search
Back to results

Re-administration of Intramuscular AAV9 in Patients With Late-Onset Pompe Disease (AAV9-GAA_IM)

Primary Purpose

Pompe Disease

Status
Completed
Phase
Phase 1
Locations
United States
Study Type
Interventional
Intervention
Recombinant Adeno-Associated Virus Acid Alpha-Glucosidase
Rapamycin
saline
Rituxan
Diphenhydramine
Acetaminophen
Lidocaine
LMX 4 Topical Cream
Sponsored by
University of Florida
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional treatment trial for Pompe Disease focused on measuring Pompe Disease, Gene Therapy, Repeated dosing, Immune modulation

Eligibility Criteria

18 Years - 50 Years (Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria:

  • Male or female subjects 18 to 50-years old
  • Have a diagnosis of Pompe disease, as defined by protein assay AND/OR DNA sequence of the acid alpha-glucosidase gene, AND clinical symptoms of the disease
  • Have residual ability to complete the 10 meter walk test
  • Willing to discontinue aspirin, aspirin-containing products and other drugs that may alter platelet function, 7 days prior to dosing, resuming 24 hours after the dose has been administered
  • Consistently taking enzyme replacement therapy (ERT) or remain off ERT from baseline until Day 520
  • United States residents only.

Exclusion Criteria:

  • Be pregnant or nursing, and if the subject is of child bearing potential they should use contraception until the end of the study
  • Have required oral or systemic corticosteroids within the last 15 days prior to baseline screening
  • Have a platelet count less than 75,000/mm^3
  • Have an INR greater than 1.3
  • Have seronegative to AAV9 capsid protein (neutralizing Ab titers <1:5 and total binding Ab titer <50 U/ml)
  • Have transaminases and alkaline phosphatase more than ten times the upper limit of normal at screening or Day-1
  • Have bilirubin and gamma-glutamyl transpeptidase greater than 2 times the upper limit of normal at screening or Day -1
  • Have any chronic liver disease (aside from hepatic dysfunction related to Pompe disease) such as hepatitis B and C and cirrhosis
  • Be currently, or within the past 30 days, participating in any other research protocol involving investigational agents or therapies
  • Have history of platelet dysfunction, evidence of abnormal platelet function at screening, or history of recent use of drugs that may alter platelet function, which the subject is unable/unwilling to discontinue for study agent administration
  • Have received gene transfer agents within the past 6 months
  • Have any medical condition or circumstance for which an MRI evaluation is contraindicated
  • Have any other concurrent condition that, in the opinion of the investigator, would make the subject unsuitable for the study
  • Inconsistent with use of ERT.

Sites / Locations

  • Clinical and Translational Research Building (CTRB), University of Florida

Arms of the Study

Arm 1

Arm 2

Arm Type

Experimental

Sham Comparator

Arm Label

rAAV9-DES-hGAA vector

Excipient

Arm Description

Each subject will receive Rituxan and Rapamycin prior to the initial exposure to the study agent in one leg and the subsequent exposure of the same vector to the contralateral leg after four months. Diphenhydramine and acetaminophen will be provided before each Rituxan dose. Immune Globulin will be administered to each subject every other month after first exposure to Rituxan and as clinical necessary. Lidocaine will be administered through percutaneous infiltration before injection of the study agent. Side of administration will be randomized at first Recombinant Adeno-Associated Virus Acid Alpha-Glucosidase injection.

Each subject will receive Rituxan and Rapamycin prior to the initial exposure to the study agent in one leg and the subsequent exposure of the same vector to the contralateral leg after four months. Diphenhydramine and acetaminophen will be provided before each Rituxan dose. Immune Globulin will be administered to each subject every other month after first exposure to Rituxan and as clinical necessary. Lidocaine will be administered through percutaneous infiltration before injection of the study agent. Side of administration will be randomized at first saline injection.

Outcomes

Primary Outcome Measures

Safety of rAAV9-DES-hGAA vector in LOPD by blood and urine test.
Safety will be tested by clinical pathology tests, blood assay for vector genomes, antibodies against GAA and T-cell ELISPOT against GAA and AAV.

Secondary Outcome Measures

Neurophysiological tests will be performed for neuro function of rAAV9-DES-hGAA vector.
Neurophysiological tests: Surface testing of the common fibular nerve and neuromuscular junction transmission.
Muscle biopsy will be performed for muscular function of rAAV9-DES-hGAA vector.
Muscle biopsy for biochemistry and immunochemistry tests.
Clinical tests will be performed for function of rAAV9-DES-hGAA vector.
Clinical tests: 10 meter walk test and muscle strength test.
Magnetic Resonance Imaging will be performed for visualization of muscle with rAAV9-DES-hGAA vector.
MRI will provide a non-invasive means of evaluating maximum cross-sectional area (CSAmax) - an index of muscle mass - and the MR proton traverse relaxation time (T2) - an index of muscle damage and edema.
Spectroscopy will be performed for function of rAAV9-DES-hGAA vector.
MRS will provide a non-invasive means of evaluating glycogen concentration in muscle.

Full Information

First Posted
September 11, 2014
Last Updated
March 24, 2022
Sponsor
University of Florida
Collaborators
Lacerta Therapeutics
search

1. Study Identification

Unique Protocol Identification Number
NCT02240407
Brief Title
Re-administration of Intramuscular AAV9 in Patients With Late-Onset Pompe Disease
Acronym
AAV9-GAA_IM
Official Title
Evaluation of Re-administration of Recombinant Adeno-Associated Virus Acid Alpha-Glucosidase (rAAV9-DES-hGAA) in Patients With Late-Onset Pompe Disease (LOPD)
Study Type
Interventional

2. Study Status

Record Verification Date
March 2022
Overall Recruitment Status
Completed
Study Start Date
October 17, 2017 (Actual)
Primary Completion Date
August 26, 2021 (Actual)
Study Completion Date
August 26, 2021 (Actual)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Sponsor
Name of the Sponsor
University of Florida
Collaborators
Lacerta Therapeutics

4. Oversight

Studies a U.S. FDA-regulated Drug Product
Yes
Studies a U.S. FDA-regulated Device Product
No
Data Monitoring Committee
Yes

5. Study Description

Brief Summary
A recombinant AAV vector has been generated to carry the codon-optimized acid alpha-glucosidase (coGAA) gene expressed from a human desmin enhancer/promoter (DES). The proposed clinical trial is a within-participant, double-blind, randomized, phase I controlled study evaluating the toxicology, biodistribution and potential activity of re-administration of rAAV9-DES-hGAA injected intramuscularly into the TA. Nine participants (18 to 50-years old) who reside within the United States with Late-Onset Pompe Disease (LOPD) will be included. The goal of the immune modulation strategy is to ablate B-cells (Rituximab and Sirolimus) prior to the initial exposure to the study agent in one leg and the subsequent exposure of the same vector to the contralateral leg after four months. At each study agent dosing, the contralateral leg will receive excipient. Patients will act as their own controls. Repeated measures, at baseline and during the following 3 months after each injection, will assess the safety, biochemical and functional impact of the vector.
Detailed Description
Enrolling in this study will entail participating in 18 months of study-related visits. Patients will be asked to come to the Clinical and Translational Research Building at the University of Florida for a series of onsite study visits. All the visits will be performed as outpatient procedures at the Clinical Research Center (CRC) and at other facilities at the University of Florida. Overnight observation will not be needed, however, patients will be asked to stay overnight in a hotel near the University of Florida. During the first 4 months after each injection, patients will be asked to perform outpatient laboratory work at a laboratory facility convenient for them. In addition, during this study patients will be asked to take medications that will modulate the ability of their immune system to react against foreign agents including the gene transfer agent. The purpose of these medications is to improve the activity of the GAA within the body. Patients will receive a Rituximab injection 21 days prior to the first injection of the study agent and 7 days before each injection of the study agent and the day of the first injection. Rituximab will be delivered by infusion that may last 2-6 hours. Patients will need to take another medication (Sirolimus) every day starting 7 days before the first injection of the study agent until four months after the second injection of the study agent. The following discusses what will occur at each visit: Baseline Baseline Evaluation and first Rituximab infusion - Day -22/-21/-20 Medical history: Patients will be asked to complete a questionnaire about his/her medical history. Physical exam: The study doctor will perform a general physical exam to evaluate patients physical health. Blood and urine tests: These tests will be used for evaluating the safety of the gene transfer agent. Electrocardiogram (ECG): This test will measure the electrical activity of patient's heart to see if it is working properly. Quantitative Muscle Testing (QMT): This test finds out how strong the patient's leg muscles are. 10 Meter Walk Test: Patients will be instructed to walk a set distance (10 meters); time will be measured while patient walks the set distance and the distance covered will be divided by the time it took to walk that distance. Gait analysis: Gait will be tested with Gait Mat II, which will record the spatial and temporal parameters of his/her walk such as cadence, speed and distance between your feet. Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS): MRI and MRS testing will be done inside a large magnet that lets the study doctors measure the size and health of the patient's muscles. These tests are done at the same time. MRI and MRS testing will require the patient to stay very still for up to an hour. Magnetic stimulation of the common fibular nerve: The common fibular nerve, which is the nerve that controls the injected muscle, will be stimulated with a magnetic field to test the impact of the gene transfer agent to the nervous system. The patient will receive the first Rituximab infusion. It might last between 2 and 6 hours. Rituximab infusion - Day -6 The patient will receive the 2nd Rituximab infusion 7 days before the gene transfer agent. It might last between 2 and 6 hours. Patient will begin Rapamycin. 1st Injection - Day 0/1 The patient will receive the 3rd Rituximab infusion the day before the gene transfer agent. It might last between 2 and 6 hours. Patient will receive the gene transfer agent in 1 injection (a total of about 1 teaspoon) into the tibialis anterior (TA) muscle of one leg. The other leg will receive a pharmacologically inactive solution. An ultrasound will be used to detect the proper location of injection. A photograph of the injection at the injection site may be taken. If the patient agrees to this, he/she will be asked to sign a consent form for this procedure. On day 1, blood tests will be done. Outpatient lab work - Day 3/7/15/30/60 Blood and urine tests Onsite visit - Day 89/90 Medical history Physical Exam Blood and urine tests Quantitative Muscle Testing (QMT) 10 Meter Walk Test Gait analysis Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) Muscle Biopsy: Tissue samples obtained will be used for evaluation of muscle glycogen and GAA activity in the injected muscle. Magnetic stimulation of the common fibular nerve Rituximab infusion - Day 114 The patient will receive the 4th Rituximab infusion, it might last between 2-6 hours. 2nd Injection - Day 121/122 The patient will receive the second gene transfer agent injection in the leg that previously received the inactive solution. The leg that previously received the study agent will receive the inactive solution. The injection procedure and the amount of study agent injected will be the same as the first injection. On day 122, blood tests will be done. Outpatient lab work - Day 124/128/135/150/180 Blood and urine tests Onsite visit - Day 209/210 Medical History Physical Exam Blood and urine tests Quantitative Muscle Testing (QMT) 10 Meter Walk Test Gait analysis Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) Muscle Biopsy Magnetic stimulation of the common fibular nerve Onsite visit - Day 365 Medical history Physical exam Quantitative Muscle Testing (QMT) 10 Meter Walk Test Blood and urine tests Onsite visit - Day 520 Medical history Physical exam Quantitative Muscle Testing (QMT) 10 Meter Walk Test Blood and urine tests

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Pompe Disease
Keywords
Pompe Disease, Gene Therapy, Repeated dosing, Immune modulation

7. Study Design

Primary Purpose
Treatment
Study Phase
Phase 1
Interventional Study Model
Parallel Assignment
Masking
ParticipantInvestigatorOutcomes Assessor
Allocation
Randomized
Enrollment
2 (Actual)

8. Arms, Groups, and Interventions

Arm Title
rAAV9-DES-hGAA vector
Arm Type
Experimental
Arm Description
Each subject will receive Rituxan and Rapamycin prior to the initial exposure to the study agent in one leg and the subsequent exposure of the same vector to the contralateral leg after four months. Diphenhydramine and acetaminophen will be provided before each Rituxan dose. Immune Globulin will be administered to each subject every other month after first exposure to Rituxan and as clinical necessary. Lidocaine will be administered through percutaneous infiltration before injection of the study agent. Side of administration will be randomized at first Recombinant Adeno-Associated Virus Acid Alpha-Glucosidase injection.
Arm Title
Excipient
Arm Type
Sham Comparator
Arm Description
Each subject will receive Rituxan and Rapamycin prior to the initial exposure to the study agent in one leg and the subsequent exposure of the same vector to the contralateral leg after four months. Diphenhydramine and acetaminophen will be provided before each Rituxan dose. Immune Globulin will be administered to each subject every other month after first exposure to Rituxan and as clinical necessary. Lidocaine will be administered through percutaneous infiltration before injection of the study agent. Side of administration will be randomized at first saline injection.
Intervention Type
Genetic
Intervention Name(s)
Recombinant Adeno-Associated Virus Acid Alpha-Glucosidase
Other Intervention Name(s)
rAAV9-DES-hGAA
Intervention Description
The dose selected for this study is a fixed dose of 4.6 x 10^13 vg per TA muscle (range of 7.64 x 10^11 vg/gm to 4.6 x 10^11 vg/gm based on TA weight).
Intervention Type
Drug
Intervention Name(s)
Rapamycin
Other Intervention Name(s)
Sirolimus
Intervention Description
Patients will receive Rapamycin (dose 0.6-2 mg/m^2/day, adjusted to maintain a trough serum sirolimus level of 2-4 ng/mL.) every day starting from 7 days before first injection of AAV9 until four months after second injection.
Intervention Type
Other
Intervention Name(s)
saline
Other Intervention Name(s)
Excipient
Intervention Description
Same volume as rAAV9-DES-hGAA injection will be used.
Intervention Type
Drug
Intervention Name(s)
Rituxan
Other Intervention Name(s)
Rituximab
Intervention Description
Patients will receive Rituxan (dose: 750 mg/m^2 twice) 21 and 7 day prior first AAV9 injection, with a Rituxan dose 375 mg/m^2 on the day of the injection. Rituxan will be repeated 7 days prior to the 2nd injection of the vector. The maintenance dose of Rituxan will be 375 mg/m^2.
Intervention Type
Drug
Intervention Name(s)
Diphenhydramine
Other Intervention Name(s)
Benadryl
Intervention Description
25-50mg will be provided before each Rituximab dose.
Intervention Type
Drug
Intervention Name(s)
Acetaminophen
Other Intervention Name(s)
Tylenol
Intervention Description
We will provide 650 mg of tylenol before each dose of Rituximab.
Intervention Type
Drug
Intervention Name(s)
Lidocaine
Other Intervention Name(s)
Xylocaine
Intervention Description
Lidocaine will be used based on standard of care: Percutaneous infiltration, concentration 0.5-1%, 1-10 mL, 5-300mg total dose.
Intervention Type
Drug
Intervention Name(s)
LMX 4 Topical Cream
Other Intervention Name(s)
Lidocaine 4%
Intervention Description
Topical anesthesia cream will be used prior to gene therapy/saline injection.
Primary Outcome Measure Information:
Title
Safety of rAAV9-DES-hGAA vector in LOPD by blood and urine test.
Description
Safety will be tested by clinical pathology tests, blood assay for vector genomes, antibodies against GAA and T-cell ELISPOT against GAA and AAV.
Time Frame
520 days
Secondary Outcome Measure Information:
Title
Neurophysiological tests will be performed for neuro function of rAAV9-DES-hGAA vector.
Description
Neurophysiological tests: Surface testing of the common fibular nerve and neuromuscular junction transmission.
Time Frame
520 days
Title
Muscle biopsy will be performed for muscular function of rAAV9-DES-hGAA vector.
Description
Muscle biopsy for biochemistry and immunochemistry tests.
Time Frame
520 days
Title
Clinical tests will be performed for function of rAAV9-DES-hGAA vector.
Description
Clinical tests: 10 meter walk test and muscle strength test.
Time Frame
520 days
Title
Magnetic Resonance Imaging will be performed for visualization of muscle with rAAV9-DES-hGAA vector.
Description
MRI will provide a non-invasive means of evaluating maximum cross-sectional area (CSAmax) - an index of muscle mass - and the MR proton traverse relaxation time (T2) - an index of muscle damage and edema.
Time Frame
520 days
Title
Spectroscopy will be performed for function of rAAV9-DES-hGAA vector.
Description
MRS will provide a non-invasive means of evaluating glycogen concentration in muscle.
Time Frame
520 days

10. Eligibility

Sex
All
Minimum Age & Unit of Time
18 Years
Maximum Age & Unit of Time
50 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: Male or female subjects 18 to 50-years old Have a diagnosis of Pompe disease, as defined by protein assay AND/OR DNA sequence of the acid alpha-glucosidase gene, AND clinical symptoms of the disease Have residual ability to complete the 10 meter walk test Willing to discontinue aspirin, aspirin-containing products and other drugs that may alter platelet function, 7 days prior to dosing, resuming 24 hours after the dose has been administered Consistently taking enzyme replacement therapy (ERT) or remain off ERT from baseline until Day 520 United States residents only. Exclusion Criteria: Be pregnant or nursing, and if the subject is of child bearing potential they should use contraception until the end of the study Have required oral or systemic corticosteroids within the last 15 days prior to baseline screening Have a platelet count less than 75,000/mm^3 Have an INR greater than 1.3 Have seronegative to AAV9 capsid protein (neutralizing Ab titers <1:5 and total binding Ab titer <50 U/ml) Have transaminases and alkaline phosphatase more than ten times the upper limit of normal at screening or Day-1 Have bilirubin and gamma-glutamyl transpeptidase greater than 2 times the upper limit of normal at screening or Day -1 Have any chronic liver disease (aside from hepatic dysfunction related to Pompe disease) such as hepatitis B and C and cirrhosis Be currently, or within the past 30 days, participating in any other research protocol involving investigational agents or therapies Have history of platelet dysfunction, evidence of abnormal platelet function at screening, or history of recent use of drugs that may alter platelet function, which the subject is unable/unwilling to discontinue for study agent administration Have received gene transfer agents within the past 6 months Have any medical condition or circumstance for which an MRI evaluation is contraindicated Have any other concurrent condition that, in the opinion of the investigator, would make the subject unsuitable for the study Inconsistent with use of ERT.
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Manuela Corti, P.T., PhD.
Organizational Affiliation
University of Florida
Official's Role
Principal Investigator
Facility Information:
Facility Name
Clinical and Translational Research Building (CTRB), University of Florida
City
Gainesville
State/Province
Florida
ZIP/Postal Code
32610
Country
United States

12. IPD Sharing Statement

Plan to Share IPD
Undecided
Citations:
PubMed Identifier
25186912
Citation
Corti M, Smith BK, Falk DJ, Lawson LA, Fuller DD, Subramony SH, Byrne BJ, Christou EA. Altered activation of the tibialis anterior in individuals with Pompe disease: Implications for motor unit dysfunction. Muscle Nerve. 2015 Jun;51(6):877-83. doi: 10.1002/mus.24444. Epub 2015 Apr 24.
Results Reference
background
Citation
McKusick V. 232300 Glycogen Storage Disease II. OMIM. 1996.
Results Reference
background
PubMed Identifier
8488406
Citation
Moufarrej NA, Bertorini TE. Respiratory insufficiency in adult-type acid maltase deficiency. South Med J. 1993 May;86(5):560-7. doi: 10.1097/00007611-199305000-00015.
Results Reference
background
PubMed Identifier
18816591
Citation
Wokke JH, Escolar DM, Pestronk A, Jaffe KM, Carter GT, van den Berg LH, Florence JM, Mayhew J, Skrinar A, Corzo D, Laforet P. Clinical features of late-onset Pompe disease: a prospective cohort study. Muscle Nerve. 2008 Oct;38(4):1236-45. doi: 10.1002/mus.21025.
Results Reference
background
PubMed Identifier
21518733
Citation
Byrne BJ, Falk DJ, Pacak CA, Nayak S, Herzog RW, Elder ME, Collins SW, Conlon TJ, Clement N, Cleaver BD, Cloutier DA, Porvasnik SL, Islam S, Elmallah MK, Martin A, Smith BK, Fuller DD, Lawson LA, Mah CS. Pompe disease gene therapy. Hum Mol Genet. 2011 Apr 15;20(R1):R61-8. doi: 10.1093/hmg/ddr174. Epub 2011 Apr 25.
Results Reference
background
PubMed Identifier
21439876
Citation
Byrne BJ, Kishnani PS, Case LE, Merlini L, Muller-Felber W, Prasad S, van der Ploeg A. Pompe disease: design, methodology, and early findings from the Pompe Registry. Mol Genet Metab. 2011 May;103(1):1-11. doi: 10.1016/j.ymgme.2011.02.004. Epub 2011 Feb 11. Erratum In: Mol Genet Metab. 2011 Nov;104(3):424.
Results Reference
background
PubMed Identifier
21747768
Citation
Lee KZ, Qiu K, Sandhu MS, Elmallah MK, Falk DJ, Lane MA, Reier PJ, Byrne BJ, Fuller DD. Hypoglossal neuropathology and respiratory activity in pompe mice. Front Physiol. 2011 Jun 30;2:31. doi: 10.3389/fphys.2011.00031. eCollection 2011.
Results Reference
background
PubMed Identifier
9023877
Citation
Benowitz LI, Routtenberg A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 1997 Feb;20(2):84-91. doi: 10.1016/s0166-2236(96)10072-2.
Results Reference
background
PubMed Identifier
8737678
Citation
Kanazir S, Ruzdijic S, Vukosavic S, Ivkovic S, Milosevic A, Zecevic N, Rakic L. GAP-43 mRNA expression in early development of human nervous system. Brain Res Mol Brain Res. 1996 May;38(1):145-55. doi: 10.1016/0169-328x(96)00008-3.
Results Reference
background
PubMed Identifier
17952067
Citation
Vilchez D, Ros S, Cifuentes D, Pujadas L, Valles J, Garcia-Fojeda B, Criado-Garcia O, Fernandez-Sanchez E, Medrano-Fernandez I, Dominguez J, Garcia-Rocha M, Soriano E, Rodriguez de Cordoba S, Guinovart JJ. Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci. 2007 Nov;10(11):1407-13. doi: 10.1038/nn1998. Epub 2007 Oct 21.
Results Reference
background
PubMed Identifier
19474295
Citation
DeRuisseau LR, Fuller DD, Qiu K, DeRuisseau KC, Donnelly WH Jr, Mah C, Reier PJ, Byrne BJ. Neural deficits contribute to respiratory insufficiency in Pompe disease. Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9419-24. doi: 10.1073/pnas.0902534106. Epub 2009 May 27.
Results Reference
background
PubMed Identifier
19098898
Citation
Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol. 2009 Jan;27(1):59-65. doi: 10.1038/nbt.1515. Epub 2008 Dec 21.
Results Reference
background
PubMed Identifier
20163245
Citation
Weinstein DA, Correia CE, Conlon T, Specht A, Verstegen J, Onclin-Verstegen K, Campbell-Thompson M, Dhaliwal G, Mirian L, Cossette H, Falk DJ, Germain S, Clement N, Porvasnik S, Fiske L, Struck M, Ramirez HE, Jordan J, Andrutis K, Chou JY, Byrne BJ, Mah CS. Adeno-associated virus-mediated correction of a canine model of glycogen storage disease type Ia. Hum Gene Ther. 2010 Jul;21(7):903-10. doi: 10.1089/hum.2009.157.
Results Reference
background
PubMed Identifier
17245350
Citation
Mah C, Pacak CA, Cresawn KO, Deruisseau LR, Germain S, Lewis MA, Cloutier DA, Fuller DD, Byrne BJ. Physiological correction of Pompe disease by systemic delivery of adeno-associated virus serotype 1 vectors. Mol Ther. 2007 Mar;15(3):501-7. doi: 10.1038/sj.mt.6300100. Epub 2007 Jan 23.
Results Reference
background
PubMed Identifier
18854054
Citation
Pacak CA, Conlon T, Mah CS, Byrne BJ. Relative persistence of AAV serotype 1 vector genomes in dystrophic muscle. Genet Vaccines Ther. 2008 Oct 15;6:14. doi: 10.1186/1479-0556-6-14.
Results Reference
background
PubMed Identifier
16847078
Citation
Spencer CT, Bryant RM, Day J, Gonzalez IL, Colan SD, Thompson WR, Berthy J, Redfearn SP, Byrne BJ. Cardiac and clinical phenotype in Barth syndrome. Pediatrics. 2006 Aug;118(2):e337-46. doi: 10.1542/peds.2005-2667. Epub 2006 Jul 17.
Results Reference
background
PubMed Identifier
23570273
Citation
Smith BK, Collins SW, Conlon TJ, Mah CS, Lawson LA, Martin AD, Fuller DD, Cleaver BD, Clement N, Phillips D, Islam S, Dobjia N, Byrne BJ. Phase I/II trial of adeno-associated virus-mediated alpha-glucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: initial safety and ventilatory outcomes. Hum Gene Ther. 2013 Jun;24(6):630-40. doi: 10.1089/hum.2012.250.
Results Reference
background
PubMed Identifier
27453480
Citation
Smith BK, Martin AD, Lawson LA, Vernot V, Marcus J, Islam S, Shafi N, Corti M, Collins SW, Byrne BJ. Inspiratory muscle conditioning exercise and diaphragm gene therapy in Pompe disease: Clinical evidence of respiratory plasticity. Exp Neurol. 2017 Jan;287(Pt 2):216-224. doi: 10.1016/j.expneurol.2016.07.013. Epub 2016 Jul 21.
Results Reference
background
PubMed Identifier
25541616
Citation
Corti M, Elder M, Falk D, Lawson L, Smith B, Nayak S, Conlon T, Clement N, Erger K, Lavassani E, Green M, Doerfler P, Herzog R, Byrne B. B-Cell Depletion is Protective Against Anti-AAV Capsid Immune Response: A Human Subject Case Study. Mol Ther Methods Clin Dev. 2014;1:14033-. doi: 10.1038/mtm.2014.33.
Results Reference
background
PubMed Identifier
22149959
Citation
Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC, Chowdary P, Riddell A, Pie AJ, Harrington C, O'Beirne J, Smith K, Pasi J, Glader B, Rustagi P, Ng CY, Kay MA, Zhou J, Spence Y, Morton CL, Allay J, Coleman J, Sleep S, Cunningham JM, Srivastava D, Basner-Tschakarjan E, Mingozzi F, High KA, Gray JT, Reiss UM, Nienhuis AW, Davidoff AM. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med. 2011 Dec 22;365(25):2357-65. doi: 10.1056/NEJMoa1108046. Epub 2011 Dec 10.
Results Reference
background
PubMed Identifier
26390092
Citation
Corti M, Cleaver B, Clement N, Conlon TJ, Faris KJ, Wang G, Benson J, Tarantal AF, Fuller D, Herzog RW, Byrne BJ. Evaluation of Readministration of a Recombinant Adeno-Associated Virus Vector Expressing Acid Alpha-Glucosidase in Pompe Disease: Preclinical to Clinical Planning. Hum Gene Ther Clin Dev. 2015 Sep;26(3):185-93. doi: 10.1089/humc.2015.068.
Results Reference
background
PubMed Identifier
11360262
Citation
Escolar DM, Henricson EK, Mayhew J, Florence J, Leshner R, Patel KM, Clemens PR. Clinical evaluator reliability for quantitative and manual muscle testing measures of strength in children. Muscle Nerve. 2001 Jun;24(6):787-93. doi: 10.1002/mus.1070.
Results Reference
background
PubMed Identifier
16122966
Citation
Barker S, Craik R, Freedman W, Herrmann N, Hillstrom H. Accuracy, reliability, and validity of a spatiotemporal gait analysis system. Med Eng Phys. 2006 Jun;28(5):460-7. doi: 10.1016/j.medengphy.2005.07.017. Epub 2005 Aug 24.
Results Reference
background
PubMed Identifier
16413189
Citation
Barker SP, Freedman W, Hillstrom H. A novel method of producing a repetitive dynamic signal to examine reliability and validity of gait analysis systems. Gait Posture. 2006 Dec;24(4):448-52. doi: 10.1016/j.gaitpost.2005.09.008. Epub 2006 Jan 18.
Results Reference
background
PubMed Identifier
12921791
Citation
Wary C, Laforet P, Eymard B, Fardeau M, Leroy-Willig A, Bassez G, Leroy JP, Caillaud C, Poenaru L, Carlier PG. Evaluation of muscle glycogen content by 13C NMR spectroscopy in adult-onset acid maltase deficiency. Neuromuscul Disord. 2003 Sep;13(7-8):545-53. doi: 10.1016/s0960-8966(03)00069-5.
Results Reference
background
PubMed Identifier
15538561
Citation
Marden FA, Connolly AM, Siegel MJ, Rubin DA. Compositional analysis of muscle in boys with Duchenne muscular dystrophy using MR imaging. Skeletal Radiol. 2005 Mar;34(3):140-8. doi: 10.1007/s00256-004-0825-3. Epub 2004 Oct 22.
Results Reference
background
PubMed Identifier
4852173
Citation
Harris RC, Hultman E, Nordesjo LO. Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand J Clin Lab Invest. 1974 Apr;33(2):109-20. No abstract available.
Results Reference
background
PubMed Identifier
16427317
Citation
Clark BC, Cook SB, Ploutz-Snyder LL. Reliability of techniques to assess human neuromuscular function in vivo. J Electromyogr Kinesiol. 2007 Feb;17(1):90-101. doi: 10.1016/j.jelekin.2005.11.008. Epub 2006 Jan 19.
Results Reference
background
PubMed Identifier
9219884
Citation
Stalberg E, Trontelj JV. The study of normal and abnormal neuromuscular transmission with single fibre electromyography. J Neurosci Methods. 1997 Jun 27;74(2):145-54. doi: 10.1016/s0165-0270(97)02245-0.
Results Reference
background

Learn more about this trial

Re-administration of Intramuscular AAV9 in Patients With Late-Onset Pompe Disease

We'll reach out to this number within 24 hrs