search

Active clinical trials for "Leukemia, Myeloid, Acute"

Results 81-90 of 2320

Clinical Research for Azacitidine Combined With Low-dose Dasatinib in Maintenance Therapy of Acute...

Acute Myeloid Leukemia

This project is a prospective, single-center study to evaluate the efficacy, safety and related mechanisms of azacitidine combined with low-dose dasatinib in maintenance therapy in patients with intermediate and high-risk acute myeloid leukemia(AML). The patients were randomly divided into azacitidine group and azacitidine combined with low-dose dasatinib group. The overall survival and disease-free survival were taken as the main end points, and the mortality and recurrence rate were taken as the secondary end points, meanwhile, the incidence of adverse events were evaluated. At the same time, the mRNA expressions of DNA methyltransferase (DNMT1, DNMT3a, DNMT3b), tumor suppressor genes (TP53, P15, P16, P21, CDH1, DOK6, SHP1, PTPN11) and differentiation genes (pu.1, C/EBP α, C/EBP β) were detected. Pyrophosphate sequencing was used to detect the methylation level of the promoter region of these tumor suppressor genes. Western Blot was used to detect apoptosis proteins (caspase3, caspase8) and phosphorylated proteins (pSTAT3, pSTAT5, pAKT). The proportion of apoptotic population of bone marrow cells was determined by flow cytometry. Therefore, the data in this study will reflect the efficacy and safety of azacitidine or azacitidine combined with low-dose dasatinib in real-world maintenance therapy in patients with medium and high-risk AML.

Recruiting15 enrollment criteria

GEN3014 Safety Trial in Relapsed or Refractory Hematologic Malignancies

Multiple Myeloma (MM)Diffuse Large B Cell Lymphoma (DLBCL)1 more

The drug that will be investigated in the study is an antibody, GEN3014. Since this is the first study of GEN3014 in humans, the main purpose is to evaluate safety. Besides safety, the study will determine the recommended GEN3014 dose to be tested in a larger group of participants and assess preliminary clinical activity of GEN3014. GEN3014 will be studied in relapsed or refractory multiple myeloma (also known as RRMM) and other blood cancers. The study consists of 3 parts: The Dose Escalation will test increasing doses of GEN3014 to find a safe dose level to be tested in the other two parts. Expansion Part A will further test the GEN3014 dose determined from the Dose Escalation Part. Expansion Part B will compare intravenous (IV) GEN3014 with the approved multiple myeloma drug, subcutaneous (SC) daratumumab. Participants in the US will not participate Expansion Part B. Participants will receive either investigational GEN3014 or daratumumab; none will be given placebo. The study duration will be different for the individual participants. Overall, the study may be ongoing up to 5 years after the last participant's first treatment.

Recruiting51 enrollment criteria

Study of Selinexor and Venetoclax in Combination With Chemotherapy in Pediatric and Young Adult...

Acute Leukemia of Ambiguous Lineage in RelapseAcute Myeloid Leukemia3 more

The purpose of this study is to test the safety and determine the best dose of venetoclax and selinexor when given with chemotherapy drugs in treating pediatric and young adult patients with acute myeloid leukemia (AML) or acute leukemia of ambiguous lineage (ALAL) that has come back (relapsed) or did not respond to treatment (refractory). Primary Objective To determine the safety and tolerability of selinexor and venetoclax in combination with chemotherapy in pediatric patients with relapsed or refractory AML or ALAL. Secondary Objectives Describe the rates of complete remission (CR) and complete remission with incomplete count recovery (CRi) for patients treated with selinexor and venetoclax in combination with chemotherapy at the recommended phase 2 dose (RP2D). Describe the overall survival of patients treated at the RP2D. Exploratory Objectives Explore associations between leukemia cell genomics, BCL2 family member protein quantification, BH3 profiling, and response to therapy as assessed by minimal residual disease (MRD) and variant clearance using cell-free deoxyribonucleic acid (DNA) (cfDNA). Describe the quality of life of pediatric patients undergoing treatment with selinexor and venetoclax in combination with chemotherapy and explore associations of clinical factors with patient-reported quality of life outcomes. Describe the clinical and genetic features associated with exceptional response to the combination of venetoclax and selinexor without the addition of chemotherapy.

Recruiting26 enrollment criteria

Phase III Study of Induction and Consolidation Chemotherapy With Venetoclax in Patients With Newly...

Acute Myeloid LeukemiaMyelodysplastic Syndromes

A Randomized, Placebo-Controlled Phase III Study of Induction and Consolidation Chemotherapy With Venetoclax in Adult Patients With Newly Diagnosed Acute Myeloid Leukemia or Myelodysplastic Syndrome With Excess Blasts-2

Recruiting60 enrollment criteria

Omacetaxine and Venetoclax for the Treatment of Relapsed or Refractory Acute Myeloid Leukemia or...

Hematopoietic and Lymphoid Cell NeoplasmRecurrent Acute Biphenotypic Leukemia5 more

This phase Ib/II trial best dose, possible benefits and/or side effects of omacetaxine and venetoclax in treating patients with acute myeloid leukemia or myelodysplastic syndrome that has come back (recurrent) or does not respond to treatment (refractory) and have a genetic change RUNX1. Drugs used in chemotherapy, such as omacetaxine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving omacetaxine and venetoclax may help to control the disease.

Recruiting19 enrollment criteria

Chimeric Antigen Receptor T-cells for The Treatment of AML Expressing CLL-1 Antigen

Acute Myeloid Leukemia

Patients eligible for this study have a type of blood cancer Acute Myeloid Leukemia (AML) which has come back or has not gone away after treatment. The body has different ways of fighting disease and infection, and this research study combines two different ways of fighting cancer with antibodies and T cells with the hope that they will work together. T cells (also called T lymphocytes) are special infection-fighting blood cells that can kill other cells including tumor cells. Antibodies are types of proteins that protect the body from bacterial and other infectious diseases. Both antibodies and T cells have been used to treat patients with cancers; they have shown promise, but have not been strong enough to cure most patients when used alone. T lymphocytes can kill tumor cells but there normally are not enough of them to kill all the tumor cells. Some researchers have taken T cells from a person's blood, grown more of them in the laboratory and then given them back to the person. The antibody used in this study targets CLL-1. This antibody sticks to AML cells because of a substance (protein) on the outside of these cells called CLL-1. For this study, the antibody to CLL-1 has been changed so that instead of floating free in the blood, it is now joined to the T cells. When T-cells contain an antibody that is joined to them, they are called chimeric antigen receptor T-cells or CAR-T cells. In the laboratory, the investigators have also found that T cells work better if proteins that stimulate T cells are also added, such as one called CD28. Adding the CD28 makes the cells grow better and last longer in the body, thus giving the cells a better chance of killing the leukemia or lymphoma cells. In this study we are going to attach the CLL-1 chimeric receptor that has CD28 added to it to the patient's T cells. We will then test how long the cells last. These CLL-1 chimeric antigen receptor T cells with CD28 are investigational products not approved by the Food and Drug Administration.

Recruiting44 enrollment criteria

A Phase Ib Study of APG-115 Single Agent or in Combination With Azacitidine or Cytarabine in Patients...

Acute Myeloid Leukemia (AML)Myelodysplastic Syndromes (MDS)

Acute myeloid leukemia is a malignant disorder characterized by the rapid, uncontrolled proliferation of malignant clonal hematopoietic stem cells that accumulate as immature, undifferentiated cells (blasts) in the bone marrow and circulation. APG-115 is a potent and orally active small-molecule MDM2 inhibitor, it binds to MDM2 protein and shows potent cell growth inhibitory activity in vitro with low nanomolar potencies in a subset of human cancer cell lines. APG-115 has demonstrated its strong antitumor activities with either daily or less frequent dosing-schedules in the acute leukemia xenograft models. This is a phase 1b, open-label, three-stages study that will initially evaluate the safety and PK/PD profile of APG-115 as a single agent, followed by a combination of APG-115 + azacytidine or cytarabine in R/R AML or MDS subjects. Patients will continue treatment for maximally 6 cycles or until progression of disease or unacceptable toxicity is observed or administrative discontinuation whichever occurs first. Patients who continue to be benefit after 6 cycles' treatment will receive additional cycles of treatment until progression of disease, unacceptable toxicity is observed or administrative discontinuation. (As long as it is proven safe).

Recruiting19 enrollment criteria

Study of Azacitidine Combined With Homoharringtonie Based Regimens in AML

Acute Myeloid Leukemia

Rencent years have witnessed great progress of the treatment of acute myeloid leukemia (AML). However, most patients have poor outcomes following the currently first-line DA(daunorubicin, cytarabine)/IA(Idarubicin, cytarabine) chemotherapy, espiecially for the older patients and those not eligiable for receiving allo-HSCT. Azacitidine (AZA),a hypomethylating agent, targets epigenetic gene silencing by inhibiting gene expression against malignant phenotypes and is currently approved to treat AML based on the NCCN guidelines. The homoharringtonie (HHT) could induce AML cell lines and primary myeloid leukemia cell apoptosis, and the effect was dose dependent. While, HHT could also induce leukemia cells to differentiate into normal state, eventually achieve the goal of treatment, and control the disease. The investigators conducted a clinical study to evaluate the efficacy and safety of the AZA plus HAG(homoharringtonie, cytarabine, G-CSF), HIA(homoharringtonie, Idarubicin, cytarabine)/HDA(homoharringtonie, daunorubicin, cytarabine). This study is aimed to demonstrate the efficacy and safety advantages of the regimens that cotain homoharringtonie and azacitidine.

Recruiting7 enrollment criteria

CPX-351 or CLAG-M Regimen for the Treatment of Acute Myeloid Leukemia or Other High-Grade Myeloid...

Acute Myeloid LeukemiaMyeloid Neoplasm

This phase II trial studies how well CPX-351 or the CLAG-M regimen (consisting of the drugs cladribine, cytarabine, G-CSF, and mitoxantrone) works in treating medically less-fit patients with acute myeloid leukemia or other high-grade myeloid neoplasms. Drugs used in chemotherapy, such as CPX-351, cladribine, cytarabine, G-CSF, and mitoxantrone, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving CPX-351 or the CLAG-M regimen at doses typically used for medically-fit patients with acute myeloid leukemia may work better than reduced doses of CPX-351 in treating medically less-fit patients with acute myeloid leukemia or other high-grade myeloid neoplasms.

Recruiting14 enrollment criteria

Study of MAX-40279 in Patients With Relapsed or Refractory Acute Myelogenous Leukemia (AML)

AML

This is a non-randomized, open-label, single-arm, dose-escalation Phase I study to evaluate the safety and tolerability of MAX-40279-01 in patients with Relapsed or Refractory AML.

Recruiting12 enrollment criteria
1...8910...232

Need Help? Contact our team!


We'll reach out to this number within 24 hrs