search

Active clinical trials for "Acute Lung Injury"

Results 111-120 of 969

Mesenchymal Stem Cells for The Treatment of Acute Respiratory Distress Syndrome (ARDS)

Acute Respiratory Distress Syndrome

The clinical study with UMC119-06 is designed to investigate the safety in patients with moderate acute respiratory distress syndrome ("ARDS"). This will be a dose escalation, open-label, single-center study in adult with ARDS. UMC119-06 is ex vivo cultured human umbilical cord derived mensenchymal stem cells (hUC-MSCs) product which is intended for treatment of ARDS.

Not yet recruiting32 enrollment criteria

The Use of Exosomes for the Treatment of Acute Respiratory Distress Syndrome or Novel Coronavirus...

Covid19Novel Coronavirus Pneumonia1 more

Novel coronavirus pneumonia (NCP) and acute respiratory distress syndrome (ARDS) are both associated with the prevailing upper respiratory tract infections caused by the RNA-containing SARS-CoV2 virus of the genius Betacoronavirus of the Coronaviridae family. As both the viral infiltration and infection progress, the host immune system response can be one of a rapidly developing fatal cytokine storm. In the ARDS or NCP ensuing progression, the patient often succumbs to the effects of the hyper pro-inflammatory response, hence contributing to the associated increased mortality as a result of the cytokine storm and associated pathogenesis.

Not yet recruiting17 enrollment criteria

The ARCTIC Trial: Aerosolized Inhaled Adenosine Treatment in Patients With Acute Respiratory Distress...

Acute Respiratory Distress

This is a phase II study to test adenosine efficacy for down-regulation of the overwhelming inflammation of COVID-19 in the lungs as reflected by clinical recovery of lung function; resolution of clinically relevant markers of lung function, and resolution of systemic markers of inflammation and coagulation.

Not yet recruiting12 enrollment criteria

Early Versus Late Initiation of ECMO (Extracorporal Membrane Oxygenation) Trial (ELIEO-Trial)

Acute Respiratory Distress Syndrome

This trial is a prospective randomized multicenter trial that assigns patients to either a treatment for Acute Respiratory Distress Syndrome (ARDS) with an Extracorporal Membrane Oxygenation (ECMO) immediately after admission to the intensive care unit or conservative treatment. The later can undergo ECMO following failure of conservative therapy as a rescue therapy. Patients will be included within 96h of the onset of symptoms of ARDS and will be randomized according to standard procedure. Follow-up will be performed until hospital discharge.

Not yet recruiting8 enrollment criteria

Efficacy of Canrenone as add-on Treatment in Moderate to Severe ARDS in COVID-19

COVID-19 Acute Respiratory Distress Syndrome

The main aim of the study is to estimate the potential efficacy of i.v. canrenone as add-on therapy on maximal medical treatment versus maximal medical treatment alone in treating moderate-to-severe ARDS due to SARS-CoV-2.

Not yet recruiting18 enrollment criteria

Mitochondrial Dysfunction of Alveolar and Circulating Immune Cells During Acute Respiratory Distress...

Lung DiseasesMechanical Ventilation1 more

Sepsis leads to a deregulated host response that can lead to organ failure. During sepsis, experimental and clinical data suggest the occurrence of mitochondrial dysfunctions, particularly in circulating muscle and monocytes, which may contribute to organ failure and death. Lower respiratory infection is the leading cause of death from infectious causes. Mechanical ventilation (MV) is required in 20% of cases of bacterial pneumopathy with Streptococcus pneumoniae (S.p.) , with mortality reaching 50%. There are then frequently criteria for acute respiratory distress syndrome (ARDS), combining bilateral lung involvement and marked hypoxemia. Cyclic stretching of lung cells induced by MV causes sterile inflammation and tissue damage (i.e. ventilator-induced lung injury [VILI]), which can cause cellular dysfunction that alter the immune response, particularly during ARDS. This is why the application of a so-called protective MV is then required. However, this does not prevent about one-third of patients from showing signs of alveolar overdistension, as evidenced by an increase in motor pressure (MP) (MP≥ 15 cmH2O), associated with an increase in mortality. The deleterious effects of MV could be explained by the occurrence of mitochondrial abnormalities. Indeed, the cyclic stretching of lung cells leads to dysfunction in the respiratory chain and the production of free oxygen radicals (FOS), altering membrane permeability. These phenomena could promote VILI, facilitate the translocation of bacteria from the lung to the systemic compartment and lead to alterations in immune response. In our model of S.p. pneumopathy in rabbits, animals on MV develop more severe lung disorders (lack of pulmonary clearance of bacteria, bacterial translocation in the blood, excess mortality), compared to animals on spontaneous ventilation (SV). Intracellular pulmonary mitochondrial DNA (mtDNA) concentrations, a reflection of the mitochondrial pool, are significantly decreased in ventilated rabbits compared to SV rabbits and in infected rabbits compared to uninfected rabbits. At the same time, the mitochondrial content of circulating cells decreased early (H8) in all infected rabbits, but was only restored in rabbits in SV, those who survived pneumonia (Blot et al, poster ECCMID 2015, submitted article). These data suggest an alteration in the mechanisms that restore mitochondrial homeostasis (mitochondrial biogenesis and mitophagy) during the dual infection/MV agression, which may explain the observed excess mortality. Other work by our team illustrates the importance of these phenomena by showing in a mouse model of polymicrobial infection that inhibition of mitophagia in macrophages promotes survival (Patoli et al, in preparation). Human data on this subject are non-existent. The phenomena of mitochondrial dysfunction nevertheless deserve to be explored in humans during the combined MV/pneumopathy aggression in order to understand its possible impact on the effectiveness of the host's immune response. In a personalized medicine approach, these data would open up prospects for targeted therapies, capable of activating mitochondrial biogenesis and/or modulating mitophagia, to prevent organ dysfunction and mortality during severe CALs treated with antibiotic therapy.

Recruiting23 enrollment criteria

Paramedical Protocol for Ventilation in Acute Respiratory Distress Syndrome

Acute Respiratory Distress Syndrome

Acute respiratory distress syndrome (ARDS) is a frequent pathology in intensive care (around 10% of patients admitted to intensive care and almost a quarter of patients on mechanical ventilation) and a serious one, with a hospital mortality rate of 40%. The main measures that have an effect on mortality in ARDS involve adjustments to the ventilator, known as protective ventilation. In the most severe patients, adjuvant measures such as prone positioning and the use of curarisation in the initial phase of the disease can improve survival. All these measures have been included in the latest national and international recommendations. However, a vast observational study carried out in 50 countries revealed low compliance with these recommendations. More than a third of patients did not receive protective ventilation, and the majority did not receive prone positioning when this was indicated. During weaning from artificial ventilation, it has been widely demonstrated that replacing clinician judgement with the implementation of paramedical care protocols improved weaning and significantly reduced the duration of artificial ventilation. Therefore, investigators hypothesize that the implementation of a paramedical care protocol for ventilation in the acute phase of ARDS improves compliance with recommendations and thus reduces mortality and the duration of artificial ventilation. However, implementation of such a protocol requires operational training for all the nurses in the participating departments. Simulation appears to be the training method of choice, as it is a teaching technique that enables technical and non-technical skills to be passed on with good retention of what has been learnt, as well as assessing what has been learnt. To make it possible to train several dozen nurses within a tight timescale, a partially dematerialized simulation model incorporating innovative e-learning tools will be developed.

Not yet recruiting20 enrollment criteria

The ICU LIBERATION Study

Acute Respiratory Distress SyndromePost Intensive Care Syndrome2 more

Acute respiratory distress syndrome (ARDS) is a condition associated with hypoxemia due to noncardiogenic causes and results in high mortality. However, the epidemiology and treatment strategy for ARDS may have changed significantly due to the accumulation of a large body of knowledge, following the two-year pandemic of the novel coronavirus (SARS-CoV-2) of which the primary manifestation is ARDS. To improve the quality of ICU care that patients receive after admission to the ICU, a variety of academic societies, including the Japanese Society of Intensive Care Medicine and the Society of Critical Care Medicine, are currently developing evidence-based guidelines and consensus guidelines and statements regarding ABCDEF bundles, nutritional therapy, ICU diary. The ABCDEF bundle, nutritional therapy, and ICU diary have been developed and are being promoted for implementation in hospitals around the world. The implementation of evidence-based ICU care is strongly recommended, especially for patients with acute respiratory distress syndrome who frequently require ventilators to maintain their lives, because their patient outcomes are worse than those who were admitted to ICU with other causes. However, there is still little evidence on how the quality of ICU care (compliance rate) correlates with patient prognosis and outcomes, and there are currently no clear goals or indicators for the ICU care we should develop. This study aims to investigate the epidemiology and treatments given to the patients and evaluate the implementation of evidence-based ICU care and its association with the outcomes of patients with acute respiratory distress syndrome admitted to the ICU. The contents of mechanical ventilation settings, respiratory conditions, and the evidence-based ICU care, such as analgesia, sedation, rehabilitation, and nutrition, given to the patients will be collected in a daily basis. Aim 1: Epidemiology Aim 2: Treatments Aim 3: Evidence-based ICU care Aim 4: ARDS related Post Intensive Care Syndrome

Recruiting7 enrollment criteria

Change in the Phase III Slope of the Volumetric Capnography by Prone Positioning in Acute Respiratory...

Acute Respiratory Distress SyndromeVentilation Perfusion Mismatch1 more

This study evaluates the effects of prone positioning on homogenization of ventilation.

Recruiting5 enrollment criteria

Study of Safety and Efficacy of ALT-100mAb in Participants With Moderate/Severe ARDS

Acute Respiratory Distress Syndrome (ARDS)

A Phase 2a, multi-center, randomized, double-blind, placebo-controlled study to assess the efficacy and safety of ALT-100mAb in patients with moderate to severe ARDS.

Not yet recruiting45 enrollment criteria
1...111213...97

Need Help? Contact our team!


We'll reach out to this number within 24 hrs