.
Results Reference
background
PubMed Identifier
21180853
Citation
Vieira AA, Ribeiro SA, de Siqueira AM, Galesi VM, dos Santos LA, Golub JE. Prevalence of patients with respiratory symptoms through active case finding and diagnosis of pulmonary tuberculosis among prisoners and related predictors in a jail in the city of Carapicuiba, Brazil. Rev Bras Epidemiol. 2010 Dec;13(4):641-50. doi: 10.1590/s1415-790x2010000400009.
Results Reference
background
PubMed Identifier
25539957
Citation
Zumla A, George A, Sharma V, Herbert RH; Baroness Masham of Ilton; Oxley A, Oliver M. The WHO 2014 global tuberculosis report--further to go. Lancet Glob Health. 2015 Jan;3(1):e10-2. doi: 10.1016/S2214-109X(14)70361-4. No abstract available.
Results Reference
background
PubMed Identifier
22410101
Citation
Al-Darraji HA, Kamarulzaman A, Altice FL. Isoniazid preventive therapy in correctional facilities: a systematic review. Int J Tuberc Lung Dis. 2012 Jul;16(7):871-9. doi: 10.5588/ijtld.11.0447. Epub 2012 Mar 7.
Results Reference
background
Citation
Barrera, L. The basics of clinical bacteriology Tuberculosis (2007): 93-112.
Results Reference
background
PubMed Identifier
16949809
Citation
Daniel TM. The history of tuberculosis. Respir Med. 2006 Nov;100(11):1862-70. doi: 10.1016/j.rmed.2006.08.006. Epub 2006 Sep 1.
Results Reference
background
PubMed Identifier
8054087
Citation
Porter JD, McAdam KP. The re-emergence of tuberculosis. Annu Rev Public Health. 1994;15:303-23. doi: 10.1146/annurev.pu.15.050194.001511.
Results Reference
background
PubMed Identifier
16200083
Citation
Nunn P, Williams B, Floyd K, Dye C, Elzinga G, Raviglione M. Tuberculosis control in the era of HIV. Nat Rev Immunol. 2005 Oct;5(10):819-26. doi: 10.1038/nri1704.
Results Reference
background
PubMed Identifier
9517576
Citation
Schluger NW, Rom WN. The host immune response to tuberculosis. Am J Respir Crit Care Med. 1998 Mar;157(3 Pt 1):679-91. doi: 10.1164/ajrccm.157.3.9708002. No abstract available.
Results Reference
background
Links:
URL
http://www.prisonstudies.org/country/brazil
Description
World Prison Brief: Brazil.
URL
https://www.sealedenvelope.com/power/binary-superiority
Description
Power calculator for binary outcome superiority trial.
Learn more about this trial
Prevention of Tuberculosis in Prisons
We'll reach out to this number within 24 hrs