search

Active clinical trials for "Glioblastoma"

Results 881-890 of 1616

Evaluation of Recovery From Drug-Induced Lymphopenia Using Cytomegalovirus-specific T-cell Adoptive...

Glioblastoma

The purpose of this research study is to learn if your own immune cells can be activated and multiplied in order to help your body fight off the tumor cells in your brain. The safety of this procedure will also be studied. This procedure, called CMV-autologous lymphocyte transfer or CMV-ALT is investigational which means that it is not approved by the US Food and Drug Administration (FDA) and is still being tested in research studies. Autologous lymphocyte transfer or ALT means that you will receive your own immune cells back (and not from another donor) as a treatment after they have been activated and grown to large numbers in a clinical lab. It is believed that the body's immune (protection) system can attack tumor cells and kill them. Immune cells called T-lymphocytes (T-cells) can recognize special proteins on the surface of tumors as a signal to attack and fight the cancer. In most patients with advanced cancer, the immune system does not adequately destroy the tumor because the white blood cells or T-cells are not stimulated enough. Before your T-cells can become active against tumor cells, they require strong stimulation. There are special "stimulator" cells in the body called Dendritic Cells (DCs) that can take up proteins released from cancer cells and present pieces of these proteins to T lymphocytes to create this strong stimulation. Dendritic cells taken from your blood will be "pulsed" or loaded with genetic material called RNA (ribonucleic acid), which stimulates the DC to change the RNA into a protein called pp65. This protein is produced by a common virus called Cytomegalovirus (CMV) that 70-80% of us have been exposed to in our lifetime. Recently, we have found that this virus is present in many malignant brain tumors. Brain tumors are very aggressive and, for reasons we do not yet understand, are difficult for the body to attack. The CMV virus is a target in the tumor that, if attacked by your immune systems cells, may prevent your tumor from growing. We have found that we can grow immune cells to very large numbers from the blood of people who have evidence of prior exposure to this virus. You will therefore be tested to determine if you have pre-existing antibodies to this virus in order to participate in this study. We will use your DCs to activate and grow immune cells from your blood to large numbers in a clinical laboratory. These CMV-specific immune cells, called CMV-ALT, will be returned to your body when they have become activated. It is hoped that these cells will seek out and kill tumor cells that express the CMV viral protein and not attack normal cells. The transfer of immune cells that stimulates your immune system is called adoptive immunotherapy. We will evaluate two doses of immune cells in this study (Dose 1 and Dose 2). Depending on when you are enrolled in this study you will receive either Dose 1 or 2. The first six patients enrolled on this study will receive Dose 1 (the lower dose) and the next six patients will receive Dose 2 (the higher dose). We do not know at this time if either dose is more effective or safer to administer which is why we are testing both doses. Dose 2 will be a larger number of immune cells if the treatment is found to be safe in the first six patients treated during this study. In this study we will also see, in some randomly selected patients, if giving an injection of the DC pulsed with pp65 RNA into the skin improves the function of the CMV-ALT treatment or not. You will receive three injections under the skin of either some of the same DC that were used to stimulate your immune cells in the clinical laboratory or three injections of saline (salt solution) under the skin starting with the infusion of the CMV-ALT. It is unknown if a DC injection will be beneficial to the immune cells or not so the responses will be compared in patients who receive DC versus saline injection with their CMV-ALT. After these three injections, blood will be collected to compare the responses between patients that received saline to those that received DC injections.

Completed12 enrollment criteria

Vaccine Therapy in Treating Patients With Newly Diagnosed Glioblastoma Multiforme

Malignant Neoplasms of Brain

RATIONALE: Vaccines made from a peptide may help the body build an effective immune response to kill tumor cells. Colony-stimulating factors, such as GM-CSF, increase the number of white blood cells and platelets found in bone marrow or peripheral blood. Giving vaccine therapy after surgery may kill any tumor cells that remain after surgery. PURPOSE: This phase II trial is studying how well vaccine therapy works in treating patients with newly diagnosed glioblastoma multiforme.

Completed24 enrollment criteria

Vaccine Therapy in Treating Patients With Newly Diagnosed Glioblastoma Multiforme

Malignant Neoplasms of Brain

RATIONALE: Vaccines may help the body build an effective immune response to kill cancer cells. Radiation therapy uses high-energy x-rays to kill cancer cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vaccine therapy together with radiation therapy and chemotherapy may kill more cancer cells. PURPOSE: This randomized phase I/II trial is studying how well vaccine therapy works in treating patients with newly diagnosed glioblastoma multiforme recovering from lymphopenia caused by temozolomide.

Completed12 enrollment criteria

Safe Study of Dendritic Cell (DC) Based Therapy Targeting Tumor Stem Cells in Glioblastoma

GlioblastomaBrain Tumor

The study induces an immune response towards the stem-cell like part of glioblastomas in combination with standard therapy. The aim is to define and characterize the feasibility, potential adverse effects of such therapy and measure time to progression and survival.

Completed19 enrollment criteria

Temozolomide and Radiation Therapy With or Without Cediranib Maleate in Treating Patients With Newly...

Adult GlioblastomaAdult Gliosarcoma

This randomized phase II trial studies temozolomide, radiation therapy, and cediranib maleate to see how well they work compared with temozolomide, radiation therapy, and a placebo in treating patients with newly diagnosed glioblastoma (a type of brain tumor). Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high energy x-rays to kill tumor cells. Cediranib maleate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. It is not yet known whether temozolomide and radiation therapy are more effective when given with or without cediranib maleate in treating glioblastoma.

Completed57 enrollment criteria

Radiation Therapy and Temozolomide Followed by Temozolomide Plus Sorafenib for Glioblastoma Multiforme...

Glioblastoma Multiforme

The mechanism of action of sorafenib makes it an interesting drug to investigate in the treatment of patients with glioblastoma multiforme. Efficacy of agents with anti-angiogenic activity has already been demonstrated and the PDGF receptor target may also be pertinent in glioblastoma. The combination of temozolomide plus sorafenib has been investigated previously in the treatment of patients with advanced melanoma. The combination was generally well tolerated; in previously untreated patients, a standard dose of sorafenib (400mg PO bid) was administered with temozolomide 150mg/m2 PO daily for 5 days, repeated every 28 days (23). In this multicenter phase II study, patients with newly diagnosed glioblastoma will receive standard treatment, including initial debulking surgical resection (if feasible) followed by high-dose radiation therapy with concurrent temozolomide. After completion of radiation therapy, patients will continue treatment with temozolomide (150mg/m2 days 1-5) and sorafenib (400mg PO bid daily), repeated at 28-day intervals for 6 cycles.

Completed30 enrollment criteria

The Safety and Efficacy of DCA for the Treatment of Brain Cancer

Malignant GliomasGlioblastoma Multiforme

Malignant gliomas, which include Glioblastoma multiforme (GBM), are the most common and most aggressive types of brain cancer, accounting for approximately 60% of primary brain tumors. These tumors are characterized by diverse molecular abnormalities (within the same tumor), which, along with the difficulties of many standard chemotherapies crossing the blood barrier, contribute to the very poor response to therapy and poor survival. We recently showed that Dichloroacetate (DCA, an inhibitor of the mitochondrial pyruvate dehydrogenase kinase) was able to depolarize cancer (but not normal) mitochondria and induce apoptosis in cancer but not normal tissues. We believe that altering the metabolism of cancers like glioblastoma (DCA switches metabolism from the cytoplasmic glycolysis to the mitochondrial glucose oxidation) we inhibit the resistance to apoptosis that characterizes cancer. Because metabolism (i.e. glycolysis) is the end result of many and diverse molecular pathways, the effects of DCA might be positive in cancers with diverse molecular backgrounds. DCA is also a very small molecule that readily crosses the blood brain barrier. Therefore we hypothesize that DCA will be an effective and relative non-toxic potential therapy for malignant gliomas. We are conducting a phase II trial with 2 parallel arms: a) patients with newly diagnosed malignant gliomas and b) patients with recurrent gliomas or gliomas that have failed standard therapy (which includes surgery, radiotherapy and chemotherapy). All patients need to have a histological diagnosis. DCA will be given orally and patients will be followed for a minimum of 6 months. The tumor size will be followed by standard MRI or CT criteria and glucose uptake (a direct effect of DCA on the tumor) will be measured by FDG-PET imaging. Several clinical parameters and quality of life will be followed. Potential toxicity (particularly peripheral neuropathy) will be closely followed and dose-de-escalation protocols are in place in case of toxicity. In addition, escape protocols for the application of standard therapy (when appropriate) are in place in patients with no evidence of response to DCA. In vitro studies will be performed in the tissues obtained at the time of surgery (where appropriate) and correlated prospectively with clinical data. There is limited ability to accept patients outside of Alberta; this is in part because the visit and testing schedule is intense, requiring residence in Edmonton for at least 6 months.

Completed25 enrollment criteria

Sunitinib in Treating Patients With Recurrent Malignant Gliomas

Adult Anaplastic AstrocytomaAdult Diffuse Astrocytoma6 more

This phase II trial is studying how well sunitinib works in treating patients with recurrent malignant gliomas. Sunitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.

Completed57 enrollment criteria

Bevacizumab in Combination With Metronomic Temozolomide for Recurrent Malignant Glioma

Glioblastoma Multiforme

This is a phase II study of the combination of Avastin and metronomic temozolomide in recurrent malignant glioma patients. The primary objective will be to determine the efficacy of Avastin (bevacizumab) and metronomic temozolomide in malignant glioma patients. The secondary objective will be to determine the safety of Avastin, 10 mg/kg every other week, in combination with metronomic temozolomide in terms of progression-free survival.

Completed10 enrollment criteria

Tumor Lysate Pulsed Dendritic Cell Immunotherapy for Patients With Brain Tumors

Glioblastoma

This research is being determine whether vaccinations with your own immune cells called " dendritic cells " can activate your immune system to fight your brain tumor.

Completed16 enrollment criteria
1...888990...162

Need Help? Contact our team!


We'll reach out to this number within 24 hrs