Venetoclax and Azacitidine for the Treatment of Acute Myeloid Leukemia in the Post-Transplant Setting...
Acute Bilineal LeukemiaAcute Biphenotypic Leukemia4 moreThis phase II trial studies how well venetoclax and azacitidine work for the treatment of acute myeloid leukemia after stem cell transplantation. Venetoclax may stop the growth of cancer cells by blocking BCL-2, a protein needed for cancer cell survival. Chemotherapy drugs, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving venetoclax and azacitidine after a stem cell transplant may help control high risk leukemia and prevent it from coming back after the transplant.
First in Human Study of Ziftomenib in Relapsed or Refractory Acute Myeloid Leukemia
Advanced Malignant NeoplasmAcute Myeloid Leukemia4 moreThis first-in-human (FIH) dose-escalation and dose-validation/expansion study will assess ziftomenib, a menin-MLL(KMT2A) inhibitor, in patients with relapsed or refractory acute myeloid leukemia (AML) as part of Phase 1. In Phase 2, assessment of ziftomenib will continue in patients with NPM1-m AML.
Fludarabine, Cytarabine, and Pegcrisantaspase for the Treament of Relapsed or Refractory Leukemia...
Blast Phase Chronic Myelogenous LeukemiaBCR-ABL1 Positive12 moreThis phase Ib trial investigates the side effects and best dose of pegcrisantaspase when given together with fludarabine and cytarabine for the treatment of patients with leukemia that has come back (relapsed) or has not responded to treatment (refractory). Pegcrisantaspase may block the growth of cancer cells. Chemotherapy drugs, such as fludarabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pegcrisantaspase in combination with fludarabine and cytarabine may work better in treating patients with leukemia compared to the combination of fludarabine and cytarabine.
Allo HSCT Using RIC and PTCy for Hematological Diseases
Acute Myelogenous LeukemiaAcute Lymphocytic Leukemia17 moreThis is a Phase II study following subjects proceeding with our Institutional non-myeloablative cyclophosphamide/ fludarabine/total body irradiation (TBI) preparative regimen followed by a related, unrelated, or partially matched family donor stem cell infusion using post-transplant cyclophosphamide (PTCy), sirolimus and MMF GVHD prophylaxis.
Personalized NK Cell Therapy in CBT
Accelerated Phase Chronic Myelogenous LeukemiaBCR-ABL1 Positive26 moreThis phase II clinical trial studies how well personalized natural killer (NK) cell therapy works after chemotherapy and umbilical cord blood transplant in treating patients with myelodysplastic syndrome, leukemia, lymphoma or multiple myeloma. This clinical trial will test cord blood (CB) selection for human leukocyte antigen (HLA)-C1/x recipients based on HLA-killer-cell immunoglobulin-like receptor (KIR) typing, and adoptive therapy with CB-derived NK cells for HLA-C2/C2 patients. Natural killer cells may kill tumor cells that remain in the body after chemotherapy treatment and lessen the risk of graft versus host disease after cord blood transplant.
Naive T Cell Depletion for Preventing Chronic Graft-versus-Host Disease in Children and Young Adults...
Acute Biphenotypic LeukemiaAcute Leukemia10 moreThis phase II trial studies how well naive T-cell depletion works in preventing chronic graft-versus-host disease in children and young adults with blood cancers undergoing donor stem cell transplant. Sometimes the transplanted white blood cells from a donor attack the body's normal tissues (called graft versus host disease). Removing a particular type of T cell (naive T cells) from the donor cells before the transplant may stop this from happening.
MCW Alpha/Beta T-Cell and B-Cell Depletion With Targeted ATG Dosing
LeukemiaAcute Myeloid Leukemia in Remission12 moreThis is a single arm pilot study for patients with hematologic malignancies receiving unrelated or haploidentical related mobilized peripheral stem cells (PSCs) using the CliniMACS system for alpha/beta T cell depletion plus CD19+ B cell depletion with individualized ALC-based dosing of ATG to study impact on engraftment, GVHD, and disease free survival
Preventing of GVHD With Post-transplantation Cyclophosphamide, Abatacept, Vedolizumab and Calcineurin...
Acute Lymphoblastic LeukemiaMyeloblastic Leukemia4 moreGVHD prevention using a combination of post-transplantation cyclophosphamide in combination with abatacept, vedolizumab and calcineurin inhibitor in children and young adults with hematoloblastosis after myeloablative conditioning regimen with treosulfan/TBI, cyclophosphamide/etoposide, fludarabine after HSCT from matched unrelated and haploidentical donors
Genetically Modified T-cell Immunotherapy in Treating Patients With Relapsed/Refractory Acute Myeloid...
Adult Acute Myeloid Leukemia in RemissionAcute Biphenotypic Leukemia11 moreThis phase I trial studies the side effects and the best dose of genetically modified T-cells after lymphodepleting chemotherapy in treating patients with acute myeloid leukemia or blastic plasmacytoid dendritic cell neoplasm that has returned after a period of improvement or has not responded to previous treatment. An immune cell is a type of blood cell that can recognize and kill abnormal cells in the body. The immune cell product will be made from patient or patient's donor (related or unrelated) blood cells. The immune cells are changed by inserting additional pieces of deoxyribonucleic acid (DNA) (genetic material) into the cell to make it recognize and kill cancer cells. Placing a modified gene into white blood cells may help the body build an immune response to kill cancer cells.
Selective Depletion of CD45RA+ T Cells From Allogeneic Peripheral Blood Stem Cell Grafts From HLA-Matched...
Accelerated Phase Chronic Myelogenous LeukemiaBCR-ABL1 Positive24 moreThis phase II trial is for patients with acute lymphocytic leukemia, acute myeloid leukemia, myelodysplastic syndrome or chronic myeloid leukemia who have been referred for a peripheral blood stem cell transplantation to treat their cancer. In these transplants, chemotherapy and total-body radiotherapy ('conditioning') are used to kill residual leukemia cells and the patient's normal blood cells, especially immune cells that could reject the donor cells. Following the chemo/radiotherapy, blood stem cells from the donor are infused. These stem cells will grow and eventually replace the patient's original blood system, including red cells that carry oxygen to our tissues, platelets that stop bleeding from damaged vessels, and multiple types of immune-system white blood cells that fight infections. Mature donor immune cells, especially a type of immune cell called T lymphocytes (or T cells) are transferred along with these blood-forming stem cells. T cells are a major part of the curative power of transplantation because they can attack leukemia cells that have survived the chemo/radiation therapy and also help to fight infections after transplantation. However, donor T cells can also attack a patient's healthy tissues in an often-dangerous condition known as Graft-Versus-Host-Disease (GVHD). Drugs that suppress immune cells are used to decrease the severity of GVHD; however, they are incompletely effective and prolonged immunosuppression used to prevent and treat GVHD significantly increases the risk of serious infections. Removing all donor T cells from the transplant graft can prevent GVHD, but doing so also profoundly delays infection-fighting immune reconstitution and eliminates the possibility that donor immune cells will kill residual leukemia cells. Work in animal models found that depleting a type of T cell, called naïve T cells or T cells that have never responded to an infection, can diminish GVHD while at least in part preserving some of the benefits of donor T cells including resistance to infection and the ability to kill leukemia cells. This clinical trial studies how well the selective removal of naïve T cells works in preventing GVHD after peripheral blood stem cell transplants. This study will include patients conditioned with high or medium intensity chemo/radiotherapy who can receive donor grafts from related or unrelated donors.