Construction of Early Warning Model for Pulmonary Complications Risk of Surgical Patients Based...
Pulmonary EmbolismRespiratory Failure2 moreThe goal of this observational study is to establish an intelligent early warning system for acute and critical complications of the respiratory system such as pulmonary embolism and respiratory failure. Based on the electronic case database of the biomedical big data research center and the clinical real-world vital signs big data collected by wearable devices, the hybrid model architecture with multi-channel gated circulation unit neural network and deep neural network as the core is adopted, Mining the time series trends of multiple vital signs and their linkage change characteristics, integrating the structural nursing observation, laboratory examination and other multimodal clinical information to establish a prediction model, so as to improve patient safety, and lay the foundation for the later establishment of a higher-level and more comprehensive artificial intelligence clinical nursing decision support system. Issues addressed in this study The big data of vital signs of patients collected in real-time by wearable devices were used to explore the internal relationship between the change trend of vital signs and postoperative complications (mainly including infection complications, respiratory failure, pulmonary embolism, cardiac arrest). Supplemented with necessary nursing observation, laboratory examination and other information, and use machine learning technology to build a prediction model of postoperative complications. Develop the prediction model into software to provide auxiliary decision support for clinical medical staff, and lay the foundation for the later establishment of a higher-level and more comprehensive AI clinical decision support system.
Extracellular Vesicles From Mesenchymal Cells in the Treatment of Acute Respiratory Failure
Severe Acute Respiratory Syndrome (SARS)Acute Respiratory Distress Syndrome (ARDS)1 moreThis is a phase I/II, randomized, double-blind, placebo-controlled clinical trial that will evaluate the safety and potential efficacy of therapy with extracellular vesicles (EVs) obtained from mesenchymal stromal cells (MSCs), patients with moderate to severe acute respiratory distress syndrome due to COVID-19 or other etiology. Participants will be allocated to receive EVs obtained from MSCs or placebo (equal volume of Plasma-Lyte A). Blinding will cover the participants, the multidisciplinary intensive care team and the investigators.
China Extracorporeal Life Support Registry
Cardiogenic ShockCardiac Arrest3 moreExtracorporeal life support (ECLS), also known as extracorporeal membrane oxygenation (ECMO), is an extracorporeal technique of providing effective cardiac and respiratory support to patients with lungs and/or heart failure. There was a growth in ECLS cases, centers, and center scale in China during the past decade. This multi-center registry was conducted by Chinese Society of Extracorporeal Life Support. The objectives were to investigate China statistics of ECLS and to evaluate the short-term and long-term outcomes of patients with ECLS.
Outcome of Patients Treated With ECLS
Cardiogenic ShockCardiac Arrest3 moreExtracorporeal life support (ECLS), also called extracorporeal membrane oxygenation (ECMO), is an extracorporeal technique of providing effective circulatory and (or) respiratory failure, with a growing number of critically ill patients benefit from it. The aim of this study is to investigate the outcome of patients treated With ECMO, and to evaluate the short-term and long-term outcomes of patients with ECLS.
Evaluation of the Therapeutic Usability of RESPIRA ADVANCED Device in Patients Under Invasive Mechanical...
Respiratory InsufficiencyThe objective of the clinical investigation presented is to guarantee the safety and usability of the RESPIRA ADVANCED medical device in patients undergoing mechanical ventilation in the ICU, both stable patients and in the weaning phase. Through the clinical investigation, the reliability and durability of the device, the adequacy of the ventilatory parameters and their consistency over time, and the response of the patients wills be checked. During the entire course of the patient's participation in the study, the patient will be closely monitored following the protocol specifications, to guarantee safety and evaluate the effectiveness of the device.
Implementation of Nudges to Promote Utilization of Low Tidal Volume Ventilation (INPUT) Study
ARDSCritical Illness2 moreThis study is a large pragmatic stepped-wedge trial of electronic health record (EHR)-based implementation strategies informed by behavioral economic principles to increase lung-protective ventilation (LPV) utilization among all mechanically ventilated (MV), adult patients. The study will compare the standard approach to managing MV across 12 study Intensive Care Units (ICUs) within University of Pennsylvania Health System (UPHS) versus interventions prompting physicians and respiratory therapists (RTs) to employ LPV settings promote LPV utilization among all MV patients.
Practice of Oxygenation and Respiratory Support During Fiberoptic Bronchoscopy
Acute Respiratory FailurePneumonia3 moreThe current practice of oxygenation and/or ventilation supports in patients undergoing Fiberoptic Bronchoscopy is very heterogeneous among studies published in the literature; in addition, clear outcomes advantages of one strategy over another currently lack. The goal of this observational study is to describe the current practice of oxygenation and/or ventilation supports in patients undergoing Fiberoptic Bronchoscopy (FOB), stratified by baseline respiratory condition, co-morbidities, type of procedure and hospital settings. Investigators will enroll all adult patients undergoing any fiberoptic bronchoscopy in any clinical settings (from outpatients to critically ill patients). No specific exclusion criteria are indicated for enrollment in this study. Investigators will record the following data: Patient's baseline data. Type of FOB procedure: toilet bronchoscopy (for secretions, blood, mucus plugs removal), broncho-aspirate (BAS), bronchoalveolar lavage (BAL), brushing for cytology, biopsy, endobronchial ultrasound (EBUS). The type and size of bronchoscope (with or without an internal/external camera) and the time of the procedure will be also recorded. Type of supportive strategy: no support, Standard Oxygen Therapy, High Flow Nasal Cannula, Continuous Positive Airway Pressure and or non invasive ventilation trough mask or helmet, invasive mechanical ventilation. Sedation Intra-procedural vital parameters Occurrence of adverse events: desaturation (i.e. SpO2< 90% for at least 10 seconds), severe desaturation (i.e. SpO2< 80%), need for procedure interruption, hypotensive (systolic blood pressure <90 mmHg) or hypertensive (systolic blood pressure >140 mmHg) events, new onset of cardiac arrhythmias (specify the rhythm) or myocardial ischemia or electrocardiographic ST-alterations, neurological events (i.e. severe sensorium depression, psychomotor agitation). Post-procedural vital parameters (15 minutes after the procedure). Clinical outcomes: need for support escalation, need for admission to ward (for outpatient) or ICU (for outpatients and ward-admitted patient).
Improvement of Pulmonary Insufficiency After Aortic Dissection With Sivelestat Sodium
Aortic DissectionAcute Lung Injury/Acute Respiratory Distress Syndrome (ARDS)Aortic dissection (AD) is one of the most dangerous cardiovascular emergencies, with rapid onset, rapid progression, high fatality rate, and a variety of life-threatening complications. Acute lung injury (ALI) caused by AD is an important cause of many adverse outcomes. Studies have confirmed that 34.9% to 53.8% of AAD patients have ALI before surgery, and Impaired preoperative lung function may lead to worse oxygenation after AD surgery. The pathophysiological mechanism of AD-induced ALI is complex. A variety of preoperative and intraoperative risk factors can induce or aggravate ALI, such as ischemia-reperfusion injury, deep hypothermic circulatory arrest, and inflammatory reactions. At present, the clinical use of improved surgery, cardiopulmonary bypass perfusion, early anti-inflammatory treatment, and protective lung ventilation can reduce and improve perioperative ALI to a certain extent, but it is still not ideal. In recent years, inhibition of neutrophil activation and aggregation, and reduction of neutrophil elastase activity as targets for the treatment of inflammatory injury have also become an important clinical treatment measure, in order to further reduce the body's inflammatory response to improve and alleviate ALI. Sivelestat sodium, as a neutrophil elastase inhibitor, is the only approved therapeutic drug for ALI/ acute respiratory distress syndrome (ARDS) in the world. It is precisely by reducing the inflammatory infiltration of neutrophils and inhibiting neutrophil elastase activity, thereby exerting a certain protective effect on the lungs. The study takes patients with AD surgery as the research object. On the basis of not terminating and changing the original treatment plans, sivelestat sodium was added in the perioperative period to observe the incidence, and severity of ALI/ARDS in the perioperative period. It aims to explore the efficacy and safety of sivelestat sodium in the treatment of pulmonary insufficiency after AD arch surgery under hypothermic circulatory arrest.
Outcomes of RV Dysfunction in Acute Exacerbation of Chronic Respiratory Diseases
Acute Exacerbation of COPDAcute Exacerbation of Bronchiectasis5 moreObservational study in patients with chronic respiratory diseases (chronic obstructive pulmonary diseases, bronchiectasis, interstitial lung diseases, neuromuscular diseases, obesity-hypoventilation syndrome...) admitted in intensive care unit for acute respiratory failure. The main objective is to determine the prevalence of right ventricular (RV) dysfunction in this population and to analyze the impact of such a complication on outcomes (survival at day-28, duration of non-invasive or mechanical ventilation, duration of hospital stay). RV function will be assessed by echocardiography at admission, after 3 days and at discharge. Plasma NT-proBNP and troponin levels will be collected.
Ventilator-associated Injury (VAI) in Chronic Home Mechanical Ventilation
Respiratory FailureLong-term Non-invasive VentilationRationale: The pathophysiological changes in respiratory muscle morphology and functioning in patients with end-stage pulmonary disease are not very well known. Furthermore, in COPD, long-term high-intensity NIV is applied without knowing the exact consequences on the lungs and respiratory muscles. Objective: The aims of the study are to get insight in: A. changes respiratory muscles in end-stage respiratory disease, comparing COPD with restrictive lung disease (RLD) due to pulmonary fibrosis B. the effects of long-term HI-NIV in severe COPD patients on the respiratory muscles and the lungs; by comparing COPD patients that had been treated with long-term NIV to COPD patients that were not treated with long-term NIV. Study design: In order to investigate this, the investigators will include in a small pilot cohort study patients being lung transplanted. In these patients there is lung tissue available and respiratory muscle biopsies will be performed during lung-transplant surgery. Study population: Patients that are listed for lung transplantation for an underlying diagnosis of COPD or RLD will be asked to participate. Three groups will be included: patients with a RLD due to pulmonary fibrosis, COPD patients that had been treated with long-term NIV prior to being lung transplanted and COPD patients that were not treated with long-term NIV. Patients will be included definitely once being lung transplanted. Main study parameters/endpoints: The study is an exploratory pilot study. Both contractile strength and the structure of single diaphragm and intercostal muscle fibres as well as lung injury; i.e. alveolar structure and damage and inflammation in the alveoli, will be investigated.