search

Active clinical trials for "Respiratory Distress Syndrome"

Results 161-170 of 1388

Long Term Follow up of Children Enrolled in the REDvent Study

Respiratory Distress SyndromeAdult4 more

This is a prospective observational follow-up study of children enrolled in a single center randomized controlled trial (REDvent). Nearly 50% of adult Acute Respiratory Distress Syndrome (ARDS) survivors are left with significant abnormalities in pulmonary, physical, neurocognitive function and Health Related Quality of Life (HRQL) which may persist for years.Data in pediatric ARDS (PARDS) survivors is limited. More importantly, there are no data identifying potentially modifiable factors during ICU care which are associated with long term impairments, which may include medication choices, or complications from mechanical ventilator (MV) management in the ICU including ventilator induced lung injury (VILI) or ventilator induced diaphragm dysfunction (VIDD). The Real-time effort driven ventilator (REDvent) trial is testing a ventialtor management algorithm which may prevent VIDD and VILI. VIDD and VILI have strong biologic plausibility to affect the post-ICU health of children with likely sustained effects on lung repair and muscle strength. Moreover, common medication choices (i.e. neuromuscular blockade, corticosteroids) or other complications in the ICU (i.e. delirium) are likely to have independent effects on the long term health of these children. This proposed study will obtain serial follow-up of subjects enrolled in REDvent (intervention and control patients). The central hypothesis is that preventing VIDD, VILI and shortening time on MV will have a measureable impact on longer term function by mitigating abnormalities in pulmonary function (PFTs), neurocognitive function and emotional health, functional status and HRQL after hospital discharge for children with PARDS. For all domains, the investigators will determine the frequency, severity and trajectory of recovery of abnormalities amongst PARDS survivors after ICU discharge, identify risk factors for their development, and determine if they are prevented by REDvent. They will leverage the detailed and study specific respiratory physiology data being obtained in REDvent, and use a variety of multi-variable models for comprehensive analysis. Completion of this study will enable the investigators to identify ICU related therapies associated with poor long term outcome, and determine whether they can be mitigated by REDvent.

Recruiting13 enrollment criteria

Alveolar Macrophage Programming Following Endotoxin Exposure

ARDSHuman

The histologic hallmarks of lung inflammation include accumulation of inflammatory cells in the airspaces and interstitium, injury to alveolar epithelial and endothelial cells, loss of epithelial-capillary integrity and accumulation of edema fluid in the interstitium and airspaces. Accordingly, for alveolar repair to occur inflammation must be halted, debris and inflammatory cells removed, injured tissue cells replaced, and capillary barrier function re-established. Macrophages are key players in all of these. Here the investigators hypothesize that resident alveolar macrophages and recruited macrophages serve completely different functions, acting independently (i.e. division of labor) yet cooperatively (synergism).

Recruiting12 enrollment criteria

Mesenchymal Stem Cells for The Treatment of Acute Respiratory Distress Syndrome (ARDS)

Acute Respiratory Distress Syndrome

The clinical study with UMC119-06 is designed to investigate the safety in patients with moderate acute respiratory distress syndrome ("ARDS"). This will be a dose escalation, open-label, single-center study in adult with ARDS. UMC119-06 is ex vivo cultured human umbilical cord derived mensenchymal stem cells (hUC-MSCs) product which is intended for treatment of ARDS.

Not yet recruiting32 enrollment criteria

The Use of Exosomes for the Treatment of Acute Respiratory Distress Syndrome or Novel Coronavirus...

Covid19Novel Coronavirus Pneumonia1 more

Novel coronavirus pneumonia (NCP) and acute respiratory distress syndrome (ARDS) are both associated with the prevailing upper respiratory tract infections caused by the RNA-containing SARS-CoV2 virus of the genius Betacoronavirus of the Coronaviridae family. As both the viral infiltration and infection progress, the host immune system response can be one of a rapidly developing fatal cytokine storm. In the ARDS or NCP ensuing progression, the patient often succumbs to the effects of the hyper pro-inflammatory response, hence contributing to the associated increased mortality as a result of the cytokine storm and associated pathogenesis.

Not yet recruiting17 enrollment criteria

The ARCTIC Trial: Aerosolized Inhaled Adenosine Treatment in Patients With Acute Respiratory Distress...

Acute Respiratory Distress

This is a phase II study to test adenosine efficacy for down-regulation of the overwhelming inflammation of COVID-19 in the lungs as reflected by clinical recovery of lung function; resolution of clinically relevant markers of lung function, and resolution of systemic markers of inflammation and coagulation.

Not yet recruiting12 enrollment criteria

Early Versus Late Initiation of ECMO (Extracorporal Membrane Oxygenation) Trial (ELIEO-Trial)

Acute Respiratory Distress Syndrome

This trial is a prospective randomized multicenter trial that assigns patients to either a treatment for Acute Respiratory Distress Syndrome (ARDS) with an Extracorporal Membrane Oxygenation (ECMO) immediately after admission to the intensive care unit or conservative treatment. The later can undergo ECMO following failure of conservative therapy as a rescue therapy. Patients will be included within 96h of the onset of symptoms of ARDS and will be randomized according to standard procedure. Follow-up will be performed until hospital discharge.

Not yet recruiting8 enrollment criteria

Forced Oscillometry in Infants With Bronchopulmonary Dysplasia

InfantPremature3 more

The purpose of this study is to use forced oscillometry technique (FOT) to measure pulmonary mechanics and function in in term infants and premature infants with bronchopulmonary dysplasia (BPD)

Recruiting7 enrollment criteria

Efficacy of Canrenone as add-on Treatment in Moderate to Severe ARDS in COVID-19

COVID-19 Acute Respiratory Distress Syndrome

The main aim of the study is to estimate the potential efficacy of i.v. canrenone as add-on therapy on maximal medical treatment versus maximal medical treatment alone in treating moderate-to-severe ARDS due to SARS-CoV-2.

Not yet recruiting18 enrollment criteria

PEEP in Patients With Acute Respiratory Failure

Acute Respiratory Failure With Hypoxia

Positive end-expiratory pressure (PEEP) has become an essential component of the care of critically ill patients who require ventilatory support. In 1975, several investigators published the effects of PEEP in 15 mechanically ventilated patients with acute respiratory failure (ARF) supported by mechanical ventilation. FiO2 ranged between 21% to 75% and the tidal volume between 13 to 15 mL/kg. PEEP was increased in 3 cmH2O steps until cardiac output fell. The aim was to identify the "optimum" PEEP level. "Best" PEEP was associated simultaneously with the best static compliance of the respiratory system, the greatest oxygen transport, and the lowest dead space fraction. That study established the basis for the use of PEEP in patients with ARF worldwide. Although currently patients with ARF are ventilated with much lower tidal volumes, that study has never been validated. It is unknow whether their findings are currently valid, generalizable, and reproducible.

Recruiting9 enrollment criteria

Mitochondrial Dysfunction of Alveolar and Circulating Immune Cells During Acute Respiratory Distress...

Lung DiseasesMechanical Ventilation1 more

Sepsis leads to a deregulated host response that can lead to organ failure. During sepsis, experimental and clinical data suggest the occurrence of mitochondrial dysfunctions, particularly in circulating muscle and monocytes, which may contribute to organ failure and death. Lower respiratory infection is the leading cause of death from infectious causes. Mechanical ventilation (MV) is required in 20% of cases of bacterial pneumopathy with Streptococcus pneumoniae (S.p.) , with mortality reaching 50%. There are then frequently criteria for acute respiratory distress syndrome (ARDS), combining bilateral lung involvement and marked hypoxemia. Cyclic stretching of lung cells induced by MV causes sterile inflammation and tissue damage (i.e. ventilator-induced lung injury [VILI]), which can cause cellular dysfunction that alter the immune response, particularly during ARDS. This is why the application of a so-called protective MV is then required. However, this does not prevent about one-third of patients from showing signs of alveolar overdistension, as evidenced by an increase in motor pressure (MP) (MP≥ 15 cmH2O), associated with an increase in mortality. The deleterious effects of MV could be explained by the occurrence of mitochondrial abnormalities. Indeed, the cyclic stretching of lung cells leads to dysfunction in the respiratory chain and the production of free oxygen radicals (FOS), altering membrane permeability. These phenomena could promote VILI, facilitate the translocation of bacteria from the lung to the systemic compartment and lead to alterations in immune response. In our model of S.p. pneumopathy in rabbits, animals on MV develop more severe lung disorders (lack of pulmonary clearance of bacteria, bacterial translocation in the blood, excess mortality), compared to animals on spontaneous ventilation (SV). Intracellular pulmonary mitochondrial DNA (mtDNA) concentrations, a reflection of the mitochondrial pool, are significantly decreased in ventilated rabbits compared to SV rabbits and in infected rabbits compared to uninfected rabbits. At the same time, the mitochondrial content of circulating cells decreased early (H8) in all infected rabbits, but was only restored in rabbits in SV, those who survived pneumonia (Blot et al, poster ECCMID 2015, submitted article). These data suggest an alteration in the mechanisms that restore mitochondrial homeostasis (mitochondrial biogenesis and mitophagy) during the dual infection/MV agression, which may explain the observed excess mortality. Other work by our team illustrates the importance of these phenomena by showing in a mouse model of polymicrobial infection that inhibition of mitophagia in macrophages promotes survival (Patoli et al, in preparation). Human data on this subject are non-existent. The phenomena of mitochondrial dysfunction nevertheless deserve to be explored in humans during the combined MV/pneumopathy aggression in order to understand its possible impact on the effectiveness of the host's immune response. In a personalized medicine approach, these data would open up prospects for targeted therapies, capable of activating mitochondrial biogenesis and/or modulating mitophagia, to prevent organ dysfunction and mortality during severe CALs treated with antibiotic therapy.

Recruiting23 enrollment criteria
1...161718...139

Need Help? Contact our team!


We'll reach out to this number within 24 hrs