Personalized Brain Stimulation to Treat Chronic Concussive Symptoms
Post-Concussion SyndromeConcussion11 moreThe goal of this study is to investigate a new treatment for chronic symptoms after concussion or mild traumatic brain injury in people aged 18-65 years old. Chronic symptoms could include dizziness, headache, fatigue, brain fog, memory difficulty, sleep disruption, irritability, or anxiety that occurred or worsened after the injury. These symptoms can interfere with daily functioning, causing difficulty returning to physical activity, work, or school. Previous concussion therapies have not been personalized nor involved direct treatments to the brain itself. The treatment being tested in the present study is a noninvasive, personalized form of brain stimulation, called transcranial magnetic stimulation (TMS). The investigators intend to answer the questions: Does personalized TMS improve brain connectivity after concussion? Does personalized TMS improve avoidance behaviors and chronic concussive symptoms? Do the improvements last up to 2 months post-treatment? Are there predictors of treatment response, or who might respond the best? Participants will undergo 14 total visits to University of California Los Angeles (UCLA): One for the baseline symptom assessments and magnetic resonance imaging (MRI) Ten for TMS administration Three for post-treatment symptom assessments and MRIs Participants will have a 66% chance of being assigned to an active TMS group and 33% chance of being assigned to a sham, or inactive, TMS group. The difference is that the active TMS is more likely to cause functional changes in the brain than the inactive TMS.
Use of Virtual and Augmented Reality Devices in Vestibular Physical Therapy for mTBI
MTBI - Mild Traumatic Brain InjuryDysfunction of Vestibular SystemRapidly evolving virtual reality (VR) and augmented reality (AR) technologies are being incorporated by many large-scale industries, and the medical field is no exception. One area that has gained significant attention in recent years is virtual rehabilitation which allows physical therapists to leverage state-of-the-art immersive virtual environments to uniquely address functional deficits in patients who are unresponsive to conventional treatment techniques. Advanced VR and AR technologies are now available in commercially available small-scale, mobile head-mounted displays which can be readily used in outpatient clinic settings and possibly at home. The aim of this study is to determine whether advanced VR- and AR-based physical therapy improves functional status and reduces self-reported symptoms in individuals experiencing vestibular disorders secondary to mild traumatic brain injury (mTBI). Study participants will be randomized into treatment groups: 1) conventional therapy, 2) therapy performed using a large-scale VR system (the Computer Assisted Rehabilitation Environment or CAREN), 3) therapy performed using a mobile AR. Upon completion of treatment, groups will be compared to determine functional outcome improvements with respect to static and dynamic balance as well as reduction of vestibular symptoms.
GetUp&Go: A Randomized Controlled Trial of an Intervention to Enhance Physical Activity After TBI...
Traumatic Brain InjuryThe goal of this clinical trial is to evaluate GetUp&Go, a program for promoting increased physical activity in individuals at least 6 months post moderate-to-severe traumatic brain injury. GetUp&Go is a remotely delivered 10-week program that includes one-on-one sessions with a therapist and a mobile health application (RehaBot). The main question is whether participants in the 10-week GetUp&Go program increase their physical activity, and exhibit associated benefits in mental and physical health, relative to those who are put on a waitlist. Question 1: Do participants who receive immediate treatment with GetUp&Go show more increased physical activity, measured by accelerometer activity counts per day, and improve more on secondary outcomes, such as self-reported physical activity, emotional function, fatigue, sleep, pain, and health-related quality of life, compared to their baseline, relative to those who are put on a waitlist? Question 2: Do participants who have continued access to the mobile health component of the intervention, RehaBot, show better maintenance of physical activity gains compared to those who no longer have access to RehaBot? Question 3: Are individual participant characteristics associated with participants' response to the treatment program?
Advancing Understanding of Transportation Options
Diabetic RetinopathyMacular Degeneration30 moreThis Stage II randomized, controlled, longitudinal trial seeks to assess the acceptability, feasibility, and effects of a driving decision aid use among geriatric patients and providers. This multi-site trial will (1) test the driving decision aid (DDA) in improving decision making and quality (knowledge, decision conflict, values concordance and behavior intent); and (2) determine its effects on specific subpopulations of older drivers (stratified for cognitive function, decisional capacity, and attitudinally readiness for a mobility transition). The overarching hypotheses are that the DDA will help older adults make high-quality decisions, which will mitigate the negative psychosocial impacts of driving reduction, and that optimal DDA use will target certain populations and settings.
Group Lifestyle Balance™ for Individuals With Traumatic Brain Injury (GLB-TBI)
Traumatic Brain InjuryThe purpose of this RCT is to examine the efficacy of a Group Lifestyle Balance™ (GLB) program adapted for people with traumatic brain injury (TBI) on primary (weight) and secondary outcomes at 3, 6, 12, and 18 months from enrollment into the program.
Movement-2-Music: Lakeshore Examination of Activity, Disability, and Exercise Response Study
Spinal Cord InjuriesTraumatic Brain Injury5 moreThe purpose of this study is to test the effects of an innovative exercise program referred to as movement-2-music (M2M) on health and fitness outcomes in adults with physical/mobility disabilities. One hundred and eight participants with physical/mobility disabilities will be recruited and randomly enrolled into one of two groups: a) M2M or b) waitlist control. The primary aim of this study is to determine the effects of a 12-week M2M program on health and fitness in participants with physical/mobility disabilities who are in one of three functional mobility groups: 1) Group I - only able to exercise while sitting, 2) Group II - able to exercise sitting and standing with/without support, and 3) Group III - able to exercise one side of the body more than the other side. The second aim is to compare the observed effects of the program in this study to a previous M2M study that groups participants based on disability type. The third aim of this study is to test whether adherence (defined as attendance to the 12-week program) affects the effects of M2M in participants with physical/mobility disabilities. The potential influences of different functional mobility and disabilities of participants on how the program affects participants' health and fitness outcomes will also be tested. **In response to COVID-19, the 12-week M2M intervention and all assessments have been modified from being delivered in-person at Lakeshore Foundation to being delivered remotely in real-time through videoconferencing technology.**
The Aging Brain ANSWERS Program
Traumatic Brain InjuryAlzheimer Disease4 moreThis study will test the effectiveness of an intervention for Veterans diagnosed with Alzheimer's Disease (AD) or Traumatic Brain Injury (TBI) and the burden on their informal (family/friend) caregiver.
An Innovative Supportive Care Model for Dementia and Traumatic Brain Injury
DementiaMixed4 moreThere are an increasing number of people in the U.S. with Alzheimer's disease and other dementias. Traumatic brain injuries (TBIs) are also common among both civilians and military personnel, and TBIs increase a person's risk for dementia. Providing care for a person with dementia is stressful. Dementia caregivers can experience difficulties including stress, depression, and reduced quality of life. Coordinated dementia care is known to benefit people with dementia and their caregivers. However, many caregivers do not have access to these supportive programs. Our project studies the benefits of telehealth as a new way for caregivers to receive coordinated dementia care services. We will offer 75 caregivers a 12-month caregiver support program delivered using telehealth (for example phones, tablets, computers). Caregivers of both Alzheimer's disease and TBI-related dementia will be included, and the program will be evaluated for effectiveness in both groups as well as in a control group. The information from our study will help improve quality of life for caregivers and individuals with dementia, including military members and Veterans. Our results will also help both civilian and military health professionals develop effective programs to support families living with dementia. Policy makers and organizational leaders can use the information to fund programs that best help families and communities facing dementia and TBI dementia.
Imaging of Traumatic Brain Injury Metabolism Using Hyperpolarized Carbon-13 Pyruvate
Traumatic Brain InjuryThis project is to evaluate sensitivity and specificity of hyperpolarized 13C-pyruvate as imaging agents of altered cerebral glycolysis and mitochondrial dysfunction and assess pyruvate utilization in mitochondria in Traumatic Brain Injury (TBI) patients.
An MRI Ancillary Study of a Malaria Fever Investigation
Brain InjuriesMalaria4 moreThis study will seek consent from parents of children enrolled in the Malaria FEVER study to obtain neuroimaging and 12-month neuropsychiatric outcomes data and kidney function on their child. The imaging and evaluations for this observational study will occur after the child has recovered from the acute malaria infection and has otherwise completed the RCT intervention and safety evaluations.